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Topics for Week 34

Introduction, systems of identical particles and physical

systems

>

>

Monday:

Presentation of topics to be covered and introduction to
Many-Body physics (Lecture notes, Shavitt and Bartlett
chapter 1, Raimes chapter 1 and Gross, Runge and
Heinonen (GRH) chapter 1).

Tuesday:
Discussion of wave functions for fermions and bosons.

Calculations of expectation values and start defining
second quantization

No exercises this week.
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Topics for Week 35

Introduction, systems of identical particles and physical
systems

» Monday:

Second quantization and representation of operators
Tuesday:

Second quantization and representation of operators
Wednesday: Exercises 1 and 2

v

v

v

v
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Lectures and exercise sessions

and syllabus

>

Lectures: Monday (8.15-10.00, room LilleFys) and Tuesday
(8.15-10.00, room LilleFys)

Detailed lecture notes, all exercises presented and projects
can be found at the homepage of the course.

Exercises: 14.15-16 Wednesday, room FV311

Weekly plans and all other information are on the official
webpage.

Syllabus: Lecture notes, exercises and projects. Shavitt
and Bartlett as main text, chapter 1-7 and 9-10. Gross,
Runge and Heinonen chapters 1-10 and 14-27or Raimes
(chapter 1-3, and 5-11) are also good alternatives.
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Quantum Many-particle Methods

1. Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

2. Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

Perturbative many-body methods
Density functional theory/Mean-field theory and Hartree-Fock theory
Monte-Carlo methods (FYS4411)

Green'’s function theories

N o g o

Density functional theories

The physics of the system hints at which many-body methods to use.
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Plan for the semester

Projects, deadlines and oral exam

1. Midterm project, counts 30%: hand out October 11, handin
October 14 (12pm)

2. Final written exam, to be decided.
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Lectures and exercise sessions

and syllabus

>

Lectures: Monday (8.15-10.00, room LilleFys) and Tuesday
(8.15-10.00, room LilleFys)

Detailed lecture notes, all exercises presented and projects
can be found at the homepage of the course.

Exercises: 14.15-16 Wednesday, room FV311

Weekly plans and all other information are on the official
webpage.

Syllabus: Lecture notes, exercises and projects. Shavitt
and Bartlett as main text, chapter 1-7 and 9-10. Gross,
Runge and Heinonen chapters 1-10 and 14-27or Raimes
(chapter 1-3, and 5-11) are also good alternatives.
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Selected Texts and Many-body theory

LK I I N AN

Blaizot and Ripka, Quantum Theory of Finite systems, MIT press 1986
Negele and Orland, Quantum Many-Particle Systems, Addison-Wesley, 1987.

Fetter and Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill,
1971.

Helgaker, Jargensen and Olsen, Molecular Electronic Structure Theory, Wiley,
2001.

Mattuck, Guide to Feynman Diagrams in the Many-Body Problem , Dover, 1971.

Dickhoff and Van Neck, Many-Body Theory Exposed, World Scientific, 2006.
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Definitions

An operator is defined as O throughout. Unless otherwise
specified the number of particles is always N and d is the
dimension of the system. In nuclear physics we normally define
the total number of particles to be A= N + Z, where N is total
number of neutrons and Z the total number of protons. In case
of other baryons such isobars A or various hyperons such as A
or ¥, one needs to add their definitions. Hereafter, N is
reserved for the total number of particles, unless otherwise
specificied.
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Definitions

The quantum numbers of a single-particle state in coordinate
space are defined by the variable x = (r, o), where r € R9with
d =1, 2, 3 represents the spatial coordinates and o is the

eigenspin of the particle. For fermions with eigenspin 1/2 this

means that q

5)

/dx:zg:/ddrzzgz/dr,
/de:/dxl/dxz.../de.

x e RY @ (

and the integral

and
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Definitions

The quantum mechanical wave function of a given state with
guantum numbers A (encompassing all quantum numbers
needed to specify the system), ignoring time, is

\U)\ — WX(X17X27 oo 7XN)7

with x; = (rj, 0j) and the projection of o; takes the values
{—1/2,41/2} for particles with spin 1/2. We will hereafter
always refer to ¥, as the exact wave function, and if the ground
state is not degenerate we label it as

Yy = \Uo(Xl,Xz, noo ,XN).
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Definitions

Since the solution W, seldomly can be found in closed form,
approximations are sought. In this text we define an
approximative wave function or an ansatz to the exact wave
function as

P\ = Pr(X1, X2, .-, XN),

with
cl)0 — ¢0(X17X27 o 7XN)7

being the ansatz to the ground state.
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Definitions

The wave function WV, is sought in the Hilbert space of either
symmetric or anti-symmetric N-body functions, namely

Uy eHN =H1PH1D - D Ha,

where the single-particle Hilbert space H; is the space of
square integrable functions over € RY & (o) resulting in

Hy = L2(RY @ (0)).



Definitions
Our Hamiltonian is invariant under the permutation
(interchange) of two particles. Since we deal with fermions
however, the total wave function is antisymmetric. Let P be an
operator which interchanges two particles. Due to the
symmetries we have ascribed to our Hamiltonian, this operator
commutes with the total Hamiltonian,

[A,P] =0,
meaning that W (x1, X2, ..., Xy ) is an eigenfunction of P as well,
that is
FA’ij\U)\(X]_,Xz,...,Xi,...,Xj,...,XN) :,BW)\(Xl,Xz,...,Xj,...,Xi,...,XN)‘

where § is the eigenvalue of P. We have introduced the suffix ij
in order to indicate that we permute particles i and j. The Pauli
principle tells us that the total wave function for a system of
fermions has to be antisymmetric, resulting in the eigenvalue

B=-1.
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Definitions and notations

The Schrodinger equation reads

H(X1, X2, - s X)W (X1, X25 - -, XN) = EAWA(X1, X2, -+, XN, (2.0.1)

where the vector x; represents the coordinates (spatial and spin) of particle i, A stands
for all the quantum numbers needed to classify a given N-particle state and W, is the
pertaining eigenfunction. Throughout this course, W refers to the exact eigenfunction,
unless otherwise stated.
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Definitions and notations

We write the Hamilton operator, or Hamiltonian, in a generic way

while the operator V for the potential energy is given by

N

N N
V= lex(Xi) + DV X) + D VX, %) + - (2.0.2)
i—1

ji=1 ijk=1

Hereafter we use natural units, viz. h = ¢ = e = 1, with e the elementary charge and c
the speed of light. This means that momenta and masses have dimension energy.
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Definitions and notations

If one does quantum chemistry, after having introduced the Born-Oppenheimer
approximation which effectively freezes out the nucleonic degrees of freedom, the
Hamiltonian for N = ne electrons takes the following form

R Ne Ne 7 Ne K
H= EE:t(xi)<— ZE: k}f +‘2£: F},

i=1 i=1 ! i<j !

with k = 1.44 eVnm
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Definitions and notations

We can rewrite this as

Ne Ne
~ A ~ ~ 1
a— H =S Anlx ) 2.0.3
o+ Hi =, 0(X|)+_Z rij (2.0.3)
i=1 i<j=1
where we have defined rjj = |r; — rj| and
~ o 4
ho(xi) = t(xi) — - (2.0.4)

The first term of eq. (2.0.3), Hg, is the sum of the N one-body Hamiltonians ﬁo. Each
individual Hamiltonian hy contains the kinetic energy operator of an electron and its
potential energy due to the attraction of the nucleus. The second term, H,, is the sum
of the ne(ne — 1)/2 two-body interactions between each pair of electrons. Note that the
double sum carries a restriction i < j.
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Definitions and notations

The potential energy term due to the attraction of the nucleus defines the onebody field
U = Uext(Xj) of Eq. (2.0.2). We have moved this term into the Fo part of the
Hamiltonian, instead of keeping it in V asin Eg. (2.0.2). The reason is that we will
hereafter treat Hy as our non-interacting Hamiltonian. For a many-body wavefunction
®, defined by an appropriate single-particle basis, we may solve exactly the
non-interacting eigenvalue problem

Ho®y = wy &y,

with wy being the non-interacting energy. This energy is defined by the sum over
single-particle energies to be defined below. For atoms the single-particle energies
could be the hydrogen-like single-particle energies corrected for the charge Z. For
nuclei and quantum dots, these energies could be given by the harmonic oscillator in
three and two dimensions, respectively.
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Definitions and notations

We will assume that the interacting part of the Hamiltonian can be approximated by a
two-body interaction. This means that our Hamiltonian is written as

N
H=Ho+H => ho(x)+ Z v (1), (2.0.5)
i=1 i<j=1
with
N . N
= hox)=>" (t(x, + Gext(X; )) (2.0.6)
i=1 i=1

The onebody part uext(x;) is normally approximated by a harmonic oscillator potential
or the Coulomb interaction an electron feels from the nucleus. However, other
potentials are fully possible, such as one derived from the self-consistent solution of
the Hartree-Fock equations.
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Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.
Since we deal with fermions however, the total wave function is antisymmetric. Let P
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[H,P]=0,
meaning that W (X1, Xz, . . ., XN ) is an eigenfunction of P as well, that is
ﬁijwk(xl7x27"'7Xi7"'7xj7"'7XN) = 6WA(X17X27"'7Xi7"'7xj7"'7XN)7

where 3 is the eigenvalue of P. We have introduced the suffix ij in order to indicate that
we permute particles i and j. The Pauli principle tells us that the total wave function for

a system of fermions has to be antisymmetric, resulting in the eigenvalue 8 = —1.
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Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Ya(X1) Yal2) ... ... Palxn)
1 | ¥sla) vplx2) ... ... Pp(xn)
Pz dwafe DT ]
Yo(X1) Yolx2) ... ... y(Xn)
(2.0.7)
where x; stand for the coordinates and spin values of a particle i and «, 3, ...,y are

quantum numbers needed to describe remaining quantum numbers.
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Definitions and notations

The single-particle function v (x;) are eigenfunctions of the onebody Hamiltonian h;,
that is

ho(xi) = t(xi) + Gex(xi),

with eigenvalues
Ro(xi)wra (x) = (06) + Beu(x)) va (x) = eatba(x).

The energies ¢, are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-particle

energies, if no two-body or more complicated many-body interactions are present.
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Definitions and notations

Let us denote the ground state energy by Eq. According to the variational principle we
have
Eo < E[¢] :/d>*|3|d>d7—

where @ is a trial function which we assume to be normalized

/d>*¢dT =1,

where we have used the shorthand d+ = dr;dr, ... dry.
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Definitions and notations

In the Hartree-Fock method the trial function is the Slater determinant of Eq. (2.0.7)
which can be rewritten as
1 2
(X1, X2, -+ XN @ By ) = ——= > (=) Pya(Xa)p(X2) - - b (xn) = VNLADY,
VNI
(2.0.8)

where we have introduced the antisymmetrization operator .4 defined by the

summation over all possible permutations of two particles.
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Definitions and notations

It is defined as

1 .
A= Ni ;(—)"P, (2.0.9)

with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle

functions
¢H(X17X27' .. 7XN7a7ﬁ7 .. '7'/) = ’LZJQ(X]_)’LZJB(XZ) ° "wV(XN)'
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Definitions and notations

Both Hy and T—i are invariant under all possible permutations of any two particles and

hence commute with A
[Ho, A] = [H|, A] = 0. (2.0.10)

Furthermore, A satisfies
A2 = A, (2.0.11)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations

The expectation value of Ho
/¢*I—To¢d7- = N!/¢,T,A|—TOA¢HdT

is readily reduced to
/¢*I—To¢d7- = N!/d>,*_] HoA®pdr,
where we have used egs. (2.0.10) and (2.0.11). The next step is to replace the

antisymmetrization operator by its definition Eq. (2.0.8) and to replace Hy with the sum
of one-body operators

N
/¢*I—fo¢d7- - ZZ(_)p/modef.

i=1 p

28/433



Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions @ because the individual single-particle wave functions are
orthogonal. We obtain then

N
/¢*|3|0¢d7 = Z/cb;f,ﬁochdT.
i=1

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

N
/¢*Ho¢dT _ Z/w;(r)ﬁow(r)dr. (2.0.12)
p=1
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Definitions and notations

We introduce the following shorthand for the above integral

(ulfolu) = / 05 () hotu(r),

and rewrite Eq. (2.0.12) as

N

[ o Hoodr = 3" (ulfiol). (2.0.13)

p=1
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Definitions and notations

The expectation value of the two-body part of the Hamiltonian is obtained in a similar
manner. We have

/¢*ﬁ.¢dT:N!/¢;AﬁlA¢HdT,

which reduces to

N
/¢*|—"|.¢dr: > Z(—)p/%V(rij)ﬁchdT,

i<j=1 p

by following the same arguments as for the one-body Hamiltonian.
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Definitions and notations

Because of the dependence on the inter-particle distance r;;, permutations of any two
particles no longer vanish, and we get

N
/¢*I:||¢d7: > /¢:_;V(rij)(1— Pj)®pdr.

i<j=1

where Py is the permutation operator that interchanges particle i and particle j. Again

we use the assumption that the single-particle wave functions are orthogonal.
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Definitions and notations

We obtain

. 1 N N
Joriodr =257 50| [unoaus v (r)n(xve s e
p=lv=1 (2.0.14)

- / W5 060085 04OV (5 )b (% o (%)l | -

The first term is the so-called direct term. It is frequently also called the Hartree term,
while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.
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Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions v, (r), defined by the quantum numbers 1 and r (recall that r also
includes spin degree) are defined as the overlap

Ya(X) = (X]).
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Definitions and notations

We introduce the following shorthands for the above two integrals
(V) = [0SOV (1 041 05,

and
(pv|Vvp) = / Py (%), () V(1 )w (X ) (X ) dX -
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Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

(u|V |pv)as = (uv|V|pv) — (pv|V vy,
or for a general matrix element

(uvlVloT)as = (uv|V |or) — (uv|V|70).
It has the symmetry property

(mv|Vlot)as = —(uv|V|To)as = —(vu|V|oT)as.
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Definitions and notations

The antisymmetric matrix element is also hermitian, implying
(uv|VloT)as = (o7|V|uv)as.

With these notations we rewrite Eq. (2.0.14) as

N N
N 1
/¢*H|¢d7 = 5 Z Z<NV‘V|NV>AS' (2.0.15)

p=1lv=1

37/433



Definitions and notations

Combining Egs. (2.0.13) and (6.0.132) we obtain the energy functional

N N N
1
E[0] =D (ulhol) + 5 > Z |V |pw)as (2.0.16)
p=1 p=lv=1
which we will use as our starting point for the Hartree-Fock calculations later in this

course.
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Second guantization

We introduce the time-independent operators al, and a, which create and annihilate,
respectively, a particle in the single-particle state ¢,. We define the fermion creation
operator al,

al |0) = |), (2.0.17)

and
ag\al...anﬂs = ‘Otal...Otn>AS (2018)
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Second quantization

In Eq. (2.0.17) the operator al, acts on the vacuum state |0), which does not contain
any particles. Alternatively, we could define a closed-shell nucleus or atom as our new
vacuum, but then we need to introduce the particle-hole formalism, see the discussion
to come.

In Eq. (2.0.18) aL acts on an antisymmetric n-particle state and creates an
antisymmetric (n + 1)-particle state, where the one-body state ¢, is occupied, under
the condition that « # aq, ap, - . ., an. It follows that we can express an antisymmetric
state as the product of the creation operators acting on the vacuum state.

lag ... an)as = af, al,, ... al, |0) (2.0.19)
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Second guantization

It is easy to derive the commutation and anticommutation rules for the fermionic
creation operators aL. Using the antisymmetry of the states (2.0.19)

|OL1...Oéi B e ...Oén>As = —|a1...ak e ...an)As (2.0.20)
we obtain
al,al, = —al, al, (2.0.21)
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Second guantization

Using the Pauli principle
lag...q...05...0n)as =0 (2.0.22)

it follows that
al,al, =0. (2.0.23)

If we combine Egs. (2.0.21) and (2.0.23), we obtain the well-known anti-commutation
rule
ajla} + agaj1 = {al, ag} =0 (2.0.24)
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Second guantization

The hermitian conjugate of al, is
aa = (a})’

If we take the hermitian conjugate of Eq. (2.0.24), we arrive at

{aa,a3} =0

(2.0.25)

(2.0.26)
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Second guantization

What is the physical interpretation of the operator a, and what is the effect of a, on a
given state |aya . .. an)as? Consider the following matrix element

(10 ... anlaalafas ... am) (2.0.27)

where both sides are antisymmetric. We distinguish between two cases

1. « € {«a;}. Using the Pauli principle of Eqg. (2.0.22) it follows

(g0 ...anlaa =0 (2.0.28)

2. a ¢ {a;j}. It follows that an hermitian conjugation

(1@ ... anlaa = (aagan ... an (2.0.29)
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Second guantization

Eqg. (2.0.29) holds for case (1) since the lefthand side is zero due to the Pauli principle.
We write Eq. (2.0.27) as

{1z ...anlaa|ajal ... an) = (a1ag ... an| acjah . .. apy (2.0.30)

Here we must have m = n + 1 if Eq. (2.0.30) has to be trivially different from zero.
Using Egs. (2.0.28) and (2.0.28) we arrive at

0 oac{o}V{an}#{af} } (2.0.31)

(oroz.-anlaelofe—-on = { &1 g (o)L foan) 2 fan
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Second guantization

For the last case, the minus and plus signs apply when the sequence «, ay, ay, . . ., an
and ag, a5, ..., o, are related to each other via even and odd permutations. If we
assume that a ¢ {«;} we have from Eq. (2.0.31)

(0p...anlaalajay ... op ) =0 (2.0.32)

when o € {a]}. If o ¢ {a}, we obtain

aq lajas . ..o ,) =0 (2.0.33)
——————
#a
and in particular
a.|0) =0 (2.0.34)
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Second guantization

If {c; } = {a/}, performing the right permutations, the sequence «, a1, @z, . . ., an is
identical with the sequence o}, a5, .. ., O‘:H—l' This results in

(@10 ... anlaa|aciag . ..an) =1 (2.0.35)
and thus

an|aayap . ..on) = |agas ... an) (2.0.36)
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Second quantization

The action of the operator a., from the left on a state vector is to to remove one particle
in the state «. If the state vector does not contain the single-particle state «, the
outcome of the operation is zero. The operator a., is normally called for a destruction
or annihilation operator.

The next step is to establish the commutator algebra of af, and ag.
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Second guantization

The action of the anti-commutator {aL,aa} on a given n-particle state is

alan|atas...an) = 0
N— ——
F#a
agal, |aras . .. an)
—_———

Ao |aagay...an) = |ajay ... an)

#a F#a Fa

if the single-particle state « is not contained in the state.

(2.0.37)
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Second guantization

If it is present we arrive at

alan|aton ... ooy ... on_1) = ahaa(—1)¢|acas...

= (-1)¥aczoz...an_1) = |ogaz...oxc0py; .

aaaL|a1a2...akaom+4...an_1> 0
From Egs. (2.0.37) and (2.0.38) we arrive at

{al ,a,} =ala, +asal, =1

an_1)

. O(n—1>

(2.0.38)

(2.0.39)
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Second guantization

The action of aL, ag, with o # 8 on a given state yields three possibilities. The first
case is a state vector which contains both a and g, then either « or 8 and finally none
of them.
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Second guantization

The first case results in

aLa5|a6a1a2 coo an_2> =0
agal|afayas ... an_p) =0 (2.0.40)
while the second case gives
a];ag|ﬂa1a2...an_1> = \aalaz...an_l)
N——— N———
#a #a
agal|Baiaz...an_1) = aglaBPaiaz...on_1)
| — | —
#a #a
= —|aaian...an_1) (2.0.41)
N———
#a
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Second guantization

Finally if the state vector does not contain « and 3

alaﬁ‘alaz...an> 0
N— —
#a,B

aBaL\ a1 ... an>
N— —

aglaajay...an) =0
N —

#a, B #a, B

For all three cases we have

{al,,ap} =alas +agal, =0, a#p

(2.0.42)

(2.0.43)
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Second guantization

We can summarize our findings in Egs. (2.0.39) and (2.0.43) as
{al,, a5} = dap (2.0.44)

with 6,3 is the Kroenecker 4-symbol.
The properties of the creation and annihilation operators can be summarized as (for
fermions)
al|0) =|a),

and

al‘al 51010 an>/_\5 = \aal 51010 Oln>AS~
from which follows

lag ... an)as = af, al,, ...af, |0).

2

54/433



Second guantization

The hermitian conjugate has the folowing properties
aa = (ah)"
Finally we found
aq |aja .. o ,4) =0, spesielta |0) =0,
N——————
#a

and
an|aaray . ..an) = |azaz ... an),

and the corresponding commutator algebra

{al,al} = {aa,a3} =0  {al,as} = dap-
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Operators in second quantization

A very useful operator is the so-called number-operator. Most physics cases we will
study in this text conserve the total number of particles. The number operator is
therefore a useful quantity which allows us to test that our many-body formalism
conserves the number of particles. In for example (d, p) or (p, d) reactions it is
important to be able to describe quantum mechanical states where particles get added
or removed. A creation operator aL adds one particle to the single-particle state a of a
give many-body state vector, while an annihilation operator a, removes a particle from
a single-particle state a.
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Operators in second quantization

Let us consider an operator proportional with aLaﬁ and o = §. It acts on an n-particle
state resulting in

0 ad {a}
alas|aias...an) = (2.0.45)
leaan . ..an) o € {oi}

Summing over all possible one-particle states we arrive at

<Z aLaa> lagagp ...an) = nlagag ... on) (2.0.46)
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Operators in second quantization

The operator
N=> ala. (2.0.47)

is called the number operator since it counts the number of particles in a give state

vector when it acts on the different single-particle states. It acts on one single-particle
state at the time and falls therefore under category one-body operators. Next we look
at another important one-body operator, namely Ho and study its operator form in the

occupation number representation.
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Operators in second quantization

We want to obtain an expression for a one-body operator which conserves the number
of particles. Here we study the one-body operator for the kinetic energy plus an
eventual external one-body potential. The action of this operator on a particular n-body
state with its pertinent expectation value has already been studied in coordinate space.
In coordinate space the operator reads

Ho = ho(x;) (2.0.48)
i
and the anti-symmetric n-particle Slater determinant is defined as

¢(X1,X2,...,Xn,a1,a2,...,an \/—Z wal X1 waz(xz) wan(Xn)'

(2.0.49)
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Operators in second quantization

Defining
ho(Xi)tbey () = > Day, (%) etk [Pof o) (2.0.50)
L
we can easily evaluate the action of Hy on each product of one-particle functions in

Slater determinant. From Egs. (2.0.49) (2.0.50) we obtain the following result without
permuting any particle pair

(Z I'A10(Xi )> Yoy (X1)¥ay (X2) - - - Yan (Xn)

= Z(a/ﬂﬁo\alwag(xlww (X2) - - - Yan (xn)

!
1

i Z(a'ﬂﬁo\asz(Xlwaé (X2) - - - an (Xn)

/

¥

+ D (anlholan)yay (X1)a, (X2) - - - gy (Xn) (2.051)

!
An
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Operators in second quantization

If we interchange the positions of particle 1 and 2 we obtain

(Z ﬁo(Xi)> Yoy (X2)Pa; (X2) - - - Pan (Xn)

= Z(a'zmo\azwm(xzwaé (X1) - - - Yan (xn)

/
2

+ > (anlholas)da; (X2)tay (X1) - - - an (Xn)

!’
Rl

o

+ > (anlholan)ta; (X2)day (X2) - - - Yas (¥n) (2.0.52)

/
A
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Operators in second quantization

We can continue by computing all possible permutations. We rewrite also our Slater
determinant in its second quantized form and skip the dependence on the quantum

numbers x;. Summing up all contributions and taking care of all phases (—1)P we
arrive at

Holat, az,...,an) = D (ajlfolas)laiaz ... an)

!
1

+ Y (ablholaz)|ral .. . an)

’
R

+ > (anlholan)|araz ... ap) (2.0.53)

/
An
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Operators in second quantization

In Eq. (2.0.53) we have expressed the action of the one-body operator of Eq. (2.0.48)
on the n-body state of Eq. (2.0.49) in its second quantized form. This equation can be
further manipulated if we use the properties of the creation and annihilation operator
on each primed quantum number, that is

lorag .. .ap ...an) = aL Aoy |o1o .. o ... on) (2.0.54)

Inserting this in the right-hand side of Eq. (2.0.53) results in

qu‘611612 ...(1n>

Z<ai‘ﬁo|al>aliaﬂl loaa . .. an)
a/
1

e Z(a'z\ﬁomz)aléaaz\alag...an)

ap

+ ...

+ Z(aﬁ|ﬁo|an>a1;é Aoy |10 ... om)
o

= > (alho|B)afaglaesz .. . on) (2.0.55)
o,
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Operators in second quantization

In the number occupation representation or second quantization we get the following
expression for a one-body operator which conserves the number of particles

Ho = > (alhol8)al,as (2.0.56)
af

Obviously, Ao can be replaced by any other one-body operator which preserved the
number of particles. The stucture of the operator is therefore not limited to say the
kinetic or single-particle energy only.

The opearator Fo takes a particle from the single-particle state 3 to the single-particle
state o with a probability for the transition given by the expectation value {«|h|3).
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Operators in second quantization

It is instructive to verify Eq. (2.0.56) by computing the expectation value of Hy between
two single-particle states

(1|Folaz) = (alhg|8)(0lan, alasal,|0) (2.0.57)
af

Using the commutation relations for the creation and annihilation operators we have

aa,al,asal,, = (baa; — alaa;)(6pa, — al,as), (2.0.58)
which results in
(0lan, al,asal,, [0) = daa; 0pa, (2.0.59)
and . ~ R
(e1|Holaz) = > (alholB)dac, dsa, = (1]holaz) (2.0.60)
af

as expected.
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Topics for Week 36

Second quantization

>

>

>

Monday:

Summary from last week

Second quantization and operators, two-body operator
Anti-commutation rules

Wick’s theorem

Tuesday:

Wick’s theorem: proof and examples of use thereof
Exercises 3, 4 and 5 on Wednesday

The material is taken from chapter 3.1-3.6 and 4.1-4.4 of
Shavitt and Bartlett. There is a small typo in exercise 4. See
updated version of exercises on the webpage of the course
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Operators in second quantization

Let us now derive the expression for our two-body interaction part, which also
conserves the number of particles. We can proceed in exactly the same way as for the
one-body operator. In the coordinate representation our two-body interaction part takes
the following expression

Hi=>_"V(x,x) (3.0.61)

i<j
where the summation runs over distinct pairs. The term V can be an interaction model
for the nucleon-nucleon interaction or the interaction between two electrons. It can also

include additional two-body interaction terms.
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Operators in second quantization

The action of this operator on a product of two single-particle functions is defined as

V(%5 % )y (6 )%y (%) = D i, ()90, 04) (g IV |oscen) (3.0.62)
oo
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Operators in second quantization

We can now let F|, act on all terms in the linear combination for |ay s . . . an). Without

any permutations we have

(ZV(Xi o )) Yoy (X1)Yay (X2) - - - Yan (Xn)

i<j

D " (ah bV ), (X1)Ph, (X2) - - - Yaq (Xn)

ajaj

+ A

+ > (aqonlVazan)ph, (X1)Yay (X2) - - - Wh, (Xn)
oo

£

+ ) (abon|Viazan)ta, (X1)¥h, (X2) - . - ¥h, (Xn)
Dtéoéa

_l’_

where on the rhs we have a term for each distinct pairs.

(3.0.63)
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Operators in second quantization

For the other terms on the rhs we obtain similar expressions and summing over all
terms we obtain

Hi|laqao ... an) Z (0] bV |agan)|afal . . . an)

al
+ o
+ > (dhoplVeran)lafaz .. )
af,0q
+ .
+ Z <a/2a/n|v‘a20ln>|a1a,2...a:1>
aé,a{]
T (3.0.64)
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Operators in second quantization

We introduce second quantization via the relation

T oaf
aa&a&(aalaak|a1a2...ak...a|...an)

= (1) (-1)2al,a an a0 ]oka 010z ... an)

koo
Fou,
= () Y(-1)"?|afof ajay ... an)
N———
oy ,af
= |mogp...0q...of...an) (3.0.65)
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Operators in second quantization

Inserting this in (3.0.64) gives

H| \alaz ce Otn>

Z <Ozg_o/2‘V |°‘1°‘2>algaléa&zaﬂ1 larag . ..

i
ay,op

Z (afah |V \alan>al aL

N
al,op

’ /
1 %n

Z (ahap|V \azan>a];, aL, Aapaa,|onag ...
2 n

’ ’
ag,ap

!
> (aBIV]yd)alalasaylasaz . .. an)
a,B,7,6

AapQay |10 .- . .

(3.0.66)
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Operators in second quantization

Here we let >~/ indicate that the sums running over o and 3 run over all single-particle
states, while the summations v and 6 run over all pairs of single-particle states. We
wish to remove this restriction and since

(aBIV|v8) = (BeV [67) (3.0.67)
we get
> (aBlVho)ahalasa, = 3 (BalV|sy)alalasa, (3.0.68)
o, o,
= > (BalV]éy)alala,as (3.0.69)
o,B

where we have used the anti-commutation rules.
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Operators in second quantization

Changing the summation indices « and 3 in (3.0.69) we obtain

> (aBIV]yd)alalasa, = > (ap|V]sy)alala,a; (3.0.70)
o,B a,f

From this it follows that the restriction on the summation over v and é can be removed
if we multiply with a factor % resulting in

1
> ﬁZ&<a6|Vh6>aLaga5aw (3.0.71)
a, 057,

A

where we sum freely over all single-particle states «, 3, v 0g ¢.
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Operators in second quantization

With this expression we can now verify that the second quantization form of I:|| in
Eqg. (3.0.71) results in the same matrix between two anti-symmetrized two-particle
states as its corresponding coordinate space representation. We have

~ 1
(ol Fi|B152) = 2 625<amv|va><0|aa2aa1aLa;a5awa;1a;2|0>. (8.0.72)
afy,
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Operators in second quantization

Using the commutation relations we get
aa,3a,aala,a,af af,
= aa,aq,alaf(as0,p,8], —asal aal )
= Qa,a0,aLa5(0,5,058, — 645,80 a5 — asal 5,5, +asah al) a,)
= aazamajyag(‘svﬁl dsp, — 6731a22a5

T T af
—058,0y8, + 048,85 85 + 8585 a5 ay) (3.0.73)
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Operators in second quantization

The vacuum expectation value of this product of operators becomes

(0]aa,aa, aLa};a5aWagl agz |0)

(648,058, — 958,0+5,)(0]8a,80; 8585 (0)
= (5'YB16562 - 55316732)(511&153&2 - 6Ba16aa2)

(3.0.74)
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Operators in second quantization

Insertion of Eq. (3.0.74) in Eq. (3.0.72) results in

1

> [(a102|V|B1B2) — (@102|V [B251)
—(aza1|V[B182) + (21 |V|B261)]

= (a|V|B182) — (az|V|B2061)

= (aaz|V|B1B2)as. (3.0.75)

(10 |Fi|B182)

781433



Operators in second quantization

The two-body operator can also be expressed in terms of the anti-symmetrized matrix
elements we discussed previously as

~ 1
Hoo= 3 > (aﬁ\Vhé)aLa}agaw
aByé

1
3 3 [eAV1o) - svisn]alebese,
apy

1
n Bzé(a/o’\V [76)asal,afasa, (3.0.76)
aBy
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Operators in second quantization

The factors in front of the operator, either 711 or % tells whether we use antisymmetrized
matrix elements or not.

We can now express the Hamiltonian operator for a many-fermion system in the
occupation basis representation as

1
H=> (alt+u|Balas + n > (aBIV]ys)alafiasa,. (3.0.77)
a,B a,B,7,6

This is form we will use in the rest of these lectures, assuming that we work with
anti-symmetrized two-body matrix elements.
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Wick’s theorem

Wick’s theorem is based on two fundamental concepts, namely normal ordering and

contraction. The normal-ordered form of AB..XY, where the individual terms are either
a creation or annihilation operator, is defined as

AB..XY ! = (=1)P [creation operators] - [annihilation operators] . 3.0.78
{ } (-1) P P

The p subscript denotes the number of permutations that is needed to transform the
original string into the normal-ordered form. A contraction between to arbitrary
operators X and Y is defined as

—

XY = (0|XY|0). (3.0.79)
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Wick’s theorem

It is also possible to contract operators inside a normal ordered products. We define
the original relative position between two operators in a normal ordered product as p,
the so-called permutation number. This is the number of permutations needed to bring
one of the two operators next to the other one. A contraction between two operators
with p # 0 inside a normal ordered is defined as

{K@T??} = (=1)° {K%..R?}. (3.0.80)

In the general case with m contractions, the procedure is similar, and the prefactor
changes to

(—1)PrtPat+pPm (3.0.81)
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Wick’s theorem

Wick’s theorem states that every string of creation and annihilation operators can be
written as a sum of normalordered products with all possible ways of contractions,

ABCD..RXYZ = { ABCD..RXYZ (3.0.82)
3 {xgaﬁ..am} (3.0.83)
(€]
—=
; {Kﬁéﬁ..ﬁ?ﬁ} (3.0.84)
()
+.. (3.0.85)
—=1 =
> {xﬁaﬁ.. am} . (3.0.86)
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Wick’s theorem

The >~ m) means the sum over all terms with m contractions, while [%] means the

largest integer that not do not exceeds % where N is the number of creation and
annihilation operators. When N is even,

P} = g (3.0.87)

and the last sum in Eq. (3.0.82) is over fully contracted terms. When N is odd,

N

[ﬂ # g (3.0.88)

and non of the terms in Eq. (3.0.82) are fully contracted. See later for a proof.
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Wick’s theorem

An important extension of Wick’s theorem allow us to define contractions between
normal-ordered strings of operators. This is the so-called generalized Wick’s theorem,

+2

&)

TF oo

{

ABCD..RXYZ

}

(3.0.89)

(3.0.90)

(3.0.91)

(3.0.92)
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Wick’s theorem

Turning back to the many-body problem, the vacuum expectation value of products of
creation and annihilation operators can be written, according to Wick’s theoren in Eq.
(3.0.82), as a sum over normal ordered products with all possible numbers and
combinations of contractions,

(0JABCD..RXYZ|0) = (0| { ABCD..RXYZ ! |0) (3.0.93)
+> (0| {K%EB..&)??E} |0) (3.0.94)
B
fiv'y 1
+> (0| {ABCD..RXYZ} o) (3.0.95)
@
+ . (3.0.96)
20l o5l
+3 (ol {ABCD.. vaz} |0). (3.0.97)
(%]
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Wick’s theorem

All vacuum expectation values of normal ordered products without fully contracted
terms are zero. Hence, the only contributions to the expectation value are those terms
that is fully contracted,

AAAAAAAA = =
(OJABCD..RXYZ|0) = > (0| {ABCD.. vaz} |0) (3.0.98)
(all)
el
=) ABCD..RXYZ. (3.0.99)
(all)
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Wick’s theorem

To obtain fully contracted terms, Eq. (3.0.87) must hold. When the number of creation
and annihilation operators is odd, the vacuum expectation value can be set to zero at
once. When the number is even, the expectation value is simply the sum of terms with
all possible combinations of fully contracted terms. Observing that the only
contractions that give nonzero contributions are

a'a_al[i = bap) (3.0.100)

the terms that contribute are reduced even more.

Wick’s theorem provides us with an algebraic method for easy determine the terms that
contribute to the matrix element. Our next step is the particle-hole formalism, which is
a very useful formalism in many-body systems.
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Topics for Week 37

Second quantization

>

>

>

Monday:

Summary from last week

Wick’s theorem and its proof

Particle-hole formalism

Tuesday:

Particle-hole formalism

Diagrammatic representation of operators.
Exercises 6 and 7, recommended.

The material is taken from chapter 3.1-3.6 and 4.1-4.4 of
Shavitt and Bartlett.
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Particle-hole formalism

Second quantization is a useful and elegant formalism for constructing many-body
states and quantum mechanical operators. As we will see later, one can express and
translate many physical processes into simple pictures such as Feynman diagrams.
Expecation values of many-body states are also easily calculated. However, although
the equations are seemingly easy to set up, from a practical point of view, that is the
solution of Schrédinger’s equation, there is no particular gain. The many-body equation
is equally hard to solve, irrespective of representation. The cliche that there is no free
lunch brings us down to earth again. Note however that a transformation to a particular
basis, for cases where the interaction obeys specific symmetries, can ease the solution

of Schrédinger’s equation.
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Particle-hole formalism

But there is at least one important case where second quantization comes to our
rescue. It is namely easy to introduce another reference state than the pure vacuum
|0), where all single-particle are active. With many particles present it is often useful to
introduce another reference state than the vacuum state |0). We will label this state |c)
(c for core) and as we will see it can reduce considerably the complexity and thereby
the dimensionality of the many-body problem. It allows us to sum up to infinite order
specific many-body correlations. (add more stuff in the description below)

The particle-hole representation is one of these handy representations.
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Particle-hole formalism

In the original particle representation these states are products of the creation

operators aLl acting on the true vacuum |0). Following (2.0.19) we have

lazez...on_1an) = af al, ...al,  al |0) (4.0.101)
lagaz ...ap_janany) = ah,al,...al al al  0)  (4.0.102)
lazez...on_1) = alal, ...al_ [0) (4.0.103)
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Particle-hole formalism

If we use Eq. (4.0.101) as our new reference state, we can simplify considerably the
representation of this state
c) = |eqaz ... an_1om) = af, af,, ...al, _ al |0) (4.0.104)

an—1

The new reference states for the n + 1 and n — 1 states can then be written as

logas . ..an_1anant1) = (—l)”ajln+1|c>E(—l)”|an+1>c (4.0.105)
arag...an_1) = (=1)"tag,lc) = (—1)"tan_1)c (4.0.106)
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Particle-hole formalism

The first state has one additional particle with respect to the new vacuum state |c) and
is normally referred to as a one-particle state or one particle added to the many-body
reference state. The second state has one particle less than the reference vacuum
state |c) and is referred to as a one-hole state.
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Particle-hole formalism

When dealing with a new reference state it is often convenient to introduce new
creation and annihilation operators since we have from Eq. (4.0.106)

aalc) #0 (4.0.107)

since « is contained in |c), while for the true vacuum we have a.|0) = 0 for all c.
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Particle-hole formalism

The new reference state leads to the definition of new creation and annihilation
operators which satisfy the following relations

balc) = O (4.0.108)
{bl,b}} ={ba,bg} = ©
{bl,bs} = das (4.0.109)

We assume also that the new reference state is properly normalized

(cley =1 (4.0.110)
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Particle-hole formalism

The physical interpretation of these new operators is that of so-called quasiparticle
states. This means that a state defined by the addition of one extra particle to a
reference state |c) may not necesseraly be interpreted as one particle coupled to a

core.
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Particle-hole formalism

We define now new creation operators that act on a state « creating a new
quasiparticle state
allcy=la), a>F
bl |c) = (4.0.111)

aalc) =lat), a<F

where F is the Fermi level representing the last occupied single-particle orbit of the
new reference state |c).
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Particle-hole formalism

The annihilation is the hermitian conjugate of the creation operator

bo = (bL)Tv
resulting in
al a>F an a>F
bl = { bo = { (4.0.112)
aw, a<F al, a<F
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Particle-hole formalism

With the new creation and annihilation operator we can now construct many-body
quasiparticle states, with one-particle-one-hole states, two-particle-two-hole states etc

in the same fashion as we previously constructed many-particle states. We can write a
general particle-hole state as

BBz BrorTiagt .ty = b};lbgz .. b};np b bl, ... b;nh Ic) (4.0.113)

>F <F
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Particle-hole formalism

We can now rewrite our one-body and two-body operators in terms of the new creation
and annihilation operators. The number operator becomes

N=> alaa= ) biba+nc— > biba (4.0.114)

a>F a<F

where n¢ is the number of particle in the new vacuum state |c). The action of N on a
many-body state results in

NIBLBz - - Brpry 272t - Ane ) = (Mo +ne = M0)IB1Bz2 - - Brp vy 5 - o)
(4.0.115)
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Particle-hole formalism

Here n = np + nc — ny, is the total number of particles in the quasi-particle state of
Eq. (4.0.113). Note that N counts the total number of particles present

Ngp = Z b} ba, (4.0.116)

gives us the number of quasi-particles as can be seen by computing

Nop = 8182 - Brpvs %t - ) = (Mp + 10)1B1B2 - By 95 - - o)
(4.0.117)

where ngp = np + Ny, is the total number of quasi-particles.
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Particle-hole formalism

We express the one-body operator Fy in terms of the quasi-particle creation and
annihilation operators, resulting in

o = > alnigbibs+ > [(alnlg)blb) + (Blhla)bsbal
eF> a>F
B<F
+ D (alhla) = > (Blhla)bibs (4.0.118)
a<F aB<F
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Particle-hole formalism

The first term gives contribution only for particle states, while the last one contributes
only for holestates. The second term can create or destroy a set of quasi-particles and
the third term is the contribution from the vacuum state |c). The physical meaning of
these terms will be discussed in the next section, where we attempt at a diagrammatic

representation.
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Particle-hole formalism

Before we continue with the expressions for the two-body operator, we introduce a
nomenclature we will use for the rest of this text. It is inspired by the notation used in
coupled cluster theories. We reserve the labels i, j, k, ... for hole states and a, b, c, ...
for states above F, viz. particle states. This means also that we will skip the constraint

< F or > F in the summation symbols. Our operator I:|o reads now
Ao = Z(a|h|b bTbb+Z [ (alhfiybibf + (|h|a>biba]

+ Z Infiy — > \h\l>bTb (4.0.119)

ij
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Particle-hole formalism

The two-particle operator in the particle-hole formalism is more complicated since we
have to translate four indices a8~4 to the possible combinations of particle and hole
states. When performing the commutator algebra we can regroup the operator in five
different terms

A=A + AP L A© LA L /e (4.0.120)

Using anti-symmetrized matrix elements, the term Hl(a) is

A = 1 >~ (ab|Vcd)b{b; bybe (4.0.121)

abcd
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Particle-hole formalism

The next term Ifil(b) reads
A 1 . .
AL = 2 S ((ab\V|cu>b;bgbinc + (ai|V |cb)b]b; bbbc) (4.0.122)
abci

This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state. For FII(C) we have

. 1 ) )
A© = > ((ab|V\u>b;bgbijiT + <|J|V\ab)babbbjbi) +
abij

1 I 1 I
5 > (ai|V|bj)bibbyb; + 5 > (@i |V|bi)b]by. (4.0.123)
abij abi
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Particle-hole formalism

The first line stands for the creation of a two-particle-two-hole state, while the second
line represents the creation to two one-particle-one-hole pairs while the last term
represents a contribution to the particle single-particle energy from the hole states, that
is an interaction between the particle states and the hole states within the new vacuum
state. The fourth term reads

1 - )
@ o= 1> (<a||ka>b;bgbiji + <J|\V|ak>bgbjbiba) 4
aijk

%Z ((.—:1i|vui>b;bjT + (ji|V]ai) — (ji\V|ia>bjba) . (4.0.124)

aij
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Particle-hole formalism

The terms in the first line stand for the creation of a particle-hole state interacting with
hole states, we will label this as a two-hole-one-particle contribution. The remaining
terms are a particle-hole state interacting with the holes in the vacuum state. Finally we
have

Al = %Z(kuvmbﬁbfblbk + %Z(i”v}kj)blbi + % STiVIip)  (4.0.125)
ijkI ijk i

The first terms represents the interaction between two holes while the second stands

for the interaction between a hole and the remaining holes in the vacuum state. It

represents a contribution to single-hole energy to first order. The last term collects all

contributions to the energy of the ground state of a closed-shell system arising from

hole-hole correlations.
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Notation

Second quantization
Antisymmetrized wavefunction

A
Pas(@1, ..., apa; X1, ... Xp) = % > (1)PP [ e (xi)
P i=1

=l|ag...ap)
=a/, ...a |0)

apl0) = |p), @p|q) = Jpq0)

Opq = {ap,aa}
0= {ag,aq} ={ap,aq} = {az”ai‘}
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Notation

Second quantization, quasiparticles

Reference state

|®o) =|a1...aa), ai1,...,aa < af
Creation and annihilation operators
{a;f),aq} = 0pq, P, 0 < aF {ap,ai,} = 0pq,P,q > aF
ij,...<ap, ab,...>aF, p,q,...—any

aj|®o) = |;) al|®g) = |0?)
aiT|¢0> =0 aa|®o) =0
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Notation

Second quantization, operators

Onebody operator

F=> (plf|a)ajaq
Pq
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Notation

Second guantization, operators

Twobody operator

. 1 . 1 &
V = 2 Z(pq|v|rs>ASaE,agasar = 2 Z<pq|v|rs>al];a‘];a5ar
pars pars

where we have defined the antisymmetric matrix elements

(pa|V[rs)as = (palV[rs) — (pq|Vsr).
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Notation

Second guantization, operators

Threebody operator

~ 1 N 1 N
Va= o= > (par|Vs|stu)asafaialaaas = 36 > (par|Vs|stu)ajajalauaias
parstu parstu

where we have defined the antisymmetric matrix elements

(par|Vs|stu)as = (par|Vz|stu) + (par|Vs|tus) + (pgr|Vz|ust)
— (par|Vs|sut) — (pqgr|Vs|tsu) — (par |Vs|uts).
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Notation

Second guantization, operators

Normal ordered operators

{aaab : ..alag} = (-1)Palal ... a.ap

All creation operators to the left and all annihilation operators to
the right times a factor determined by how many operators
have been switched.
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Definitions
The basics, Normal ordered Hamiltonian
Definition
The normal ordered Hamiltonian is given by

A 1 o
= & s {afefalanes)

par
stu

b= Z pql|rs) {apaqasar} pr {afaq}

pqrs
=HY +Vy + Fy
where

By =2t {alag} V=7 Y (palirs) {abajasar }
Pq

pars

A 1 A
HY = = Z(pqr|v3|stu> {agaaaiauatas}

par
stu
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Definitions

The basics, Normal ordered Hamiltonian

Definition
The amplitudes are given by

% = (plfola) + > (pilV i) + 5 > (pillvs[ai)

ij
(pq|lrs) = (palV|rs) + Z<pqi|\73|rsi>,

In relation to the Hamiltonian, Hy is given by

A

Nn=H —Ep
Eo = (®o|H|®o)

A 1 A 1 A e
= (ilholi) + > > Gl + 5 > ik [slijk),

ij ik

I

where Ep is the energy expectation value between reference states.
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Definitions

The basics, Normal ordered Hamiltonian

Derivation
We start with the Hamiltonian

B = Fo +
where

Ho = (plhola)ajaq

pa
~ 1 .
Hi= 7 > _(palvrs)ajajasa;
pars
~ 1 I it =yl
As = o > (par|Vs|stu)ajalala,aias

par
stu
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Definitions

The basics, Normal ordered Hamiltonian
Derivation, onebody part

Ho = Z<p|ﬁo|q>a$aq

Pq

—
ajag = {a},aq} + {a,ﬁaq}
= {ag,aq} + Opaei

Ho = > (plhola)aja
Pq

- Z plfola) {abaq } + dpaer D (plhola)

pq

—Z plfola) {abaq } + 3 (ilhol
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, onebody part
A onebody part

Fu <= > (plhola) {aaq }
pPq

and a scalar part

Eo <« > (lfoli)
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Definitions
The basics, Normal ordered Hamiltonian
Derivation, twobody part

~ 1
_ % Tzl
H = 2 ;<pq|v|rs>apaqasar

ajalasa, =
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Definitions

The basics, Normal ordered Hamiltonian
Derivation, twobody part

A 1
_ % Tzl
H = 2 §<pq|v|rs>apaqasar

ajalasa, = {agaaasar }

o Sow R o
+ < ahagasar ¢ + ¢ ajajasar ¢ + 1 apahasar
e i i
+ < ahagasar ¢ + 3 ahajasar ¢ + < ahagasar
= {a},aaasa,}
S T Y S T e I
+ Ogsei | @par grei | Apas psci | Agar

+ dprei {ac];as} + Opreidgsei — Jpscidqgrei
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part

~ 1 .
H = 2 Z<pq|V|fS>a$a$asar
pars
1 1 A~
=7 > (pql¥]rs) {apagasar} + 3 Z(éqsei<pq|v|rs> {aga,}
pars pars

~ darei{palirs) {afas | — dpsei (palVIrs) {aba |

= 5prei <pQ|\7|rS> {aqas} + 5pre|5qse| — 5pse|5qre|)
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part

_ % > (pald]rs) {agagasar}

pqrs

+ 23 (wilolai) — (il lia) — (P19l + (pl7lia)) {ajaq}

pai

+ 5 Z(IJIVIIJ IJIVIJI>)
= 23 (palvlrs) {afalasa } + S (pilvlai) {afaq } + 2vam

pars pai
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Definitions

The basics, Normal ordered Hamiltonian

Derivation, twobody part
A twobody part

~ 1
Uy <= 7 > (palvrs) {apagasar}
pars
A onebody part
Fy < Z pi [V [qi) {apaq}
pai

and a scalar part

1 -
Eo < 5 > (iilvlii)
i
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Definitions

The basics, Normal ordered Hamiltonian

Twobody Hamiltonian
A = 7 Y (palvlrs) {abalasar | + S {ahe

where

Uy = 3 Y (palvlrs) {afajasar

pgrs

o}
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Definitions

The basics, Normal ordered Hamiltonian

Twobody Hamiltonian
The amplitudes are given by

f§ = (plhola) + > (pi|9|ai)
i
(pallrs) = (pq|V|rs)
In relation to the Hamiltonian, I3|N is given by

Hy = H — Eo
Eo = (do|H|®o)

= S ilfoliy + 5 il

ij

where Ep is the energy expectation value between reference states.
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Topics for Week 38

Second quantization

» Monday:
» Summary from last week

» Summary of Wick’s theorem and diagrammatic
representation of operators and expectation values

» Tuesday:

» Diagrammatic representation of of operators and
expectation values

» Begin of Hartree-Fock theory
» Exercises 9-12 on Wednesday
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Diagram elements - Directed lines

% +

Figure: Particle line Figure: Hole line

» A line represents a contraction between second quantized
operators of the type ai'?aj = ¢; and a'a_alg = 0ap-

» Hole (vacant) states are represented as downgoing lines

» Particle (virtual) states are represented as upgoing lines
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Diagram elements - Onebody Hamiltonian

Fn =20 & {agaq}

Level: -1 Level: +1
Level: O Level: O

» Horisontal dashed line segment with one vertex. Assume
time axis pointing upward, with the state (p| being above
the vertex and the state |q) being below.

» Excitation level identify the number of particle/hole pairs
created by the operator.
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Diagram elements - Twobody Hamiltonian
VN - %qurs<pq‘\7‘rs> {agai]asar

Level: -2

>\/

Level: +1

o

Level: -1

>\/

Level: +1

)

o

Level: -1

Level: +2
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Diagram rules for operators

» Label all lines.
» Sum over all indices.

» For two-body operators draw dotted lines for the operator
from endpoint to endpoint. Keep only topologically distinct
diagrams and draw incoming and outgoing lines at every
endpoint.

» Mark the lines as either holes or particles.

» Extract matrix elements from diagrams as follows: fo! or
(outlf|in), (leftout rightout|V|leftin, rightin))

» For the two-body operators, crossing lines (below or above
the interaction line) give rise to a minus sign.

» For hole states, a hole line which goes through the whole
diagram, add a minus sign.



Diagram elements - Onebody cluster operator

W

Level: +1

» We have here assumed that a one-body operator has
acted on a 1plh Slater determinant |®2).

» Horisontal line segment with one vertex.
» Excitation level of +1.
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Diagram elements - Twobody cluster operator

AV

Level: +2

» We have here assumed that a one-body operator has
acted on a 2p2h Slater determinant \Cij‘b).

» Horisontal line segment with two vertices.
» Excitation level of +2.
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The expectation value of the energy

E = (®o[Hn|Po)

» No external lines.
» Final excitation level: O

Elements: Hy Elements:
Cluster operator

e > ,,,,,,,,,,,, N \

R vy
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Topics for Week 39

Hartree-Fock theory

>

Monday:

Summary from last week

Basic ingredients

Reminder on variational calculus

Hartree-Fock theory (coordinate space, traditional
approach) and Thouless’ theorem

Tuesday:

Hartree-Fock theory, stability and diagrammatic
interpretation

Exercise 13 a, b and c.
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Hartree-Fock: our first many-body approach

HF theory is an algorithm for a finding an approximative expression for the ground state
of a given Hamiltonian. The basic ingredients are

> Define a single-particle basis {1« } so that
ﬁHFwa = ana

with R
hHF =t+ Oext aF OHF

» where (HF is a single-particle potential to be determined by the HF algorithm.

» The HF algorithm means to choose (" in order to have
(A) = E"F = (&|H|®o)

a local minimum with ®¢ being the SD ansatz for the ground state.

» The variational principle ensures that EHF > EO, Eo the exact ground state
energy.
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Hartree-Fock: what we argued last week

Last week we computed the Hamiltonian matrix for a system consisting of a Slater
determinant for the ground state |®) and two 1plh SDs |®f) and \(bjb). This can
obviously be generalized to many more 1plh SDs. Using diagrammatic as well as
algebraic representations we found the following expectation values

(®o|H|do) = Eo,
(®2[H|®o) = (alfli),
(®PIH| o) = (bIfli),
(P2 [H|DP) = (aj|9[ib),
and the diagonal elements
(@FA|9?) = Eq + ea — & + (ailV]ia),

and R
(®P|H[®P) = Eq + &b — & + (bj[V]jb).
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Hartree-Fock: what we argued last week

We can then set up a Hamiltonian matrix to be diagonalized

Eo Giffla) Glf by
(@fffi) Eo +eca— ¢ + (ail9lia) (ai[9]ib)
(bIf ;) (bi9ja) Eo + b — & + (bj[9jb)

The HF method corresponds to finding a similarity transformation where the
non-diagonal matrix elements
(ifflay =0

. We will link this expectation value with the HF method, meaning that we want to find

(i|AHFja) = 0
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Variational Calculus and Lagrangian Multiplier

The calculus of variations involves problems where the quantity to be minimized or
maximized is an integral.
In the general case we have an integral of the type

E[®] = /abf(':D(x), Z—j,x)dx,

where E is the quantity which is sought minimized or maximized. The problem is that
although f is a function of the variables ®, 9 /9x and x, the exact dependence of ®
on x is not known. This means again that even though the integral has fixed limits a
and b, the path of integration is not known. In our case the unknown quantities are the
single-particle wave functions and we wish to choose an integration path which makes
the functional E [®] stationary. This means that we want to find minima, or maxima or
saddle points. In physics we search normally for minima. Our task is therefore to find
the minimum of E[®] so that its variation JE is zero subject to specific constraints. In
our case the constraints appear as the integral which expresses the orthogonality of
the single-particle wave functions. The constraints can be treated via the technique of
Lagrangian multipliers
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Euler-Lagrange equations

We assume the existence of an optimum path, that is a path for which E[®] is
stationary. There are infinitely many such paths. The difference between two paths j®
is called the variation of ®.

We call the variation n(x) and it is scaled by a factor «. The function 7(x) is arbitrary
except for

n(a) =n(b) =0,
and we assume that we can model the change in ¢ as

d(x, ) = P(x,0) + an(x),

and
0P = d(x, a) — P(x,0) = an(x).
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Euler-Lagrange equations

We choose ®(x, « = 0) as the unkonwn path that will minimize E. The value
d(x, a # 0) describes a neighbouring path.

We have "
E[®(a)] = / f(D(x, @), a¢(8>;, % y)ox.
a
In the slides | will use the shorthand
od(X,
Oy (X, ) = %.

In our case a = 0 and b = oo and we know the value of the wave function.
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Euler-Lagrange equations

The condition for an extreme of

b
E[®(a)] :/a F(B(X, @), Dx (X, @), X)dX,

=5

The o dependence is contained in ®(x, o) and ®x (X, &) meaning that
b
[8E[d>(a)]} _ / (ﬂa_cb ’ of Oy ) dx.
da a \0® da 0dx Oa

OP(x, ) _
Ja -

We have defined

n(x)

and thereby
I« (x, @) _ d(n(x))

Oa dx
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Euler-Lagrange equations

Using
od(x,a)
o = n(x),

and
IPx(x,a) _ d(n(x))
Oa T odx

in the integral gives

[8E[(;I>ofa)]} :/ab (S—LW(X)-F 3(2: d(dE(X)))

Integrate the second term by parts

> ot d@mi) of o, (b . d of
- n(x)aT,x\a—/a 10035 -0,

and since the first term dissappears due to n(a) = n(b) = 0, we obtain

{aE[;OEa)]} _ /ab (% _ %;q:x)n(x)dx —o.
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Euler-Lagrange equations

{aE[;x(a)]} _ /: ((;l; _ dixa‘%x) n(x)dx = 0,

can also be written as

9% dx 9o

a{wkzoz/j(f” i o ) S0k = GE =0.

da
The condition for a stationary value is thus a partial differential equation

o d ot
P  dx ddx

known as Euler’s equation. Can easily be generalized to more variables.
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Lagrangian Multipliers

Consider a function of three independent variables f(x, y, z) . For the function f to be
an extreme we have

df = 0.
A necessary and sufficient condition is
of of of
ox oy 9z
due to 5
df = —

8; dx + %dy 3+ %dz.

In physical problems the variables x,y, z are often subject to constraints (in our case ¢
and the orthogonality constraint) so that they are no longer all independent. It is
possible at least in principle to use each constraint to eliminate one variable and to

proceed with a new and smaller set of independent varables.
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Lagrangian Multipliers

The use of so-called Lagrangian multipliers is an alternative technique when the
elimination of of variables is incovenient or undesirable. Assume that we have an
equation of constraint on the variables x,y, z

#(x,y,2) =0,

resulting in

8% +8—$’dy+i’dz_o

d¢ =

Now we cannot set anymore

of _of  of
ox oy 0z

if df = 0 is wanted because there are now only two independent variables! Assume x

and y are the independent variables. Then dz is no longer arbitrary.
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Lagrangian Multipliers

However, we can add to

of of of
df = —d —d —d
ox X+8y y+8z =
a multiplum of d¢, viz. Ad ¢, resulting in

) 9¢

of of  _9¢ of
df + Mg = (== + A=2)d Z 422 Z 4+ 22)dz =0.
tadé = (o + )X+(8y+ ay)y+(82+ )dz

(524 0z

Our multiplier is chosen so that
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Lagrangian Multipliers

However, we took dx and dy as to be arbitrary and thus we must have

Z aZ =0
Ox * Ox ’
and of O
Z taZE =0
oy + oy

When all these equations are satisfied, df = 0. We have four unknowns, x,y,z and .
Actually we want only x,y, z, A need not to be determined, it is therefore often called
Lagrange’s undetermined multiplier. If we have a set of constraints ¢, we have the
equations
of 1o}
Nk

=0.
8xi K K 8xi
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Variational Calculus and Lagrangian Multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

= /dxdydzw*(x,y,z)ﬁw(x,y,z),

with the constraint
[ dxadydz (x.y. 2putxy.2) = 1,

and a Hamiltonian 1
A= —évz +V(x,y,2).

I will skip the variables x,y, z below, and write for example V (x,y,z) = V.
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Variational Calculus and Lagrangian Multiplier

The integral involving the kinetic energy can be written as, if we assume periodic
boundary conditions or that the function v vanishes strongly for large values of x,y, z,

/ dxdydz* ( v2> bdxdydz = ¥* V| + / dxdydz = vw i

Inserting this expression into the expectation value for the energy and taking the
variational minimum we obtain

SE — 6{/dxdydz (%vw*w +vw*w>} —0.
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Variational Calculus and Lagrangian Multiplier

The constraint appears in integral form as

/ dxdydzt)* 1) = constant

and multiplying with a Lagrangian multiplier A and taking the variational minimum we
obtain the final variational equation

1) {/dxdydz (%vw*vw + Vyp*ip — )\w*w) } =0.
Introducing the function f
1 1
f= va*vw + VT — My = E(w;“wx + gty +rhz) + Vb — ATy,

where we have skipped the dependence on x, y, z and introduced the shorthand ),
vy and v for the various derivatives.
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Variational Calculus and Lagrangian Multiplier

For ¢)* the Euler equation results in

of 0 of o of o of

oy ox vy oy ovy 0z oy

which yields
1
—E(wxx + by +Yzz) +Vp = M.
We can then identify the Lagrangian multiplier as the energy of the system. Then the
last equation is nothing but the standard Schrodinger equation and the variational

approach discussed here provides a powerful method for obtaining approximate
solutions of the wave function.
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Finding the Hartree-Fock functional E[®]

We rewrite our Hamiltonian

as
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Finding the Hartree-Fock functional E[®]

Let us denote the ground state energy by Eq. According to the variational principle we
have
Eo < E[¢] :/d>*|3|d>d7—

where @ is a trial function which we assume to be normalized

/d>*¢dT =1,

where we have used the shorthand d7 = dx;dx; . .. dxy .-
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Finding the Hartree-Fock functional E[®]

In the Hartree-Fock method the trial function is the Slater determinant which can be
rewritten as

W(X17X27'"7XN7a757"'7V) = \/% Z(_)Ppwa(xl)wﬁ(xz)'"wV(XN) = \/mA¢H7
P

where we have introduced the anti-symmetrization operator .4 defined by the
summation over all possible permutations of two eletrons. It is defined as
A= 2rP
NS '

with the the Hartree-function given by the simple product of all possible single-particle
function (two for helium, four for beryllium and ten for neon)

qDH(X17X27' ° o 7XN7Q767 ° o '7V) = wa(xl)wﬁ(XZ) o "wV(XN)‘
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Finding the Hartree-Fock functional E[®]

Both I—Tl and I—Tz are invariant under electron permutations, and hence commute with A
[Ho, A] = [H|, A] = 0.

Furthermore, A satisfies
A% = A,

since every permutation of the Slater determinant reproduces it.
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Variational Calculus and Lagrangian Multiplier, back to
Hartree-Fock

Our functional is written as

E[o] = Z / 5 060 (% )b (x )X+ = ZZV VRO 05) wu(x.)wu(xj)dx.dxj

p=1lv=1

1
_/d’;:(xi)"z’;(xj)r"¢V(Xi)¢u(xj)dxidxj:|
ij
The more compact version is

N N N

E[®] = > (ulholn) + % S>> [W/ vy = (uv| = Ivuﬂ

p=1 p=1v=1
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

If we generalize the Euler-Lagrange equations to more variables and introduce N2
Lagrange multipliers which we denote by €,.,,, we can write the variational equation for

the functional of E
N N
OE — E E ew,6/1p:1p,, =0.

p=1v=1

For the orthogonal wave functions 1), this reduces to

N
0E — Zeua/u;;w =0.
p=1
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Variation with respect to the single-particle wave functions v, yields then

N N N
- [ ovia+ 330> { / ww;%wmdxidxj -/ w;w;%%wxidx&
u=1 I i

p=1v=1

N N N
+Z/¢;ﬁi5wudxi + % >> {/w;«p;:j&p#wydxidxj - /w;w;:%&p#dxidx&
pn=1 J i

p=1lv=1

N N
-3 E, /&p;wdxi ~SE /zp;;w#dxi -o.
p=1 p=1
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Although the variations §v and d)* are not independent, they may in fact be treated as
such, so that the terms dependent on either §1) and d+* individually may be set equal
to zero. To see this, simply replace the arbitrary variation 61 by i61, so that 6* is
replaced by —idv*, and combine the two equations. We thus arrive at the
Hartree-Fock equations

1 z X 1
[—ZV?— o +Uzl/.w;(xj)rijwu(xj)dxj} Yu(Xi)

N 1
- [Z/w;(xj)r]wu(xj)dxj} Yo (Xi) = €pbu(Xi)-
v=1

Notice that the integration [ dx; implies an integration over the spatial coordinates r;
and a summation over the spin-coordinate of electron j.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The two first terms are the one-body kinetic energy and the electron-nucleus potential.
The third or direct term is the averaged electronic repulsion of the other electrons. This
term is identical to the Coulomb integral introduced in the simple perturbative approach
to the helium atom. As written, the term includes the 'self-interaction’ of electrons when
i = ]. The self-interaction is cancelled in the fourth term, or the exchange term. The
exchange term results from our inclusion of the Pauli principle and the assumed
determinantal form of the wave-function. The effect of exchange is for electrons of
like-spin to avoid each other.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

A theoretically convenient form of the Hartree-Fock equation is to regard the direct and
exchange operator defined through

Va(x) = / w:(xj)%w(xj)dx,-

and
VE(xi)a(xi) = </ ¢:(Xj)%g(xj)dxj> Y (i),

respectively.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The function g(x;) is an arbitrary function, and by the substitution g(x;) = . (x;) we
get

VX (X ) (%) = (/ "/)Z(Xj)%"/)l/(xj)dxj> Pu(Xi).
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

We may then rewrite the Hartree-Fock equations as

hHF (Xi)w (Xi) = evthu (i),

with
N

N
ARF (%) = ho(x) + D V(%) = D VI (%),
p=1 p=1
and where ﬁo(i) is the one-body part. The latter is normally chosen as a part which

yields solutions in closed form. The harmonic oscilltor is a classical problem thereof.
We normally rewrite the last equation as

A" (x) = ho(xi) + G ().
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Rewriting the energy functional

The last equation R R
ARF (%) = ho(x) + aHF (),

allows us to rewrite the ground state energy (adding and subtracting GHF (x;)

N N

EST = (@0]Aldo) == > (ilfio + 0*F |}y + ZZ[ 9i) — G 0L — D (18" i),
i<F |<F]<F i<F
as
N N
EF = e+ ZZ[ 01 — G O] — D GilaH ),
i<F |<FJ<F i<F

which is nothing but

ESF = Zs—fZZ[uMu (i 9O )]

i<F i<Fj<F
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Hartree-Fock by varying the coefficients of a wave
function expansion

Another possibility is to expand the single-particle functions in a known basis and vary
the coefficients, that is, the new single-particle wave function is written as a linear
expansion in terms of a fixed chosen orthogonal basis (for example harmonic oscillator,
Laguerre polynomials etc)

$a = Carxthr- (6.0.131)
A

In this case we vary the coefficients C, . If the basis has infinitely many solutions, we
need to truncate the above sum. In all our equations we assume a truncation has been
made.

The single-particle wave functions 1 (r), defined by the quantum numbers X and r are
defined as the overlap

PYa(r) = (r|A).
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Hartree-Fock by varying the coefficients of a wave
function expansion

We will omit the radial dependence of the wave functions and introduce first the
following shorthands for the Hartree and Fock integrals

(wv |V |pv) = /¢Z(ri)¢;(rj)V(rij)wu(ri)wu(rj)drirjy

and

(uv|Vvp) = /%(fi)%(n‘)V(fu)wu(fi)%(fi)dfiw
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Hartree-Fock by varying the coefficients of a wave
function expansion

Since the interaction is invariant under the interchange of two particles it means for
example that we have
(uv|Vpv) = (vplV i),

or in the more general case

(w|VloT) = (vp|V|ro).
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Hartree-Fock by varying the coefficients of a wave
function expansion

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

(Vi pv)as = (uvlVpv) — (uvlVlvp),
or for a general matrix element
(uVoT)as = (IV]oT) — (uv|V |ro).
It has the symmetry property
(wv|VloT)as = —(uv|V|To)as = —(vulV]oT)as -
The antisymmetric matrix element is also hermitian, implying

(V]oT)as = (o7 |V |w)ps-
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Hartree-Fock by varying the coefficients of a wave

function expansion

With these notations we rewrite the Hartree-Fock functional as
R LA A
/¢*H1¢d7' =3 ZZ(MV|VWV>AS-
p=1lv=1
Combining Egs. (2.0.13) and (6.0.132) we obtain the energy functional
N N N

E[0] = S (ulnln) + 5 D2 D (v uvas.

p=1 p=1v=1

(6.0.132)

(6.0.133)
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Hartree-Fock by varying the coefficients of a wave
function expansion

If we vary the above energy functional with respect to the basis functions |u), this
corresponds to what was done in the previous case. We are however interested in
defining a new basis defined in terms of a chosen basis as defined in Eq. (6.0.131).

We can then rewrite the energy functional as

N N
E[w] = (alhla) + % >~ (ab|V|ab)as, (6.0.134)
a=1 ab=1

where V is the new Slater determinant defined by the new basis of Eq. (6.0.131).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Using Eq. (6.0.131) we can rewrite Eq. (6.0.134) as
N N

l * *
E[W] =3 > CaaCaslalhlB)+5 3 D CaaCipCarCos(aBlV[16)as. (6.0.135)
a=1 ap ab=1ap~s
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Hartree-Fock by varying the coefficients of a wave
function expansion

We wish now to minimize the above functional. We introduce again a set of Lagrange
multipliers, noting that since (alb) = d, p and («|B) = d., . the coefficients Cay obey

the relation
(alb) = b2 = Y Ci,CaglalB) = Zc - G
aB

which allows us to define a functional to be minimized that reads

N
E[W]- ) e Ci,Caa (6.0.136)

a=1 «
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Hartree-Fock by varying the coefficients of a wave
function expansion

Minimizing with respect to C¢_, remembering that C and Cy,, are independent, we
obtain
d

acr E[w] — Z €a ; Ct,Caa| =0, (6.0.137)
which yields for every single-particle state k the following Hartree-Fock equations
N

ZCM (@lhly) + > " ClsCasCiy (@BIV [78)as = eCia- (6.0.138)
a=1 Bv6
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Hartree-Fock by varying the coefficients of a wave
function expansion

We can rewrite this equation as

N
> {<ahv> +> > CisCas(@BIV[vd)as } Ciky = &kCkar- (6.0.139)

e a Bs

Note that the sums over greek indices run over the number of basis set functions (in
principle an infinite number).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Defining
N
hiE = (alhly) + D> > CisCas(@BIV [18)as.
a=1 Bé
we can rewrite the new equations as
> hHF Ciy = e Cra- (6.0.140)
-~

Note again that the sums over greek indices run over the number of basis set functions

(in principle an infinite number).
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Hartree-Fock formalism in second quantization,
Thouless’ theorem

We wish now to derive the Hartree-Fock equations using our second-quantized
formalism and study the stability of the equations. Our SD ansatz for the ground state
of the system is approximated as

|®o) = [c) =afal...af|0).

We wish to determine aHF so that E}/F = (c|H|c) becomes a local minimum.
An arbitrary Slater determinant |c’) which is not orthogonal to a determinant

n
lc) = Haﬂo), can be written as
i=1

a>Fi<F

ey = exp {fj ania;ai} c)
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Topics for Week 40

Hartree-Fock

>

Monday:

Summary from last week
Thouless’ theorem

Stability of Hartree-Fock theory
Koopman’s theorem

Electron gas

Tuesday:

Electron gas

Configuration interaction theory
Exercises 14, 16 and 17
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Thouless’ theorem

An arbitrary Slater determinant |c’) which is not orthogonal to a determinant
n

lc) = [ Jak, 10). can be written as
i—1

ey = exp {Z ania;ai} c)

a>Fi<F

Proof: see blackboard.
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Stability of the Hartree-Fock equations

The variational condition for deriving the Hartree-Fock equations guarantees only that
the expectation value (c|H|c) has an extreme value, not necessarily a minimum. To
figure out whether the extreme value we have found is a minimum, we can use second
quantization to analyze our results and find a criterion for the above expectation value
to a local minimum. We will use Thouless’ theorem and show that

(¢'|Ale")

wilory” 2 (elAle) = Eo

with
|c’) = [c) +|dc).

Using Thouless’ theorem we can write out |c’) as

Iy =expq > > 6Cuala plc) =

a>Fi<F

1+ Z Z SCaataj + % Z Z 6C4i0Cy; aiaiaﬂaj Fooc

a>Fi<F T ab>Fij<F

where the amplitudes 6C are small.
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Stability of the Hartree-Fock equations

The norm of |¢’) is given by (using the intermediate normalization condition (c’|c) = 1)

('lc'y =1+ > > 16Cail* + O(5C3).

a>Fi<F

The expectation value for the energy is now given by (using the Hartree-Fock condition)

([Alc")y = (cAle) + > 3 8C56Cky (clalaaFaf ajlc)+
ab>F ij<F

= Z > 6C4i0Ch (c|Halaia]aj|c) + Z > 6CxoCy (c\a apaaafc) +
'ab>Fu<F 'ab>Fu<F

We will skip higher-order terms later.
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Stability of the Hartree-Fock equations

We have already calculated the second term on the rhs of the previous equation

(c| ({a;faa} H {agaj }) c) =
> > 6C;3Ck (plfola) (el ({afaa} {ajaa } {ala}) o)+

pg ijab

7 32> 6c56Ck paldls)el ({afas} {afafasar} {afa}) Io).

pars ijab

resulting in

Eo ) [6Cail® + D 16Cai[*(ca — &) — > (8j[V|bi)6C;6Cs;.
ai ai ijab
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Stability of the Hartree-Fock equations

The third term in the rhs of the last equation can then be written out (where is the
reference energy and why do we only consider the two-particle interaction Vy ?)

36l (9 {alar} {afa}) o) =
&3 cadCy (palvlrs) el ({afajasar } {ala} {afa}) )

pars ijab

1 .
== D > (pql¥|rs)3Cqi6Ch (c

pars ijab

T T T 11, plp ] Tl
( apaqasaraaaiabaj —+ apaqasaraaaiabaj —+ apaqasaraaaiabaj

nonenEbl
—+ {agagasaragaiagaj ) |c)

1 = e
=5 > (ii|¥]ab)6C4 6Cy
ijab
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Stability of the Hartree-Fock equations

The final term in the rhs of the last equation can then be written out as

261 ({afa0} {ala} ) 10 = 56 (O e} {ala}) 10

which is nothing but
1 7 * 1 A * * *
Sl (W {alai} {ala}) o) = 5 ¥(<U\V\ab>) 6C38C;;
ija
or

1 - e~
> ¥(<ablv lij))6CZ 0Cy;
ijal

where we have used the relation

(alAb) = ((blAT|a))*

due to the hermiticity of H and V.
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Stability of the Hartree-Fock equations

We define two matrix elements
Aqipj = —(aj|V[bi)
Bai,bj = (ab|V|ij)

both being anti-symmetrized.

186/433



Stability of the Hartree-Fock equations

We can then write out the energy

(c'Hlc") <1+Z|6ca.2> (c|H|c)+
D " 16Cail2 (e — ) + > Aaij6C56CH +
i jjab

1 * *
Z B2 5j0CaidCj + 5 > Bai pj0C50C;; +0(9C3),
Uab ijab

which allows us to rewrite it as
(c'|H|c) (1 + Z |6Ca; |2> (c|H|c) + AE + O(5C2),
and skipping higher-order terms we have
(c'|Ale’) AE

ey ot g 1CaP)
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Stability of the Hartree-Fock equations

We have defined

AE = _(x[M[x)

N[

with the vectors
x =[6C sc*]"

o A+A B
- B* A + A* )

With Agj pj = (€a — &;)JanJij-

and the matrix
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Stability of the Hartree-Fock equations

The condition

AE = Z(x|M|x) >0

NI

for an arbitrary vector
x =[6C sC*]"

means that all eigenvalues of the matrix have to be larger than or equal zero. A
necessary (but no sufficient) condition is that the matrix elements (for all ai )

(ea — €i)dabdij + Aaipj > 0.

This equation can be used as a first test of the stability of the Hartree-Fock equation.
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Topics for Week 41

Electron gas, Configuration interaction theory and Density
functional theory

>

| 2

>

>

>

>

Monday:
Summary from last week on the electron gas

Calculating the total energy for the electron gas (slides
only, and first hour)

Configuration interaction theory
Tuesday:
Configuration interaction theory

The midterm exam will be available on Tuesday morning from
7am on the webpage. It will also be discussed during the
Tuesday lecture.
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The electron gas

The electron gas is perhaps the only realistic model of a system of many interacting
particles that allows for a solution of the Hartree-Fock equations on a closed form.
Furthermore, to first order in the interaction, one can also compute on a closed form
the total energy and several other properties of a many-particle systems. The model
gives a very good approximation to the properties of valence electrons in metals. The
assumptions are

» System of electrons that is not influenced by external forces except by an
attraction provided by a uniform background of ions. These ions give rise to a
uniform background charge. The ions are stationary.

» The system as a whole is neutral.

> We assume we have Ne electrons in a cubic box of length L and volume Q = L3.
This volume contains also a uniform distribution of positive charge with density
Nee/Q.

191/433



The electron gas

This is a homogeneous system and the one-particle wave functions are given by plane
wave functions normalized to a volume 2 for a box with length L (the limit L — oo is to
be taken after we have computed various expectation values)

Yo (1) = % exp (k)€

where k is the wave number and &, is a spin function for either spin up or down

Eo=+1/2 = ( é ) Eo=—1/2 = ( 2 )

We assume that we have periodic boundary conditions which limit the allowed wave
numbers to 5
7tN; .
k = T‘ i=x,y,z n=0,+1,+2 ...
We assume first that the electrons interact via a central, symmetric and translationally
invariant interaction V (ri2) with ri2 = |r; — rp|. The interaction is spin independent.
The total Hamiltonian consists then of kinetic and potential energy

A=T+V.
The operator for the kinetic energy can be written as

n h2k2 i
T=> om Moo
ko
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The electron gas
The Hamilton operator is given by
H = Hei + Fp + Hei—b,
with the electronic part
N — =
R p e e wlri ﬁ‘
Ho=) -+ ——
Z 2m T 2 Z Iri—r| ’

where we have introduced an explicit convergence factor (the limit x — 0 is performed
after having calculated the various integrals). Correspondingly, we have

’)e plr—r’|
= drdr ,
Hy 2 // r—r’\

which is the energy contribution from the positive background charge with density
n(r) = N/Q. Finally,

e2 e plr=xil
Z/ |r—x| ’

is the interaction between the electrons and the positive background.
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The electron gas

Last week we demonstrated that the Hartree-Fock energy can be written as

HF (k’ —K)r el(k—kr’
&l 2me Z /dre /dr P

k’<k

resulting in

hzkz ezkp k2 —'k2 k +—kF
ehF = - — |2 £ In
X 2me 2 KKr k — ke
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The electron gas

. —ulr—t’ Q
We introduced a convergence factor e =#I'=""I and used 3°, — P Jdk. The
results were also rewritten in terms of the density

k3 3
n=_—Ff —_>_

372 47rl’s3

)

where n = Ne /€, Ne being the number of electrons, and rs is the radius of a sphere
which represents the volum per conducting electron. It can be convenient to use the
Bohr radius ag = h?/e?me. For most metals we have a relation rs /ag ~ 2 — 6.
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The electron gas, total energy (Exercise 19)

We wish to show first that

A = S NE 4r
2 Q p?
and
N 4
Hei— b—_927*~
Q p?

And then that the final Hamiltonian can be written as
H =Ho +H,
with -
heke 4
Ho — Zﬂakgakg7
ko
and

Z > qz k+q o1 al_ —q,0, P28y -

Ulffzq;éo k,p
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The electron gas, total energy

Finally, we want to calculate Eg/Ne = (®o|H|®o)/Ne for for this system to first order in
the interaction. Using
3
o= £ _ 3
372 47rr§ ’

with p = Ne/, rg being the radius of a sphere representing the volume an electron
occupies and the Bohr radius ap = %2 /e?m, that the energy per electron can be written
as

e? {2.21 0.916}

Eo/Ne = —
o/Ne 2a9 | r2 r's

Here we have defined rs = ro/ag to be a dimensionless quantity.
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The electron gas, total energy

Let us now calculate the following part of the Hamiltonian

“ 2 ’ ulr—r’|
g, = 2 [ AnCe Al (e o o

L

where n(r) = Ne/Q, the density of the positive backgroun charge. We define
rip =r —r’, reulting in &®r 1, = d®r, and allowing us to rewrite the integral as

2N 2 —#lriz| 2N 2 —#lriz|

~ e“N e mir2 e*N e

Hb = = ﬁ—darlz d3 "= = —d3r12.
202 |I’12‘ 2Q |I’12‘

Here we have used that [ d®r = Q. We change to spherical coordinates and the lack
of angle dependencies yields a factor 4, resulting in

47me’N2
20 Jo

Ay, = re” M dr.
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The electron gas, total energy

Solving by partial integration

o r 1 [ 1 1 > 1
/ re H dr = [——e*‘”} 4 f/ e HMdr == {—fe"”} = —
0 0 o wlo pl op L

gives

The next term is

A n(r e plr—xi] 3
Hel—b = Z/ =] dr.
=il

Inserting n(r) and changing variables in the same way as in the previous integral
y =r —X;, we get d® = d®r. This gives

2 ly| 2 N 0o
e“N e H 4me“N _
Hel—p = — e§ / Py = - QQE /0 ye~ M dy.
i=1

ly|

We have already seen this type of integral. The answer is

. 47e2Ne - 1
Hel—p = — > 5,
Q e

which gives
- N2 4r
Hel—b = —92§e7~
o
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The electron gas, total energy

Finally, we need to evaluate Fg. This term reads

Ne A2 2 —plri—ri|
& Pi € e " !
R T

= 2me 2 7 i —r;

The last term represents the repulsion between two electrons. It is a central symmetric
interaction and is translationally invariant. The potential is given by the expression

2 e#”r‘

V(i) = &%

)

which we derived last week in connection with the Hartree-Fock derivation.
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The electron gas, total energy

The results becomes

) enlr] ) 4
[vtrnesrr =e? [ ety ez AT
Ir| w2 +q

which gives us

: H2K2 A e s
T ) D I
ko a’ kpq
4ﬂ'AT A N
*Z—akoako"'_zz 92 A1q,0% p 4,00 3po’ Bk +
oo’ kpq
q#0
47rAJr 2
ZZ 2080 B
aa’ kp

where in the last sum we have split the sum over g in two parts, one with g # 0 and

one with g = 0. In the first term we also let . — O.
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The electron gas, total energy

The last term has the following set of creation and annihilation operatord

af Lol L 8p,ai, =8 & a8, =& A .0pk0se +8] AAl &,

which gives

st &t a4 A —R2_Q
>o> &l &l a8, =N*-N,
oo’ kp

where we have used the expression for the number operator. The term to the first
power in N goes to zero in the thermodynamic limit since we are interested in the
energy per electron Eg/Ne. This term will then be proportional with 1/(Qu2). In the

thermodynamical limit 2 — oo we can set this term equal to zero.
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The electron gas, total energy

We then get
~ 12k? 5 e? N2 4n
o =3 5 om akﬁ*ZZqz P US qg/apo’aka+§ﬁﬁ~
ko oo’ kpq

a0
The total Hamiltonian is A = Hg + Fp + He_p. Collecting all our terms we end up with

- mK? . .
Ho = Z 2me Ao
ko

and

47rAT 4
ZZ q2 A tg,0 p a, 8o 8kos
o'o" kpq

q7#0
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The electron gas, total energy

Now we need Eg = (¢0|I:| |®o). The kinetic energy gives simply

Qe

Do|Hg|Pg) = ———— k2.
(®o|Ho|®Po) 1072ma F
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The electron gas, total energy

The expectation value for A is

(®o|H[0) = (o] —ZZ ak+q . p 4.0/’ 8o | |P0)
oo’kpq
q#0
at
ZQZZ q2 ¢0‘ k+q,0 p qglapa’ako‘|¢0>
oo’ kpq
440
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The electron gas, total energy

For the matrix element to be different from zero 0, we must have k 4+ q = p and
o = o’. We must also have p < kg and k < kg. We get

4 4re? 1
(@olFy[0) = — 47 02 2 kR Y
T Kpgk 2 ok P =K
kp<kF K,p<ke

Changing to an integral we get

(®o|Fi| @) = _47;262 ((;)3)2/0“7:; Ip :

5 Pk p.
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The electron gas, total energy

Using spherical coordinates

ke ke ke ke k2sin@
d3k dp =2 / / / dkdg d®
/ / p=2r p2 + k2 — 2kp cos § 25
since p is a constant in the integral over k. First we integrate over 6, resulting in
ke rk 1 ke rke [K21n (k2 4 p2 — 2kpcos ) ]*"
[ —Sadkdp=an [7[7 (E+p = 2poosh) | oy
o Jo [p—Kk| o Jo 2kp 9—0
ke ke K (p+k)? 3
:w// —In( _k)Z)dkdp
ke rk
_2W/F/Fk "”k dk ®p

,zw/ / In|p+k\—BIn|k—p|dkd3
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The electron gas, total energy

We use the following relations

1, k2 1, kp
/kln|k+p\—§k Infk +p| = = — Zp2In [k +pl + = +C,
which give

2

ke 1 k
/ Kinlk +p| = JkZInfke +p| = £ p|n|kF+p\+ Fp
0

*= p Inp,

and

ke 1 k2 1 kep 1
| Kinlk—pl = JkZinlke —pl = 5 — Jp2inke —pl ~ <52 + Zp*Inp.
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The electron gas, total energy

Summing up we get

ke ke 1 ke 1
—dskdsp:27r/ (
/o/o Ip — k|2

1, |ke+p 1, |ke+p
In — Zp2in kep ) d®
2°F ke ‘ 2 ke — IO+ P) P
2
ke +p
= 2mkg = k3 / F _plm| 28
7rp37r +m < 9 In == “t
87T kF k ‘F p
Kk 4/ k2p — p3) In || dp.
3¢ ant | (k2p - p?) «—p| P
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The electron gas, total energy

Utilizing
kg 1 2
[ pmlp+ieldp = kE 2Inke +1),
0
ke 4 1.4
/ p3In|p + ke | dp = = k& (12Inke +7),
A 48
kg 1
[ pmip—keldp = K2 2Inke ~3),
) 4
and

k|
/F p®In|p — ke |dp = —— k& (12Inks — 25).
o 48
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The electron gas, total energy

This gives

ke ke 1
— = _d®kd®p =
/o /0 Ip — k|2

8r? 4 2 (121, 2 21 5
kap+47r kFZkF(ZInkF+1)—kFZkF(2lnkF—3)—

1 1
Ek,‘:‘ (12Inkg +7) + Ek,‘:‘ (12Inkg — 25)) ,

which we can bring together to

ke ke
/o /0 B _1k‘2 Pk d®p = ngké + 4n® (k,‘:1 = gk,‘:‘) = 4nkE.

Inserting this in the expression for (o|H,|®g) we obtain

g 4re? [ Q \?
So|H Do) = ——— [ —— | 4n?k2.
(®o[Hi|®o) Q ((27r)3> 7Kg

2 2 2
N N \ 1072m Q (2m)3

We get
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The electron gas, total energy

Inserting kg we get

Eo _ 1°Q 5 4re? [ Q 24W2k4
(2m)? F

N  1072mN - QN \ (2«
PQ s e,
10m2mN ©  4x3N "
e 32N\ e?a 3xN\*°
’1on2mN( Q ) _47r3N( Q )
H2N2/3 (3#2)5/3 e2Ql/3 (3m2)4/3

Q2/3  1072m Ni/3  4Axs3
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The electron gas, total energy

Finally, we introduce

30 \ /3 72
o= |(— , O = —,
0 (47rN) g e2m

which gives

Eo _ ,,(3n%)%/® ( 3 )2/3 1 ()3 ( 3 )1/3 1

N ~ 1072m \4rn 12 473 4z i
_1(n?221 20916
2\ m ¢ ro
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The electron gas, total energy

Finally we define rs = ry/ag, and get

E, _ e* (2.21 3 0.916)
N =~ 235 \ r2 rs /)

To find the minimum we take the partial derivative
9 (@) —0 = 2x221 0916 —o,
ors \' N @ r2

which results in 5« 221
X2 483,

5 = =—==x,
°~ 70916
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Configuration interaction theory, understanding
excitations

We always start with a 'vacuum’ reference state, the Slater determinant for the believed
dominating configuration of the ground state. Here a simple case of eight particles with
single-particle wave functions ¢;(x;)

#1(X1)  d1(x2) ... H1(Xs)
$2(X1)  d2(x2) ... Pa(Xs)
%:i d3(x1)  ¢s(x2) ... #3(Xs)
da(x1) ¢8(x2) ... da(xe)

We can allow for a linear combination of excitations beyond the ground state, viz., we
could assume that we include 1p-1h and 2p-2h excitations

Wop_2h = (14 T1 + T2)®g

T is a 1p-1h excitation while T is a 2p-2h excitation.
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Configuration interaction theory

The single-particle wave functions of

¢1(X1)  d1(x2) ... #1(Xs)
$2(X1)  P2(x2) ... B2(Xs)
®p = 1| #a(xa) #3(x2) ... ¢a(xs)
do(xa) da(x2) ... dalxe)

are normally chosen as the solutions of the so-called non-interacting part of the
Hamiltonian, Hg. A typical basis is provided by the harmonic oscillator problem or
hydrogen-like wave functions.
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Excitations in Pictures

€a
€3

€F dg
€2
€1
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Excitations in Pictures

€4
€3 [

6F \ qDO
€2

a N

From T
T, x af q
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Excitations in Pictures

o r
i a—
AN

From T, to T2
T1 xaja
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Excitations in Pictures

€a
€3

€F
€2
€1

e

From T, to T2
T, x af q

€a
€3

€F
€2
€1

:

T

From T,
T, x aj &/ a;a;

%)
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Excitations in Pictures

€a
€3

€F
€2
€1

I

From T, to T2
T, x af q

00

€a
€3

€F
€2
€1

&

:

T

From T, to T2
T, x aj &/ a;a;

%)
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Excitations

€4
€3

€F
€2
€1

2p —2h
1p—1h
ann
NN

Truncations

» Truncated basis of Slater
determinants with 2p — 2h has
Wop on = (L + Ty + T2)®

» Energy contains then

Eop_on =

(Po(1+T]+TH)H|(1+T1+T2)Po)
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Topics for Week 42

Configuration Interaction theory and Perturbation theory

>

Monday:

No lecture Monday

Tuesday:

Configuration interaction theory

Start many-body perturbation theory,
Rayleigh-Schrodinger and Brillouin-Wigner perturbation
theory (chapter 2 of Shavitt and Bartlett)

Rayleigh-Schrodinger and Brillouin-Wigner perturbation
theory

Exercises this week: 18b, 18c, 18d, 19e and 19f.
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Configuration interaction theory

We defined the projection operators

D
P =" |o) il
i=1
and -
Q= > vl
i=D+1

with D being the dimension of the model space, and PQ = 0, P2 = P, Q%2 = Q and

P + Q = I. The wave functions |t);) are eigenfunctions of the unperturbed hamiltonian
Ho = T + U (with eigenvalues &), where T is the kinetic energy and U an external
one-body potential.

The full hamiltonian is then rewritten as H = Hg + H, with H =V — U.
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Simple Toy Model to illustrate basic principles

Choose a hamiltonian that depends linearly on a strength parameter z

H =Ho + zHy,
with 0 < z < 1, where the limits z = 0 and z = 1 represent the non-interacting
(unperturbed) and fully interacting system, respectively. The model is an eigenvalue
problem with only two available states, which we label P and Q. Below we will let state
P represent the model-space eigenvalue whereas state Q represents the eigenvalue of
the excluded space. The unperturbed solutions to this problem are

Hod)p = Ep(bp

and
H0¢Q = EQ ¢Q7

with ep < eq. We label the off-diagonal matrix elements X, while Xp = (®p |H1|®p)

225/433



Simple Two-Level Model

The exact eigenvalue problem

ep + zXp zX
zX €Q =+ ZXQ

yields
1
E(z) = E {ep + €0 +zXp +ZXQ + (EQ — €p +ZXQ —zXp)

4z2x2
X414+ S (-
(GQ —€p + ZXQ = ZXp)
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Another look at the problem: Similarity
Transformations

We have defined a transformation
QIHOO Y W,) = Eo Q7 W,).
We rewrite this for later use, introducing Q = eT, as
H =e THeT,
and T is constructed so that QH’P = PH’Q = 0. The P-space effective Hamiltonian is
given by
Heff = PH'P,

and has d exact eigenvalues of H.
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Another look at the simple 2 x 2 Case, Jacobi Rotation

We have the simple model

ep + zXp zX
zX €Q =+ ZXQ

Rewrite for simplicity as a symmetric matrix H € R2*?2

:[Hn le}
Hz1  Haz|®

The standard Jacobi rotation allows to find the eigenvalues via the orthogonal matrix Q2

Q- eT _ Cc S
—-s c|’

with ¢ = cos and s = sin~. We have then that H’ = e—THeT is diagonal.
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Simple 2 x 2 Case, Jacobi Rotation first

To have non-zero nondiagonal matrix H’ we need to solve
(Haz2 — Hiz)es + Hyp(c? — s?) =0,

and using ¢ — s2 = cos(2v) and cs = p(2v)/2 this is equivalent with

2H
tan(2y) = B_
Hip — Haz
Solving the equation we have
1 2H k
y=-tan"? (i) + 527 k=...,-1,0,1,...,
2 Hiz — Ha 2

where k7 /2 is added due to the periodicity of the tan function.

(9.0.141)
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Simple 2 x 2 Case, Jacobi Rotation first

Note that k = 0 gives a diagonal matrix on the form

Hi—o = [Aol AOJ : (9.0.142)

while k = 1 changes the diagonal elements

A2 0}

Hi_, = [0 A (9.0.143)
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Perturbation theory (time-independent)

The projection operators defining the model and excluded spaces are defined by

D
P =" |l (9.0.144)
i=1
and .
Q= > )il (9.0.145)
i=D+1

with D being the dimension of the model space, and PQ = 0, P2 = P, Q%2 = Q and

P 4+ Q = I. The wave functions |¢);) are eigenfunctions of the unperturbed hamiltonian
Ho = T + U (with eigenvalues ¢;), where T is the kinetic energy and U an appropriately
chosen one-body potential, normally that of the harmonic oscillator (h.o.).
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Perturbation theory (time-independent)

We define the projection of the exact wave function |V, ) of a state «, i.e. the solution
to the full Schroédinger equation

H[Va) = Ea|Va), (9.0.146)

as P|V,) = |WM) and a wave operator Q which transforms all the model states back
into the corresponding exact states as |V, ) = Q|WM). The latter statement is however
not trivial, it actually means that there is a one-to-one correspondence between the d
exact states and the model functions.

232/433



Perturbation theory (time-independent)

We will now assume that the wave operator Q2 has an inverse and consider a similarity
transformation of the Hamiltonian H such that Eqg. (250) can be rewritten as

QHQQ W, = E.Q 7L w,,). (9.0.147)

Recall also that |W,) = Q|WM), which means that Q—1|W,) = |WM) insofar as the

inverse of Q exists.
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Perturbation theory (time-independent)

Let us define the transformed hamiltonian 4 = Q~1HS, which can be rewritten in
terms of the operators P and Q (P + Q =) as

H =PHP +PHQ + QHP + QHQ. (9.0.148)

The eigenvalues of H are the same as those of H, since a similarity transformation
does not affect the eigenvalues.
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Perturbation theory (time-independent)

If we now operate on Eqg. (250), which in terms of the model space wave function reads
HIWY) = Ea|WY), (9.0.149)
with the operator Q, we readily see that

QHP =0. (9.0.150)
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Perturbation theory (time-independent)

Eq. (251) is an important relation which states that the eigenfunction P|W,) is a pure
model space eigenfunction. This implies that we can define an effective model space

hamiltonian
Heit = PHP = PQ 1HQP, (9.0.151)

or equivalently
HQP = QPHesP, (9.0.152)

which is the Bloch equation. This equation can be used to determine the wave operator
Q.
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Perturbation theory (time-independent)

We assume here that we are only interested in the ground state of the system and
expand the exact wave function in term of a series of Slater determinants

[Wo) = [®0) + > Cm|®m),
m=1

where we have assumed that the true ground state is dominated by the solution of the
unperturbed problem, that is R
Ho[®o) = Wo|Po).

The state |Wy) is not normalized, rather we have used an intermediate normalization
(Po|Wp) = 1 since we have (dg|Pg) = 1.
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Perturbation theory (time-independent)

The Schrodinger equation is
H[Wo) = Eo|Wo),

and multiplying the latter from the left with ($®q| gives
(o|H|Wo) = Eo(®o|Wo) = Eo,
and subtracting from this equation
(Wo|Ho| o) = Wo(Wo| Do) = Wo,
and using the fact that the both operators A and I:|o are hermitian results in
AEq = Eg — Wo = (®|H| Vo),

which is an exact result.
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Perturbation theory (time-independent)

This equation forms the starting point for all perturbative derivations. However, as it
stands it represents nothing but a mere formal rewriting of Schrodinger’s equation and
is not of much practical use. The exact wave function |Wg) is unknown. In order to
obtain a perturbative expansion, we need to expand the exact wave function in terms of
the interaction F,.
Here we have assumed that our model space defined by the operator P is
one-dimensional, meaning that

P = [®0)(®o,

and

Q= Z |Pm){(Pm|.
m=1
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Perturbation theory (time-independent)

We can thus rewrite the exact wave function as
[Wo) = (P + Q)[Wo) = |®g) + Q|Wo).

Going back to the Schrédinger equation, we can rewrite it as, adding and a subtractiing
aterm w|Wyp) as

(w = Ifio) |Wo) = (w —Eo— |:||) [Wo),

where w is an energy variable to be specified later.
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Perturbation theory (time-independent)

We assume also that the resolvent of (w — Ho) exits, that is it has an inverse which
defined the unperturbed Green'’s function as

R s

=)
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Perturbation theory (time-independent)

We can rewrite Schrddinger’s equation as

Vo) = o (0= B0~ ) Vo),

w—H

and multiplying from the left with O results in

Qlvo) = o (1= Eo = ) Vo),

) =

which is possible since we have defined the operator Q in terms of the eigenfunctions
of H.
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Perturbation theory (time-independent)

These operators commute meaning that

e L ey B o

With these definitions we can in turn define the wave function as

Q

[Wo) = |®o) + QH (w — Eo — |:||) [Wo).

w — Mo
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Perturbation theory (time-independent)

Vo) =100) + 2 (0~ Eo =) Vo).

05—
This equation is again nothing but a formal rewrite of Schrédinger’'s equation and does
not represent a practical calculational scheme. It is a non-linear equation in two
unknown quantities, the energy Eq and the exact wave function |Wg). We can however
start with a guess for |W() on the right hand side of the last equation.
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Perturbation theory (time-independent)

The most common choice is to start with the function which is expected to exhibit the
largest overlap with the wave function we are searching after, namely |®g). This can
again be inserted in the solution for |W) in an iterative fashion and if we continue along
these lines we end up with

oo

[Wo) = Z{ én (w —Eo— ':h)}i |%o),

i—o (w—Ho

for the wave function and

AEo‘Z("’o':h{ QH (w—Eo—Fh)} |®o),
w —Ho

i=0 -

which is now a perturbative expansion of the exact energy in terms of the interaction F|,

and the unperturbed wave function |Wo).
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Topics for Week 43

Time-independent Perturbation theory

» Monday:

Derivation of Brillouin-Wigner and Rayleigh-Schrédinger
perturbation theory

Wave operator in perturbation theory
Tuesday:
» Discussion of diagrams and derivation of diagram rules

v

v

v

The material can be found in chapters 4 and 5 of Shavitt and
Bartlett. Exercises 24 and 26.
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Brillouin-Wigner theory

In our equations for |Wy) and AEg in terms of the unperturbed solutions |®;) we have
still an undetermined parameter w and a dependecy on the exact energy Eg. Not much
has been gained thus from a practical computational point of view.

In Brilluoin-Wigner perturbation theory it is customary to set w = Ep. This results in the
following perturbative expansion for the energy AEq

AEg =) (%olH {w?ﬂ (w—Eo—Fh)} |®o) =

i=0 0
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Brillouin-Wigner theory

[ee]

AEo‘Z("’o':h{ QH (w—Eo—Fh)} |®0) =
—Ho

i=0 &

e I TP

(®o| [ Hi +H —H +H —H —F ... ) | ®o)-
Eo — Ho Eo —Ho Eo—Ho

This expression depends however on the exact energy Eg and is again not very

convenient from a practical point of view. It can obviously be solved iteratively, by

starting with a guess for Eg and then solve till some kind of self-consistency criterion
has been reached.

Actually, the above expression is nothing but a rewrite again of the full Schrodinger

equation.
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Rayleigh-Schrodinger (RS) perturbation theory

In RS perturbation theory we set w = Wy and obtain the following expression for the
energy difference

AEg = Z(‘bo“:'l {W (3 Fo (F'I - AEO)} |®0) =

i=0 0

(®o [ H + Hy : — (H, — AEg) + Hy : — (H — AEo) =
Wop — Ho Wo — Ho Wp — Ho

(A, —AE0)+...> |
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Rayleigh-Schrodinger perturbation theory

Recalling that Q commutes with I—To and since AEg is a constant we obtain that
QAE| o) = QAE,|Qd) = 0.
Inserting this results in the expression for the energy results in

Q Q

AEq = (| <|:|| —H:hWLAFh + H ———(H — AE))———H, +> |®o).

o — Ho Wo — Ho Wo — Ho
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Rayleigh-Schrodinger perturbation theory

We can now this expression in terms of a perturbative expression in terms of I:|, where
we iterate the last expression in terms of AEg

AEy =" AEY.
i=1

We get the following expression for AEéi)

AE = (o]Fi|®0),

which is just the contribution to first order in perturbation theory,

) A Q A
AEP) — (00— A |d0),
0 (@0 ' Wo — Ao 1|®o)

which is the contribution to second order.
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Rayleigh-Schrodinger perturbation theory

. o .
(Po|Hi|Po) ~—H|®o),
Wop — Ho

@ p- @ — H; ®o)— (PoH

3 .
AESY = (oo —H, 5
Wo —Ho Wp —Ho Wo — Ho

being the third-order contribution. The last term is a so-called unlinked diagram!
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Rayleigh-Schrodinger perturbation theory

The fourth order term is

4 Qs Q 4 Q.
AE = (oA, —A, —A, — i o) —
Wo—Ho Wp—Ho Wo—Ho

o} .
= (®o|Hi|$o)
o —Ho
~ Q . Q A Q 4
—(®o[H, —H, =~ (®o[Hi|Po) ~—H,®o)
Wo —Ho  Wo —Ho Wo — Ho

Q 4 ©

= _F &
Wo — Ho IWo—Ho o

do|H
<o\|W

N T 6 . 9 .
+(do[H, ~—H (o |H||Po) ~— (®o|[H)|Po) ~—H ®o)—
Wo — Ho Wo — Ho Wo — Ho

T
(®olH =~ (Po[H ~—Hi|®o) ~—Hi|®o),
Wop — Ho o — Ho Wo — Ho
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Wave Operator |

We define the projection of the exact wave function |V, ) of a state «, i.e. the solution
to the full Schroédinger equation

H[Va) = Ea|Wa),
as P|W,) = |[WM) and a wave operator Q which transforms all the model states back
into the corresponding exact states as |V, ) = Q|WM). The latter statement is however
not trivial, it actually means that there is a one-to-one correspondence between the d
exact states and the model functions. We will now assume that the wave operator Q
has an inverse. Use a similarity transformation of the hamiltonian

QHQQ YW, = EoQ L w,,).
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Wave Operator I

Recall also that |W,) = Q|WM), which means that Q—1|W,) = |WM) insofar as the
inverse of Q exists. Let us define the transformed hamiltonian H = Q~1HSQ, which can
be rewritten in terms of the operators P and Q (P + Q =) as

H =PHP +PHQ + Q1P + QHQ.

The eigenvalues of H are the same as those of H, since a similarity transformation
does not affect the eigenvalues.

H|WY) = Ea|VY),
with the operator Q, one can show the so-called decoupling condition

QHP = 0.
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Wave Operator Il

The last equation is an important relation which states that the eigenfunction P|WV) is
a pure model space eigenfunction. This implies that we can define an effective model
space hamiltonian

Het = PHP = PQIHQP,

or equivalently
HQOP = QPHeP,

which is the Bloch equation. This equation can be used to determine the wave operator
Q.
The wave operator is often expressed as

Q=1+x,

where x is known as the correlation operator.
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Wave Operator IV

The wave operator Q2 can be ordered in terms of the number of interactions with the
perturbation H,
Q=1+004+0® 4 |

where Q(") means that we have n H, terms. Explicitly, the above equation reads
li)¢ |H|W}a (IH i) H[%a)
Qlpa) = )+ S v
V) 2 Z(aa—e. New — )

li)( \H||¢6>(¢B\H||wa>
Z (ea —¢i)(ea —€p)

Bi

where ¢ are the unperturbed energies of the P-space
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Topics for Week 44

Perturbation theory

» Monday:

» Summary from last week

» Diagram examples, rules and unlinked diagrams

» Introduction to time-dependent perturbation theory
» Schrodinger, Heisenberg and interaction pictures
» Tuesday:

» Schrodinger, Heisenberg and interaction pictures
» Linked diagram theorem

» Diagram rules and examples

Exercise 31.
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Schrddinger picture

The time-dependent Schrodinger equation (or equation of motion) reads
2w (1)) = AV (1))
’at S - S )
where the subscript S stands for Schrodinger here. A formal solution is given by
[Ws(t)) = exp (—aH(t — to)/h)| Vs (to))-

The Hamiltonian H is hermitian and the exponent represents a unitary operator with an
operation carried ut on the wave function at a time tg.
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Interaction picture

Our Hamiltonian is normally written out as the sum of an unperturbed part Ho and an
interaction part H,, that is ~ . .
A =Ho +H,.
In general we have [Hg, F|] # 0 since [T, V] # 0. We wish now to define a unitary
transformation in terms of Hy by defining
[Wi(t)) = exp (sHot/h) | Ws (1)),

which is again a unitary transformation carried out now at the time t on the wave

function in the Schrddinger picture.
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Interaction picture

We can easily find the equation of motion by taking the time derivative

m%wl(t)) = —Ho exp (zHot /A)Wg (1)) + exp (zﬂot/h)zhgws(t)).
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Interaction picture

Using the definition of the Schrodinger equation, we can rewrite the last equation as
o ~ ~ ~ ~ ~
th = [V (1) = exp (Pt /h) [—Fo + Flo + i | exp (—oFot/h) W (1)),

which gives us
B (1) = A (0w (1),

with R R R R
H, (t) = exp (zHot/h)H, exp (—:Hot/h).
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Interaction picture

The order of the operators is important since Hy and F; do generally not commute. The
expectation value of an arbitrary operator in the interaction picture can now be written
as
(W5 (1)|Os|Ws(t)) = (Wi(t)| exp (:Hot/h)O; exp (—eHot /1) | Wi (1)),
and using the definition
G (t) = exp (sHot/1)O) exp (—aHot /1),

we obtain . .
(W5 (1)[O0s|Ws(t)) = (W (1)[O1(1)[Wi(t)),

stating that a unitary transformation does not change expectation values!
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Interaction picture

If the take the time derivative of the operator in the interaction picture we arrive at the
following equation of motion

zﬁ%d(t) = exp (Hot /h) [f)sﬁo - ﬁoés] exp (—Hot/h) = [6,@), ﬂo] .

Here we have used the time-independence of the Schrodinger equation together with
the observation that any function of an operator commutes with the operator itself.
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Interaction picture

In order to solve the equation of motion equation in the interaction picture, we define a
unitary operator time-development operator U (t,t’). Later we will derive its connection
with the linked-diagram theorem, which yields a linked expression for the actual
operator. The action of the operator on the wave function is

Wi(t)) = 0(t, 1) Wi (1)),

with the obvious value O(to,to) = i

265/433



Interaction picture

The time-development operator U has the properties that
Of(t,t)0(t,t") = O(t, t)0T(t,t") = 1,
which implies that U is unitary
Of(t,t) = 0—(t, t').

Further, R R R
U(t, t)Ut't”) = U(t,t"”)

and R R
Ut t"Hu(t’,t) = 1,

which leads to N .
Ut t') = Ot (/) 1).
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Topics for Week 45

Time-dependent Perturbation theory

>

Monday:
Summary from last week
Pictures and adiabatic hypothesis

Goldstone’s Linked diagram theorem and Gell-Mann’s and
Low’s theorem

Linked and unlinked diagrams, examples
Tuesday:

Gell-Mann’s and Low’s theorem

Wick’s theorem for time-dependent products
Diagram rules with examples

Exercises 29, 30 and second 23!
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Interaction picture

Using our definition of Schrodinger’s equation in the interaction picture, we can then
construct the operator U. We have defined

[W)(t)) = exp (:Hot/h)|Ws(t)),
which can be rewritten as
[W,(t)) = exp (:Hot/h) exp (—H (t — to)/h)|Ws (o)),

or
Wi (t)) = exp (Hot /) exp (—aH (t — to)/h) exp (—2Hoto/R) W (to))-
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Interaction picture

From the last expression we can define
U(t, to) = exp (Hot /h) exp (—oH (t — to) /1) exp (—Hoto /1)

It is then easy to convince oneself that the properties defined above are satisfied by the
definition of U.
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Interaction picture

We derive the equation of motion for U using the above definition. This results in
O A ~ ~
1h—U (t7 tO) = H| (t)U (t7 t0)7
ot
which we integrate from tp to a time t resulting in
t
0(t.t)) =00, 10) = O(t. 1)) =1 = — [ dAE)0(', 1),
fo

which can be rewritten as

t
Ot to) =1 - 3/ dtf ()0t t).
Ry
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Interaction picture

We can solve this equation iteratively keeping in mind the time-ordering of the of the
operators

t _,\2 gt t/ R R
Ot =1+ dt/H|(t’)+(fZ> /dt/ At A ()R () + . .
fo

to to
The third term can be written as
t/

t t/ R R 1 st
[ [ adrien = [ o
1o 2

fo fo fo

t t
dtf R+, [ o [ aeh )R
to 7
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Interaction picture

We obtain this expression by changing the integration order in the second term via a
change of the integration variables t’ and t” in

1t v
E/t dt’ dt”’ Hy (t")H, (t").
0

fo

We can rewrite the terms which contain the double integral as

t t/
/ dt’” [ dt”H (t")H (t") =
fo

fo

t t’
%/t dt'/t at” [A ()R ) — 1) + At )R ) —1)]

with ©(t"" — t’) being the standard Heavyside or step function. The step function
allows us to give a specific time-ordering to the above expression.
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Interaction picture

With the ©-function we can rewrite the last expression as

e ()R]

fo

t t/ R R 1 st
/dt’ dt”H (t")H (") = —/ dt’
to 2 Jy

fo

where T is the so-called time-ordering operator.
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Interaction picture

With this definition, we can rewrite the expression for U as

N 2 /—=\"1 I L

U(t,tp) = = dt dty T Ht CHi(t =Te = dt'H, (t") ] .
©0 =3 (F) 5 [ [ ot [ A] = oo |5 [ai)

The above time-evolution operator in the interaction picture will be used to derive
various contributions to many-body perturbation theory.
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Heisenberg picture

We wish now to define a unitary transformation in terms of H by defining

[Wh () = exp (sHt/B) Vs (1)),

which is again a unitary transformation carried out now at the time t on the wave
function in the Schrddinger picture. If we combine this equation with Schrddinger’s
equation we obtain the following equation of motion

9]
h—|Wy(t)) =0,
th=[Wu (1)
meaning that |Wy(t)) is time independent. An operator in this picture is defined as

Oy (t) = exp (zAt/h)Og exp (—eHt/h).
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Heisenberg picture

The time dependence is then in the operator itself, and this yields in turn the following
equation of motion

zhgéH(t) = exp (At /h) [”HH - HGH] exp (—eAt/h) = [c“)H(t), ﬁ] .

We note that an operator in the Heisenberg picture can be related to the corresponding
operator in the interaction picture as

Oy (t) = exp (zHt/7)Og exp (—Ht /71) =

exp (2t /1) exp (—Hot/R) O, exp (2ot /h) exp (—aF t/R).

276/433



Heisenberg picture

With our definition of the time evolution operator we see that

On(t) = 0(0,1)6,0(t, 0),

which in turn implies that Og = O,(0) = O (0), all operators are equal att = 0. The
wave function in the Heisenberg formalism is related to the other pictures as

[Wh) = [Ws(0)) = [W1(0)),

since the wave function in the Heisenberg picture is time independent. We can relate
this wave function to that a given time t via the time evolution operator as

(W) = 00, )W (1))
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Adiabatic hypothesis

We assume that the interaction term is switched on gradually. Our wave function at
timet = —oo and t = oo is supposed to represent a non-interacting system given by
the solution to the unperturbed part of our Hamiltonian Hy. We assume the ground
state is given by |$q), which could be a Slater determinant.

We define our Hamiltonian as

A = Hy + exp (—et/R)H,

where ¢ is a small number. The way we write the Hamiltonian and its interaction term is
meant to simulate the switching of the interaction.
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Adiabatic hypothesis

The time evolution of the wave function in the interaction picture is then

[Wi()) = Ue(t, to) | Wi (to)),

Os(t,to):Z(_—Z)ni g tdtNexp(_a(tl+..-+tn)/h,)f [I:||(t1)...H|(tn)]

n! to to
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Adiabatic hypothesis

In the limit tp — —oo, the solution ot Schrddinger’s equation is |®g), and the
eigenenergies are given by
Ho[®o) = Wo|®o),

meaning that
[Ws(to)) = exp (—2Woto/1)|Po),

with the corresponding interaction picture wave function given by

[Wi(to)) = exp (:Hoto/h)|Ws(to)) = |Po).
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Adiabatic hypothesis

The solution becomes time independent in the limit t — —oo. The same conclusion
can be reached by looking at

191 (0)) = exp (—< /1) i (1)

and taking the limitt — +o0. We can rewrite the equation for the wave function at a
timet =0as .
[W1(0)) = U (0, —o0)| o).
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Topics for Week 46

Perturbation theory and Coupled cluster theory

>

Monday:
Repetion from last week
Gell-Mann and Low’s theorem on the ground state

Time-dependent Perturbation theory, computation of
diagrams

Tuesday:

Coupled cluster theory, chapter 9 of Shavitt and Bartlett
Wednesday:

Exercises: 27, 32d and e
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

Our wave function for ground state is then

[Wo) . : U(0, —o0)|%o)

m lim — =
<¢0‘\Vo> e—=0t/——oco(l—ie) <¢0|U(0,—OO)‘¢0>

and we ask whether this quantity exists to all orders in perturbation theory. Goldstone’s
theorem states that only linked diagrams enter the expression for the final binding
energy. It means that energy difference reads now

oo (5 i
AEg =Y (d|A, {7A|:||} |Po)L,
g Wo —Ho
where the subscript L indicates that only linked diagrams are included. In our

Rayleigh-Schrodinger expansion, the energy difference included also unlinked
diagrams.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

If it does, Gell-Mann and Low showed that it is an eigenstate of F with eigenvalue

q Vo) _ ” |Wo)
(®o|Wo) (®o|Wo)

and multiplying from the left with (®g| we can rewrite the last equation as

(PolFi|Wo)

Eqg — Wo =
0 0 (Po|Wo)

since Fo|®o) = Wo|®g). The numerator and the denominators of the last equation do

not exist separately. The theorem of Gell-Mann and Low asserts that this ratio exists.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

We note that also that the term D is nothing but the denominator of the equation for the
energy. We obtain then the following expression for the energy

Eo — Wo = AEg = N = (g(0)[H;Uc(0, —00)|®g(—00))i,

and Goldstone’s theorem is then proved. The corresponding expression from
Rayleigh-Schrodinger perturbation theory is given by

AE0=<¢0<|:||+|:||WQ H +H Q_q QAH.+...>¢0>C.

- | ~—H,
o —Ho Wo —Ho Wp —Ho
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

An important point in the derivation of the Gell-Mann and Low theorem

(PolFi|Wo)

Eo — Wo = :
° ° (Po|Wo)

is that the numerator and the denominators of the last equation do not exist separately.
The theorem of Gell-Mann and Low asserts that this ratio exists. To prove it we
proceed as follows. Consider the expression

(o — E0)Uc(0, =00)|Po) = [Ao, Ue(0, —00)] |®0)-
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

To evaluate the commutator
(Fo — E0)Uc(0, —00)|%0) = [Flo, Ue(0, —00) | o).
we write the associate commutator as

[F'O,':'I(tl)':'l(tZ)--~|:|I(tn)] = [F'O:':'I(tl)] Hi(t2) ... Hi(th)+

o+ Ailta) [Fo, A1 (t2) | Ai(ta) - Aitn) + ..
Using the equation of motion for an operator in the interaction picture we have
O ~ A A
h A) = [AD), Fo]

Each of the above commutators yield then a time derivative!
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

We have then

Ao A A 0 0 0\ n o A
Fo, Fi (t))F () .. . Hi(t) | = h [ =— + — + - 4+ — ) A (t)A (t2) . . . Hi (tn),
[Fo-Fuw)Pe) - Fu()] =un (g + oo+ o) Bt . )
meaning that we can rewrite

(o — Eo)Uc(0, —00)[ o) = [Fo, Ue(0, —00)] |0),

as

o0 n—1
(Ho—Eo)Uc (0, —00)[ o) = — > (—) %/tt dty ... tdtN exp(—e(ty + -+~ +1tn)/h)

to
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

All the time derivatives in this equation

0 n—1
(Fo-Ea)Uc(0,~)o0) == 3= () o / dt .. / dty exp (—<(ty + -+ + ) /h)

n=1

X i %)T [H| ). Hl(tn)] .

make the same contribution, as can be seen by changing dummy variables. We can
therefore retain just one time derivative d/partialt and multiply with n. Integrating by
parts wrt t; we obtain two terms, see rest on blackboard!!
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Topics for Week 47

Coupled cluster theory

>

>

>

Monday:
Repetion from last week

Coupled cluster theory with doubles only, chapter 9 of
Shavitt and Bartlett

Tuesday:
Coupled cluster theory, chapter 10 of Shavitt and Bartlett
Wednesday:

Exercise: Set up the Coupled-cluster equations (doubles
only) for solving the pairing problem of exercise 32. Find
the result for the energy after one iteration. Can you find
the final energy?
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Problem statement

Many-body systems

» We study a bound system of A interacting particles ...

./\/\/\/\/\/\/.

and it quickly becomes unmanageable . . .
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Problem statement

We are looking at non-relativistic particles, so the solutions of
the A-body system, is given by the A-body Schrodinger
equation.

Ha|Wa) = Ea|Wa)
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Manybody wavefunction
The wavefunction of the manybody system can be
decomposed into a suitable manybody basis

Wa) = Zci|¢i>-

For fermions, these are Slater-determinants

|Pi) = |aj, i, - . . vy)

A
- (Hag) 0),
=1

Where a' is a second quantized operator satisfying

abi0) = lop)  aplog) = (a})' o) = 3pel0)

{amajq} = Opg {@,8q} = {a£7a<T:|} =0
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Manybody wavefunction

In the x-representation the Slater-determinant is written

16, = L S0P T] i ()
X|$j=—=) (=1)" in (Xj);
\/anl =1 J

where
ik (X)) = (Xj| i,

are the solutions to a selected single particle problem

he (x) = ek bk (X).
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Manybody wavefunction

In the particle-hole formalism all quantities are expressed in
relation to the reference state

|Po) = |az...ap), oa1,...,aa < oF

The indices are partitioned according to their relation to the
Fermi level

ij,...<af a,b,...>af p,q,...:any,
and the second quantized operators now satisfy
{ai,ajT} = Gj {aa,az,} = Oab
3 Po) = [&3) al|®o) = [&7)
al|dg) = 0 aa|®o) =0
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Manybody wavefunction

For use with Wicks theorem, we define the contractions
between operators in the particle-hole formalism

I ] i
apag = (Polapaq|Po) = dpgei

e i
aqap = (Polagap|Po) = dpgea
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Manybody wavefunction

The particle-hole expansion of a manybody wavefunction is a
linear combination of all possible excitations of the reference

wavefuncton.
°
° ) °
ee00 e 0 ) oo 00}0 -+ eo ..} """" o +++
o o0 %0 o ® o ® . o ® o )
o o e o o o
....:o o. ....So o. .:‘20 o.
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Manybody wavefunction

The manybody wavefunction can be expanded in a linear
combination of particle-hole excitations, which is complete in
agiven basis set

1
=200 +3 X100+ + T 3 19
ia

ijab
a1 aA

= Z clala;| o) + Zc balalaiai|®o) + ... +
uab

Z o aAaal .ah,a;, ... a|do)

al aA

A'2
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Manybody Hamiltonian

A general Hamiltonian contains up to A-body interactions
N A A A
Aa=Y (ti + Gi) + 3 Gt > G,
i=1 i<j=1 i1 <--<ipa=1

A
= Tiin +U + ) Vi,
n=2

where fkin is the kinetic energy operator, Uisa generic
onebody potential and Vj, is an n-body potential.
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Manybody Hamiltonian

In second quantized form, a general n-body operator is written

n|)2 > o1 anValyr. . m)al, . al ay, . ay,
«g...0n
Y1---n

where the matrix elements («; . .. an\\7nm ...7n) are fully
anti-symmetric with respect to the interchange of indices and
the sum over «; and ~; runs over all possible single particle
states.
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Manybody Hamiltonian

We will truncate the Hamiltonian at the n = 3 level at the most
and skip the onebody potential, so the Hamiltonian will be
written

PN - 1 N
H =Y (pltla)abag + 7 d_(palvlrs)afajasa:
pg pars

1 -
% > (par|vs[stu)ajalala,aras
parstu
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Manybody Hamiltonian

We define the normal ordered operator

{aaab : ..alai,} = (-1)Palal ... a.ap
All creation operators to the left and all annihilation operators to
the right times a factor determined by how many operators
have been switched.

This object has the highly desired property that the expectation
value is always zero

(®o| {aaab e aiaij} |®g) =0
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

Tin = > _(p[ta)a}aq

o
ajaq = {ajaq} + {aTaq}
= {ajaq} + dpqe
U= %mmmaéaq
- Z (pltla) {afaq } + dpqei Z<p|?|q>
- %qj pltla) {abaq | + 3200
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

N L et af af
Hy = 2 %(pqw\r@apaqasar

Eigfiafisfir = {:Eigfiaéiséir }
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

N1 S ireval Al
Ha = 2 %ﬁ(pqw“aapaqasar

Eigéiafisfir = {:Eigéiafisfir }
7] Sronsil U Aoy
+ J apagasar ¢ + § apagasar ¢ + § apagasar

i
+ < apajasar
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

1, -1 sirsvatal
HZ = Z %ﬁ(pq|V|rS>apaqasar

Eigéiaéiséir = {:Eigéiaiisiir }
7] Sronsil U Aoy
+ J apagasar ¢ + § apagasar ¢ + § apagasar

EP 117 il )
+ ¢ @pagdsar ¢ + { @pagasar ¢ + § Apdgasar
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

1, -1 sirsvatal
HZ = Z %ﬁ(pq|V|rS>apaqasar

Eigéiaéiséir = {:Eigéiaiisiir }
17 t Lo
+ < apagasar ¢ + | Apagasdr ¢ + | Apagasar
EP 117 il )
+ < 8pagasdr ¢ + 4 Apag@sar ¢ + | Apdgasay

= {:Eigéiaiisiir }
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

1, -1 sirsvatal
HZ = Z %ﬁ(pq|V|rS>apaqasar

+ {aTaT'_'a a } + {aTaTa a } + {aTaTa a }
pdgasar pdgasar pdgasar
EP 117 il )

+ajajasa; ¢ + < ajahasar ¢ + 4 ahalasar

+ dgsei {agar} — grei {agas} — Opsei {aaar}

+ 5pr€i {az‘as}
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

N1 S ireval Al
Ha = 2 %ﬁ(pq|v|rs>apaqasar

Eigéiafisfir = {:Eigéiafisfir }
+ {aTaT'_'a a } + {aTaTa a } + {aTaTa a }
pdgasar pdgasar pdgasar
EP 117 il )
+ajajasa; ¢ + < ajahasar ¢ + 4 ahalasar
= {:Eigéiaiisiir }
+ dgsei {agar} — grei {agas} — Opsei {aaar}

aF 5pr€i {aaas} aF 5pr€i5qsei = 5ps€i5qrei
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

Sl X
Az = 7> (palVirs)ajajasa;
pars
1 . 1 -
=2 > _(palvlrs) {agaaasar} + 7D (6q5€i (pqlV|rs) {agar}
pars pars

— Garci (palV1rs) { abas | — dpsci(pal?rs) {afar |
+ dprei (PA|V|rs) {aaas} + dpreidgsei — 5psei5qrei)
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

= 2> (palolrs) {abajacar }

pgrs

+ 2 3 (wilo1ai) — (ilglia) — (pl9li) + (p1viia)) {afeq

pai

4o Z(IJ\VIIJ (if91ii))
:—Z pq|v|rs{ aqasar} Z(pllvlql{ } 2z:'J|V|'J

pars pqi
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Manybody Hamiltonian

Derivation of the normal ordered Hamiltonian

~ 1 -

Gy = = E (par|vs|stu) {az,agaiauatas}
par
stu

~ 2 Z ( pg|V]rs) +Z ipq|Vslirs) ) {apaaasar}

pars

Fn=)_ <<p?q> +>_(pilV]ai) + 5 - Z<'JPV3”q>> {aTaq}

pq ij

Eo = () + 5 Y_GiI91i) + £ Sk vafik)
i ij ijk

H =Gy + Vn + Fn + Eo (14.0.153)
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Coupled Cluster summary

The wavefunction is given by
= 1

Z mfn) |¢0>)

V) = [Wee) = el |[dg) = <
n=1

e T is the cluster operator defined as

I . .aLnain R T T

1 2
= a;a...an o f
Ty = o E tiliz...in Ay, Ay, -
i15i2,-+-In
ap,az;,...an
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Coupled Cluster summary cont.

The energy is given by

Ecc = (®o||Po),

where is a similarity transformed Hamiltonian
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Coupled Cluster summary cont.

The coupled cluster energy is a function of the unknown cluster
amplitudes t7+°%,-*", given by the solutions to the amplitude
equations

0 = (d213 D).

.. Jin
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Coupled Cluster summary cont.

is expanded using the .

and simplified using the connected cluster theorem

s () + (T

c

1/~ ~
oot = (ANTT) 4t
n! c
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CCSD with twobody Hamiltonian

Truncating the cluster operator T atthe n = 2 level, defines
CCSD approximation to the Coupled Cluster wavefunction. The
coupled cluster wavefunction is now given by

[Wee) = e 72| dg)

where
T =) tPala
ia

P I
To=7 ijza;ti? ahalaja.
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CCSD with twobody Hamiltonian cont.

Normal ordered Hamiltonian

H=>1 {a},aq} 1 % > (pallrs) {aﬁ,aaasar}
Pq

pars
+Eo

:I/:\N—I-VN—FEO:'/"\N-FEQ
where

f§ = (pltla) + > (pilv]ai)

(pqllrs) = (pqv]rs)

Eo = DGR + 5 D ilvi)

i ij
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
» All T elements must have atleast one contraction with ﬁN.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
» All T elements must have atleast one contraction with ﬁN.

» No contractions between T elements are allowed.
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Diagram equations - Derivation

Contract Hy with T in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

» Contract one ﬁN element with 0,1 or multiple T elements.
» All T elements must have atleast one contraction with ﬁN.

» No contractions between T elements are allowed.

» Asingle T element can contract with a single element of
Hy in different ways.
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Diagram elements - Directed lines

% #

Figure: Particle line Figure: Hole line

» Represents a contraction between second quantized
operators.

» External lines are connected to one operator vertex and
infinity.

» Internal lines are connected to operator vertices in both
ends.
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Diagram elements - Onebody Hamiltonian

Level: -1 Level: +1
Level: O Level: O

» Horisontal dashed line segment with one vertex.

» Excitation level identify the number of particle/hole pairs
created by the operator.

325/433



Diagram elements - Twobody Hamiltonian

Level: -2

Level: O

>\/

Level: +1

o

Level: O

>\/

Level: +1

o

Level: O

Level: +2
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Diagram elements - Onebody cluster operator

W

Level: +1

» Horisontal line segment with one vertex.
» Excitation level of +1.
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Diagram elements - Twobody cluster operator

WY

Level: +2

» Horisontal line segment with two vertices.
» Excitation level of +2.
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CCSD energy equation - Derivation

Eccsp = (Pol||Po)

» No external lines.

» Final excitation level: O

Elements: ﬁN Elements: T
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CCSD energy equation
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Diagram rules

» Label all lines.
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Diagram rules

» Label all lines.
» Sum over all internal indices.
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

333/433



Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)



Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)

» Calculate the phase: (—1)h0|e|ines+loop5



Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(r31u:irr10ut)

» Calculate the phase: (_1)ho|e|ines+|oops

» Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.



CCSD energy equation

i 1. 1 .
Eccsp = fat? + Z<“||ab>ti?b + §<I1||ab>ti""tjb

Note the implicit sum over repeated indices.
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CCSD 'IA'l amplitude equation - Derivation

0 = (d}[|do)
» One pair of particle/hole \/
external lines.
» Final excitation level: +1
Elements: ﬁN Elements: T
—————— X
s e N \/
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CCSD 'IA'l amplitude equation

eeeeee A g
VARV YW

Y

M [scale=0.4]graphics/ccsdpbarg4n
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Diagram rules

» Label all lines.
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Diagram rules

» Label all lines.
» Sum over all internal indices.

341/433



Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)



Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(rJ]u:irr10ut)

» Calculate the phase: (—1)h0|e|ines+loop5
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f2", (lout, rout]|lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (to, t ||(r31u:irr10ut)

» Calculate the phase: (_1)ho|e|ines+|oops

» Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.
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CCSD 'IA'l amplitude equation

e "im m

: 1
0 =2 + 37 — {3 + (mal|ei)ty, + fa"t2° + E(am\|ef>t-ef
1 . :

— 5 (mnllei)tnn — fe't°tn + (am|lef)tetf, — (mnl[ei)t5t]
+ (mn|lef)tStf — 3<mn|\ef>t.etaf — 3<mn|\ef>tatef.
mni :Z 1 “mn :Z n™m

— (mn||ef)tetat!
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CCSD 'IA'Z amplitude equation - Derivation

0 = (6§°(|o)

» Two pairs of particle/hole
external lines. \/ \/

» Final excitation level: +2

Elements: ﬁN Elements: T
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CCSD 'fz amplitude equation

WAV IENYANY
O AV AV N AV VRV,
WAV ISV Y VAWV AW,




Diagram rules

» Label all lines.
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Diagram rules

» Label all lines.
» Sum over all internal indices.
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f3", (lout, rout||lin, rin))
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f3", (lout, rout||lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f3", (lout, rout||lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)

» Calculate the phase: (_1)ho|e|ines+|oops



Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f3", (lout, rout||lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)

» Calculate the phase: (_1)ho|e|ines+|oops

» Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.
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Diagram rules

» Label all lines.
» Sum over all internal indices.

» Extract matrix elements. (f3", (lout, rout||lin, rin))

» Extract cluster amplitudes with indices in the order left to
right. Incoming lines are subscripts, while outgoing lines

are superscripts. (t2%, t I,?,ufi,zom)

» Calculate the phase: (_1)ho|e|ines+|oops

» Multiply by a factor of % for each equivalent line and each
ecuivalent vertex.

» Antisymmetrize a pair of external particle/hole line that
does not connect to the same operator.
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CCSD 'IA'Z amplitude equation

0 = (ab][ij) + P(ij)(abl |e})t° — P(ab)(aml|ij)ty + P(ab)fetf® — P (i)™ 3y
1 1 " " .
+ E(abHefﬁff + E(mnlllm%% + P(ij)P (ab)(mb|ej)t57
1. 1 " . :
5F’('J)(élbl|'3f>tietjf + EP(ab)(mnlllDt%tﬁ' — P(ij)P (ab)(mb][ej)t*ts,

+

+

1 1. 1
2 (MnleNtEER + ZP ()P (ab)(mn|leh)tirt — P (ab)(mn|lef)tietry,

= 1P(ij)<mnuef>tef.tab — P(ij i"t°t2 — P(ab)flt?ety,

2 mi nj i ‘'mj

P(ij)P(ab)(am||ef)tetP — %P(ab)(am||ef>t§ftr?1 + P(ab)(bm|[ef)t2°tf,

i ‘mj

+

P(ij)P (ab)(mn||ej 3ty + EP(IJ)<mnHeJ>tiet§% — P(ij)(mn][ei)t5 63

1. 1_ . .
- EP(IJ)P(ab)<am||ef>tietjftrt7)1 + EP('J)P(amen\\el>tiet%t.?

1. ;
+ P (mnl[ef) At — P(i)P(ab)(mn|leh)te e
o %P(ab)(mn\\ef)t%tifft,ﬁ’ — P(ij)(mn|[ef)t3t/t3° — P(ab)(mn||ef 2 tht}

+

%P(ij)P(ab)(mn||ef>tiet;tjft§
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The expansion

Ecc:<W0|(ﬁN+[':'NvﬂJF_HHN’T} T}+%{HHN T} T} T}
2 [[[[Aw 1] 1] 5] 8] + 4+ ) wo)
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The CCSD energy equation revisited

The expanded CC energy equation involves an infinite sum
over nested commutators

Foc = (ol (P + [ 7]+ [ [P, ] 7]
5 ([ 7],
o (A 1].8] 5] 1] + ) v,

but fortunately we can show that it truncates naturally,
depending on the Hamiltonian.

The first term is zero by construction.
(Wo[Hn[Wo) =0
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The CCSD energy equation revisited.

The second term can be split up into different pieces

(Wol [Fin, T | 1wo) = (ol ([F, Ta] + [Fn. Fa] + [V, Ta] + [V, T2 ) 1wa)

Since we need the explicit expressions for the commutators both in
the next term and in the amplitude equations, we calculate them
separately.
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {af)aq}>

pgia

=Y b ({a},aq} {allai} — {agai} {aEaQ})

pgia
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

=Y b ({a},aq} {aLai} — {aLai} {aEaQ})

pgia

{agai} {af)aq} = {agaiagaq}
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

=Y b ({a},aq} {aLai} — {aLai} {aEaQ})

pgia

{agai} {af)aq} = {agaiagaq} = {agaqagai}
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

= 218" ({ahaa) {ala} — {alar} {afaa})

pgia

{agai} {af)aq} = {agaiagaq} = {agaqagai}
{ag,aq} {agai} = {a},aqagai}
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

DQIa

=5 e ({a},aq} {a;ai} - {a;ai} {a},aq})

DQIa

{ }{a*aq} {aaaaTaq} {aTaqaga,}
{abaq} {ala } = {afaqalai}

—
*‘ {: Téiqfigfi|}> %‘ {i Téiqfigfﬂ:}
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

= 218" ({ahaa) {ala} — {alar} {afaa})

pgia

{agai} {af)aq} = agaiagaq} = {agaqagai}
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The expansion - [IfN,T'l]

[IEN,'IA]} => (f(f {ag,aq} t2 {agai} — 2 {a;ai}fcﬁ’ {agaq}>

pgia

=580 ({abaa) {aka} - {alar} {abea})

{agai} {af)aq} = agaiaf)aq} = {af)aqagai}

oata ) [l
apaqazd; ¢ + § Apaqasd;
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The expansion - [IfN,T'l]

Wicks theorem gives us

{agaq} {agai} — {allai} {ag,aq} = ga {agai} + Opi {aqag} + dgadpi-

Inserted into the original expression, we arrive at the explicit
value of the commutator

[ﬁN’-IA—l] - Zfaptia {a;r)ai} + Zf(;tia {aqa;} + Zfailtia
ai

pai gai
= (FuTh) -
c

The subscript means that the product only includes terms
where the operators are connected by atleast one shared index.
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The expansion - [IfN,T'Z]

ot - [ S s S Tk feenn)

=33 [{ebe} {aloloal}]
- %Zf(fti?b ({agaq} {a;r\az,ajai} - {a;az)ajai} {ag,aq})
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The expansion - [IfN,'IA'z]

{a;af)a,-ai} {af)aq} = {alagajaiag,aq}
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The expansion - [IfN,T'Z]

{a;af)a,-ai} {af)aq}

{alag aja;aag }

_ Jal Taf
= {apaqaaabaj ai}

370/433



The expansion - [IfN,T'Z]

{a;a;a,-ai} {agaq}

{agagaj aiahag }
= {a},aqagalaj a }

{agaq} {a;aga,-ai} = {agaqa;agaj ai}
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The expansion - [IfN,T'Z]

{a;aga,-a.} {apaq}
{a*a }{a a aa}
pag [ | 3adpd

alajajaialag }

i |

T Tt T i
apaqaaaba,a.} + { ajagajajaja; o + apaqaaaba,-aiJ

{
{a a aaaba,a,}
{

t b 1yt tD ot
+ { ajagajajaa; o + | apaqasa;a;a;
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The expansion - [IfN,T'Z]

{agaga,-a.} {apaq}
{aTa }{a a aa}
pag [ | 3adpd

alajajaialag }

{a a aaaba,a.}
|—|

i |

{apaqaaaba,a.} + {apaqaaaba,a.} + {alpaqaaaba,a.J

t b 1yt
+ < ajagaralaja ¢ + apaqaaaba,a. aqaaaba,‘

i1 1yt s
+ < ajagatalajai p + apaqaaaba,a. + < alajatala
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The expansion - [IfN,T'Z]

{agaga,-a.} {apaq}

{

T
apag

} falalaa)

alajajaialag }

i |

T Tt T i
apaqaaaba,a.} + { ajagajajaja; o + apaqaaaba,-aiJ

{a
{a a aaaba,a,}
{

t b 1yt t b ot il 1y
+ < ajagaralaja ¢ + 4 ahagasalajai ¢ + < ajagajialay

i1 1yt i bt th ot
+ < ajagatalajai ¢ + < ajagalalaja o + 4 apagalala;

= {agaqa;agaj ai} — 0y {aqagaba.} + & {aqa;aga,}

+ 8qa {agagajai} — b {agaga,- ai} — 0pidqa {agai}

+ 8pidga {aba,} + 85i0gb {aga.} — 8pidgb {agaj}
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The expansion - [IfN : T’z]
Wicks theorem gives us
({a*aq} {agagaja-} - {agaga,a } {a*aq})
— 8y {aqagag } + 8 {aqaaaba,} - 5qa{ halaa }
— dgb {agalaj a.} 85 0qa {aba.} + 8pidga {aba,} + 0pjOap {a;a.}

= 5pi 5qb {agaj}
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The expansion - [IfN,T'Z]

Wicks theorem gives us

({a*aq} {agagaja-} - {agaga,a } {a*aq})
— 0 {aqagagJ } + 8 {aqaaaba,} - 5qa{ halaa }
— Ogp {agalaj a.} 85 0qa {aba.} + 8pidga {aba,} + 85 Ogb {a;a.}
— Gpi g {agaj}

Inserted into the original expression, we arrive at

[,EN,fz] — prta ( Spj {aqaaaba.} + dpi {aqaiala;}

abj
+ dqa {agaga, } dqb {agaga, } 8pi0qa {aga }

+ 8pidga {aba,} + 8pjdqo {aga.} Spidgb {aga,- })
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The expansion - [IfN,T'Z]

After renaming indices and changing the order of operators, we
arrive at the explicit expression

[IEN,'FZ] =3 Zf £20 {aqaaa a,} + % > PP {az,agajai}

gijab pijab
i+ab
+> il {afa}
ijab
= (FuT2) -
Cc
The subscript implies that only the connected terms from the
product contribute.
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The expansion - HEN’ﬂ] ,ﬂ]

{IEN,'IA]} prta{apa.} tha{aqaa} tha

pai gai
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The expansion - HﬁN,ﬂ] ,ﬂ]

o] = e e - St e

pai qai

HFN Tl} Tl} = {prta {ap } Zf ta{ } ;f;tia,jzbtjb {agaj}

pai qai
= {Z fot? {al];ai} + Zfétia {aqa;} ’thb {agaj}
pai

= > Rt Hapa,} {aba,H X:fqt's‘tb Haqaa} {aga,-H

pabij

379/433



The expansion - HﬁN,ﬂ] ,ﬂ]

{ﬁN,Tl} prta{ap} tha{aqaa} tha

pai gai

HFN Tl} Tl} = {prta {ap } Zf ta{ } ;f;tia,jzbtjb {agaj}

— {% ft2 {agai} - Z fot? {aqal} ; thb {aga,-}
_pZab:prtatb Hapa,} {aba,H qutatb Haqaa} {a;ajH

T T _ T T _ T T
{abaj} {apai} = {aba,-apai} = {apaiabaj}
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The expansion - HﬁN,ﬂ] ,ﬂ]

{ﬁN,Tl} prta{ap} tha{aqaa} tha

pai gai

HFN Tl} Tl} = {prta {ap } Zf ta{ } ;f;tia,jzbtjb {agaj}

— {% ft2 {agai} - Z fot? {aqal} ; thb {aga,-}
_pZab:prtatb Hapa,} {aba,H qutatb Haqaa} {a;ajH

T T _ T T _ T T
{abaj} {apai} = {aba,-apai} = {apaiabaj}

{agaj} {aqag} = {agajaqag} = {aqagagaj}
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The expansion - HENJA]] ,ﬂ]

CRARAE (zfpt,a o {mal) - 301 tatbaqb{a;aj}>
pabij qgabij
- _%2 %}: f,;’,tj""t,b {aaa.}
——%f’ totP {aaa.}

- % (I/:\Nflz)c
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The CCSD energy equation revisited

(®o] [VN,fl} |o) = (Po| H > (pqllrs) {apaqasa,} Zta {aaa.}] |®o)

pars
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The CCSD energy equation revisited

(o] |:\7N7-|21:| |o) = (Po| H > (pqllrs) {apaqasa,} Zta {aaa.}] |®o)

pars

_ %Z(pq||rs>tia<¢o| {alalasa } . {alai}] @)

par
Sla
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The CCSD energy equation revisited

(o] |:\7N7-|21:| |o) = (Po| H > (pqllrs) {apaqasa,} Zta {aaa.}] |®o)

pars

_ %Z(pq||rs>tia<¢o| {alalasa } . {alai}] @)

par
Sla

=0
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The CCSD energy equation revisited

(Po [VNafz} |®o) =

(®o] %Z<pqllr8>{apaqasar} 2>t {alafaai} | o)

pars ijab
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The CCSD energy equation revisited

(Do [VNJA—Z} |®o) =

(®o] %Z(pq||rs>{apagasar} iztﬁ‘b {agagajai} |®o)

pars ijab

16 Z (pallrs)t® (o Hapaqasaf} {a;aga,-aiH |®o)

suab
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The CCSD energy equation revisited

(Do [VNJA—Z} |®o) =

(o [%Z<DQIIrS>{apaqasar} 2yt {aaaba,a.}] |®o)

pars ijab

=15 Z (pall|rs)te® (o Ha*aqasa,} {agaga,-aiH |®o)

suab

[T 111 [Trrr 111
Z (pal|rs)te® (do| (< afala aalalaa b+ alalasa alalaa
16 0 pAgAsArdaddjdi pAqAsdr dad djdi

par
sijab

fata & it tat tat
Apagasaraaapajai o + | apdgasaraaay, a;a; )|¢0>
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The CCSD energy equation revisited

(Do [VNJA—Z} |®o) =

(o [%Z<DQIIrS>{apaqasar} 2yt {aaaba,a.}] |®o)

pars ijab

=15 Z (pall|rs)te® (o Ha*aqasa,} {agaga,-aiH |®o)

suab

[T 111 [Trrr 111
Z (pal|rs)te® (do| (< afala aalalaa b+ alalasa alalaa
16 0 pAgAsArdaddjdi pAqAsdr dad djdi

par
sijab

fata & it tat tat
Apagasaraaapajai o + | apdgasaraaay, a;a; )|¢0>

1 -
= 23 illab)g®

ijab

389/433



The CCSD energy equation revisited

The CCSD energy get two contributions from (ﬁ,ﬁ)
Cc

Ecc « (®o [Fin, T [®0)

- 1.
_ Zf;tia +2 > ijllab)t®
1a

ijab
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The CCSD energy equation revisited

1 -
Ecc < <¢o\§ (HNT2>C |Po)
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The CCSD energy equation revisited
Ecc < <¢o|% (ﬁNT—Z)C |®o)
(@o]3 (nT2)_[00) =

= ZZ pq |[rs)tAtP (o ({apagasa,} {agai} {agaj})c |®o)

pqu ijab
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The CCSD energy equation revisited
Ecc < <¢o|% ('qN1A—2>C |®o)

(@o]3 (nT2)_[00) =

= ZZ (pal|rs)t3tP (do| ({apagasar} {agai} {agaj})c |®o)

pqu ijab

:—ZZ (pal|rs)tit’ (%ol

pars ijab

(LTI ITII—I_#IITI ITiT||—|T ITI
( apalasarabaialaj p + apaqasa,a‘.ﬂa.abaJ + < ajahasa;alaia) a;

nhr 1]
+ {a*agasa,aga. a) aj ) |®o)
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The CCSD energy equation revisited

Ecc < <¢o|% ('qN1A—2>C |®o)
(@o]3 (nT2)_[00) =
= ZZ (pal|rs)t3tP (do| ({apagasar} {agai} {agaj})c |®o)

pqu ijab

——ZZ (palrs)ttP (o

pars ijab
Tlﬁ .11 |TI l_|:T||T| |TiT| 1] ITI
( ajalasa;alaiala ¢ + { alalasaralaialay ¢ + 4 ajalasa,alaiala
I_lﬁl
+{aTagasa,aLa.aba, )|<Do)
L at
=5 Z<U||ab>ti [

ijab
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

395/433



The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
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» Disconnected parts automatically cancel in the
commutator.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.

» Disconnected parts automatically cancel in the
commutator.

» Onebody operators can connect to maximum two cluster
operators.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.

» Disconnected parts automatically cancel in the
commutator.

» Onebody operators can connect to maximum two cluster
operators.

» Twobody operators can connect to maximum four cluster
operators.
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The CCSD energy equation revisited

» No contractions possible between cluster operators.

» Cluster operators need to contract with free indices to the
left.

» Disconnected parts automatically cancel in the
commutator.

» Onebody operators can connect to maximum two cluster
operators.

» Twobody operators can connect to maximum four cluster
operators.

» Different terms in the expansion contributes to different
equations.
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Factoring, motivation
Diagram (2.12)

(mnllef)tj" 5,

N

Diagram (2.26)

1_ .
M = ZPDmnllentEay

Diagram (2.31)

\A/\A/ = %P(ij)P(ab)(mn||ef)tiet,i‘,‘1tjftrﬁ’
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Factoring, motivation
Diagram (2.12)

(mnlef)teT a0

e

i - n4n4
Diagram cost: ngny;

Diagram (2.13) - Factored

1
= Z(mn]lef)ts'h

= 7 (tmnjlefes')
1

_ mnsab
- _Xij trn

4



Factoring, motivation
Diagram (2.26)

Diagram cost: njn
Diagram (2.26) - Factored

1_ .
ZP(|J)<mn||ef>tiet,?f,’1tjf

1.
2P (@)(mn|lef)t*tThe
EP(i')tabt-eXm”

4 ) )tnnl ej

1,

7 P(ij)tan Y™
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Factoring, motivation
Diagram (2.31)

\A/\A/ = %P(ij)P(ab)(mn||ef>tiet§;tjft§

i - n4n4
Diagram cost: ngny;

Diagram (2.31) - Factored

\A/\A/ = %P(ij)P(ab)<mn||ef>tietr?1tjftr?

1
- ZP(ij)F>(ab)tr‘;t,?tiexe“j“‘
— Lp(ij)p(ab)abym
2 (iP(ab)taty Y
1
= ZP(i)P(ab)HZ{™
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Factoring, Classification

A diagram is classified by how many hole and particle lines
between a T; operator and the interaction (T;(p"Ph™)).

Diagram (2.12) Classification

= —(mn|[ef)ts"t20

-bIH

This diagram is classified as T,(p?) x To(h?)
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Factoring, Classification

Diagram (2.26)

1.
M :ZP(|J)(mn||ef>tiet,%?1tjf

This diagram is classified as To(h?) x T1(p) x T1(p)
Diagram (2.31)

\A/\A/ = %P(” )P (ab)<mn| |ef>tietr?\tjftrt1)

This diagram is classified as T1(p) x T1(p) x T1(h) x T1(h)
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Factoring, Classification

Cost of making intermediates

Object CPU cost | Memory cost
To(h) nany nzg
To(h?) n n, “n3
T2(p) Npn?Z na
T, (ph) NpNh 1
T.(h) Np N, Np
T(ph?) np n,”
T,(p?) n2 np “n?
T1(p) N np "Nh
T,(p%h) Nh n,?
Ta(ph) 1 Ny ng
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Factoring, Classification

Classification of fl diagrams

Object Expression id
To(ph) || 5,11

T1(h) 3,8,10,13, 14
To(ph?) || 7, 12

T1(p) 2,8,9,12,14
To(p%h) || 6, 13

Ti(ph) || 4,9,10,11, 14

408/433



Factoring, Classification

Classification of T’z diagrams

Object Expression id

T, (h) 5, 15, 16, 23, 29

T,(h?) 7,12, 22,26

T2(p) 4,14, 17, 20, 30

T, (ph) 8,13, 13, 18, 21, 27

T1(h) 3,10, 10, 11, 17, 19, 21, 24, 25, 25, 27, 28, 28, 30, 31, 31
To(ph?) || 14

To(p?) 6,12, 19, 28

T1(p) 2,9,9, 11, 16, 18, 22, 24, 24, 25, 26, 26, 27, 29, 31, 31
Tz(pzh) 15

T1(ph) 20, 23, 29, 30
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Factoring, T,(h)

Contribution to the T, amplitude equation from T,(h)

To(h) < —P (i)™ — Zp (i) (mn|ef)telad — p(j)fmeetd

2 mi nj i mj
— P(ij)(mn][ei)t5te> — P(ij )(mn|[ef t5 tt2
= PR [+ (mnllie)ts + 3 (mnljef)te!
L f (fem + <mn||ef>t,2)]
= —P (i)t (H3)"
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Factoring, T»(h?)

Contribution to the T, amplitude equation from T,(h?)

1 . 1 1 . .
To(h?) < S (mnl[ij)tah + 7 (mn[|eN)ts 2 + SP (i) (mnllei) et
P (i) (mn|[ef )t tnt]
. 1
£ | (mnl i) + 5 (mn|lef t5"
. . 1
+P (i) ((mnlfie) + 3 (mnffe)t]) |

1 _
= Etr?l%(Hg)irjnn
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Factored T, amplitude equations

. 1 —
0 =f2 + (mallei)ts, + E(am\|ef>tfr’,§ + t7(12a) — t3(H3)"

1 — —
+ SR AT + G (FL)T

Can be solved by
1. Matrix inversion for each iteration (n3n?)
2. Extracting diagonal elements (n3n?)
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Factored T, amplitude equations

. 1 —
0 =f2 + (mallei)ts, + E(am\|ef>ti$,§ + t°(12a)8 — t3(H3)"

1 —
+ Stea (DR + e (HL)E
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Factored T, amplitude equations

. 1 —

0 =f2 + (mallei)ts, + E(am\|ef>tiﬁ§ + t°(12a)8 — t3(H3)"

1 — —
+ SEAANE + (A
=2 + (mallei)ty, + t2(12a)5 + (1 — dea)t (128)3

— — 1 1 —
— t3(H3); — (1 — 0mi)te (H3)™ + E(am\|ef>ti$:, + Etr%?m(H7 i
+ 2 (HL)D
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Factored T, amplitude equations

. 1 —
0 =f2 + (mallei)ts, + E(am\|ef>tiﬁ§ + t°(12a)8 — t3(H3)"

1 — —
+ Stea(ANE + e (AR

= 1 + (mallei)ty, + t7(12a)3 + (1 — dea)t" (122)3

— — 1 1 —
— t3(H3); — (1 — 0mi)te (H3)™ + E(am\|ef>ti‘ﬁ:‘ = i (T

2
+toy (H1)e

= 12+ 42 ( (12203 - (H3)}) + (mal ei)t5

— 1
+ (1 — dea)t?(122)2 — (1 — i A (H3)™ + E(am||ef>ti$,§

—~~

+ Stan(H7)i" + iy (H1)e

N|
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Factored T, amplitude equations

Define o
D = (H3); — (12a)3,

and we get the T, amplitude equations
DAt? = £ + (mallei)ty, + (1 — dea)t(122)3

— 1
— (1 = dmitS(H3)" + E(am\|ef>ti$r‘:

1 — —
+ SteAANE + e (AR
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Factored T, amplitude equations

j
+ P (ab)t2*(H2)2 + P(ij)P (ab)t3(110)T° — P(ab)t3(112a)i™
+P(ij)te (1112)3

.. 1 . = 1 —
0 = (abllij) + E(ab|\ef>tijef — P(ij)te (H3)" + Etr%?](Hg)mn

Can be solved by
1. Matrix inversion for each iteration (ngnf)
2. Extracting diagonal elements (ngn?)
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Factored T, amplitude equations

Similarily we define
DE® = (H3); + (H3)| — (H2)3 - (H2)p
and get the T, amplitude equations
1 - =
D°t5® = (ab|lf) + 3 (abl[ef)tf" — P(i)(1 — djm)tiy (HI)"
1 —
30 (HO)I™ + P(ab)(1 — dpe)t2°(H2)8

T3m
+ P (ijP (ab)tae (1100)5° — P(ab)td (112a)™

+ P(ij)t® (Illa)ej
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
td « 0; ti‘]-"b «~0

E<+ 1;Eqq <0
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Coupled Cluster algorithm

Setup modelspace

Calculate f and v amplitudes
td « 0; ti‘]-"b «~0

E < 1; Eqqg — 0

Erer < 304 (ifEli) + £ X2 G 91i)
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Coupled Cluster algorithm

Setup modelspace

Calculate f and v amplitudes

td « 0; ti‘]-"b «~0

E < 1; Eqqg — 0

Erer S0 (IEli) + 5 7 i V1))
while not converged (E — Eqiq > €)
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Coupled Cluster algorithm

Setup modelspace

Calculate f and v amplitudes

td « 0; ti‘}"b «~0

E < 1; Eqqg — 0

Erer S0 (IEli) + 5 7 i V1))

while not converged (E — Eqiq > €)
Calculate intermediates
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
td « 0; ti‘}"b «~0
E < 1; Eqqg — 0
Erer S0 (IEli) + 5 7 i V1))
while not converged (E — Eqiq > €)
Calculate intermediates
t? < calculated value
tij?‘b + calculated value
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
td « 0; ti‘}"b «~0
E < 1; Eqqg — 0
Erer S0 (IEli) + 5 7 i V1))
while not converged (E — Eqiq > €)
Calculate intermediates
t? < calculated value
tij?‘b + calculated value
Eog < E
E it + (i |[ab)t? + 3 (ij||ab)t3t?
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Coupled Cluster algorithm

Setup modelspace
Calculate f and v amplitudes
td « 0; ti‘}"b «~0
E < 1; Eqqg — 0
Erer S0 (IEli) + 5 7 i V1))
while not converged (E — Eqiq > €)
Calculate intermediates
t? < calculated value
tij?‘b + calculated value
Eog < E
E  fit? + (i |[ab)t? + 3 (ij||ab)t3t?
end while
Ecs < Eret +E
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Coupled Cluster algorithm

Typical convergence of the T, amplitudes
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Topics for Week 48

Density Functional Theory

» Monday:

Repetion from last week

Basics of Density functional theory

Tuesday:

Density functional theory

Wednesday:

Summary of course, syllabus and discussion of exam.

v

v

v

v

v

v
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DFT: Selected literature

> R. van Leeuwen: Density functional approach to the many-body problem: key
concepts and exact functionals, Adv. Quant. Chem. 43, 25 (2003).
(Mathematical foundations of DFT)

> R. M. Dreizler and E. K. U. Gross: Density functional theory: An approach to the
guantum many-body problem. (Introductory book)

» W. Koch and M. C. Holthausen: A chemist's guide to density functional theory.
(Introductory book, less formal than Dreizler/Gross)

» E. H. Lieb: Density functionals for Coulomb systems, Int. J. Quant. Chem. 24,
243-277 (1983). (Mathematical analysis of DFT)
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Density Functional Theory (DFT)

Hohenberg and Kohn proved that the total energy of a system including that of the
many-body effects of electrons (exchange and correlation) in the presence of static
external potential (for example, the atomic nuclei) is a unique functional of the charge
density. The minimum value of the total energy functional is the ground state energy of
the system. The electronic charge density which yields this minimum defines the
ground state energy.

In Hartree-Fock theory one works with large basis sets. This poses a problem for large
systems. An alternative to the HF methods is DFT. DFT takes into account electron
correlations but is less demanding computationally than full scale diagonalization or
Monte Carlo methods.
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Density Functional Theory

The electronic energy E is said to be a functional of the electronic density, E[p], in the
sense that for a given function p(r), there is a single corresponding energy. The
Hohenberg-Kohn theorem confirms that such a functional exists, but does not tell us
the form of the functional. As shown by Kohn and Sham, the exact ground-state energy
E of an N-electron system can be written as

N
el =53 [wrevinein- [ Zpear+s [ A anar el
i=1

with W; the Kohn-Sham (KS) orbitals.
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Density Functional Theory

The ground-state charge density is given by

N

p(r) = > IWi(n)I%,

i=1

where the sum is over the occupied Kohn-Sham orbitals. The last term, Egxc [p], is the
exchange-correlation energy which in theory takes into account all non-classical
electron-electron interaction. However, we do not know how to obtain this term exactly,
and are forced to approximate it. The KS orbitals are found by solving the Kohn-Sham
equations, which can be found by applying a variational principle to the electronic
energy E[p]. This approach is similar to the one used for obtaining the HF equation.
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Density Functional Theory

The KS equations reads

1 4 r
{—ivi -—+ / Mdrz +VEXC(r1)} Vi(r1) = Vi(ra)
f M2
where ¢; are the KS orbital energies, and where the exchange-correlation potential is
given by
oE )
Vexcle] = E;id]
P
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Density Functional Theory

The KS equations are solved in a self-consistent fashion. A variety of basis set
functions can be used, and the experience gained in HF calculations are often useful.
The computational time needed for a DFT calculation formally scales as the third
power of the number of basis functions.

The main source of error in DFT usually arises from the approximate nature of Egxc. In
the local density approximation (LDA) it is approximated as

Eexc = /P(f)ﬁExc[P(f)]dﬂ

where egxc[p(r)] is the exchange-correlation energy per electron in a homogeneous
electron gas of constant density. The LDA approach is clearly an approximation as the

charge is not continuously distributed.
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