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Topics for Week 34

Introduction, systems of identical particles and physical
systems

◮ Monday:
◮ Presentation of topics to be covered and introduction to

Many-Body physics (Lecture notes, Shavitt and Bartlett
chapter 1, Raimes chapter 1 and Gross, Runge and
Heinonen (GRH) chapter 1).

◮ Wednesday:
◮ Discussion of wave functions for fermions and bosons.
◮ Calculations of expectation values and start defining

second quantization
◮ No exercises this week.
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Topics for Week 35

Introduction, systems of identical particles and physical
systems

◮ Monday:
◮ Second quantization and representation of operators
◮ Wednesday:
◮ Second quantization and representation of operators
◮ Thursday: Exercises 1 and 2
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Lectures and exercise sessions

and syllabus

◮ Lectures: Monday (8.15-10.00, room LilleFys) and
Wednesday (14.15-16.00, room LilleFys)

◮ Detailed lecture notes, all exercises presented and projects
can be found at the homepage of the course.

◮ Exercises: 8.15-10 Thursday, room FØ364
◮ Weekly plans and all other information are on the official

webpage.
◮ Syllabus: Lecture notes, exercises and projects. Shavitt

and Bartlett as main text, chapter 1-7 and 9-10. Gross,
Runge and Heinonen chapters 1-10 and 14-27or Raimes
(chapter 1-3, and 5-11) are also good alternatives.
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Quantum Many-particle Methods

1. Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

2. Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

3. Perturbative many-body methods

4. Density functional theory/Mean-field theory and Hartree-Fock theory

5. Monte-Carlo methods (FYS4411)

6. Green’s function theories

7. Density functional theories

The physics of the system hints at which many-body methods to use.
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Plan for the semester

Projects, deadlines and oral exam

1. Midterm project, counts 30%: hand out October 8, handin
October 15 (12pm)

2. Final written exam Tuesday December 11
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Selected Texts and Many-body theory

Blaizot and Ripka, Quantum Theory of Finite systems, MIT press 1986

Negele and Orland, Quantum Many-Particle Systems, Addison-Wesley, 1987.

Fetter and Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill,
1971.

Helgaker, Jørgensen and Olsen, Molecular Electronic Structure Theory, Wiley,
2001.

Mattuck, Guide to Feynman Diagrams in the Many-Body Problem , Dover, 1971.

Dickhoff and Van Neck, Many-Body Theory Exposed, World Scientific, 2006.
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Definitions

An operator is defined as Ô throughout. Unless otherwise
specified the number of particles is always N and d is the
dimension of the system. In nuclear physics we normally define
the total number of particles to be A = N + Z , where N is total
number of neutrons and Z the total number of protons. In case
of other baryons such isobars ∆ or various hyperons such as Λ
or Σ, one needs to add their definitions. Hereafter, N is
reserved for the total number of particles, unless otherwise
specificied.
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Definitions

The quantum numbers of a single-particle state in coordinate
space are defined by the variable x = (r, σ), where r ∈ R

dwith
d = 1,2,3 represents the spatial coordinates and σ is the
eigenspin of the particle. For fermions with eigenspin 1/2 this
means that

x ∈ R
d ⊕ (

1
2
),

and the integral
∫

dx =
∑

σ

∫
ddr =

∑

σ

∫
dr,

and ∫
dNx =

∫
dx1

∫
dx2 . . .

∫
dxN .
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Definitions

The quantum mechanical wave function of a given state with
quantum numbers λ (encompassing all quantum numbers
needed to specify the system), ignoring time, is

Ψλ = Ψλ(x1, x2, . . . , xN),

with xi = (ri , σi) and the projection of σi takes the values
{−1/2,+1/2} for particles with spin 1/2. We will hereafter
always refer to Ψλ as the exact wave function, and if the ground
state is not degenerate we label it as

Ψ0 = Ψ0(x1, x2, . . . , xN).
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Definitions

Since the solution Ψλ seldomly can be found in closed form,
approximations are sought. In this text we define an
approximative wave function or an ansatz to the exact wave
function as

Φλ = Φλ(x1, x2, . . . , xN),

with
Φ0 = Φ0(x1, x2, . . . , xN),

being the ansatz to the ground state.
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Definitions

The wave function Ψλ is sought in the Hilbert space of either
symmetric or anti-symmetric N-body functions, namely

Ψλ ∈ HN := H1 ⊕H1 ⊕ · · · ⊕ H1,

where the single-particle Hilbert space H1 is the space of
square integrable functions over ∈ R

d ⊕ (σ) resulting in

H1 := L2(Rd ⊕ (σ)).
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Definitions
Our Hamiltonian is invariant under the permutation
(interchange) of two particles. Since we deal with fermions
however, the total wave function is antisymmetric. Let P̂ be an
operator which interchanges two particles. Due to the
symmetries we have ascribed to our Hamiltonian, this operator
commutes with the total Hamiltonian,

[Ĥ, P̂] = 0,

meaning that Ψλ(x1, x2, . . . , xN) is an eigenfunction of P̂ as well,
that is

P̂ijΨλ(x1, x2, . . . , xi , . . . , xj , . . . , xN) = βΨλ(x1, x2, . . . , xj , . . . , xi , . . . , xN),

where β is the eigenvalue of P̂. We have introduced the suffix ij
in order to indicate that we permute particles i and j . The Pauli
principle tells us that the total wave function for a system of
fermions has to be antisymmetric, resulting in the eigenvalue
β = −1.
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Definitions and notations

The Schrödinger equation reads

Ĥ(x1, x2, . . . , xN)Ψλ(x1, x2, . . . , xN) = EλΨλ(x1, x2, . . . , xN), (2.0.1)

where the vector xi represents the coordinates (spatial and spin) of particle i , λ stands

for all the quantum numbers needed to classify a given N-particle state and Ψλ is the

pertaining eigenfunction. Throughout this course, Ψ refers to the exact eigenfunction,

unless otherwise stated.
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Definitions and notations

We write the Hamilton operator, or Hamiltonian, in a generic way

Ĥ = T̂ + V̂

where T̂ represents the kinetic energy of the system

T̂ =
N∑

i=1

p2
i

2mi
=

N∑

i=1

(
− ~

2

2mi
∇i

2
)

=
N∑

i=1

t(xi )

while the operator V̂ for the potential energy is given by

V̂ =
N∑

i=1

ûext(xi ) +
N∑

ji=1

v(xi , xj) +
N∑

ijk=1

v(xi , xj , xk ) + . . . (2.0.2)

Hereafter we use natural units, viz. ~ = c = e = 1, with e the elementary charge and c

the speed of light. This means that momenta and masses have dimension energy.
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Definitions and notations

If one does quantum chemistry, after having introduced the Born-Oppenheimer
approximation which effectively freezes out the nucleonic degrees of freedom, the
Hamiltonian for N = ne electrons takes the following form

Ĥ =

ne∑

i=1

t(xi )−
ne∑

i=1

k
Z

ri
+

ne∑

i<j

k

rij
,

with k = 1.44 eVnm
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Definitions and notations

We can rewrite this as

Ĥ = Ĥ0 + ĤI =

ne∑

i=1

ĥ0(xi ) +

ne∑

i<j=1

1

rij
, (2.0.3)

where we have defined rij = |ri − rj | and

ĥ0(xi ) = t̂(xi )−
Z

xi
. (2.0.4)

The first term of eq. (2.0.3), H0, is the sum of the N one-body Hamiltonians ĥ0. Each

individual Hamiltonian ĥ0 contains the kinetic energy operator of an electron and its

potential energy due to the attraction of the nucleus. The second term, HI , is the sum

of the ne(ne − 1)/2 two-body interactions between each pair of electrons. Note that the

double sum carries a restriction i < j .
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Definitions and notations

The potential energy term due to the attraction of the nucleus defines the onebody field
ui = uext(xi ) of Eq. (2.0.2). We have moved this term into the Ĥ0 part of the
Hamiltonian, instead of keeping it in V̂ as in Eq. (2.0.2). The reason is that we will
hereafter treat Ĥ0 as our non-interacting Hamiltonian. For a many-body wavefunction
Φλ defined by an appropriate single-particle basis, we may solve exactly the
non-interacting eigenvalue problem

Ĥ0Φλ = wλΦλ,

with wλ being the non-interacting energy. This energy is defined by the sum over

single-particle energies to be defined below. For atoms the single-particle energies

could be the hydrogen-like single-particle energies corrected for the charge Z . For

nuclei and quantum dots, these energies could be given by the harmonic oscillator in

three and two dimensions, respectively.
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Definitions and notations

We will assume that the interacting part of the Hamiltonian can be approximated by a
two-body interaction. This means that our Hamiltonian is written as

Ĥ = Ĥ0 + ĤI =
N∑

i=1

ĥ0(xi ) +
N∑

i<j=1

V (rij ), (2.0.5)

with

H0 =
N∑

i=1

ĥ0(xi ) =
N∑

i=1

(
t̂(xi ) + ûext(xi )

)
. (2.0.6)

The onebody part uext(xi ) is normally approximated by a harmonic oscillator potential

or the Coulomb interaction an electron feels from the nucleus. However, other

potentials are fully possible, such as one derived from the self-consistent solution of

the Hartree-Fock equations.
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Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.
Since we deal with fermions however, the total wave function is antisymmetric. Let P̂
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[Ĥ, P̂] = 0,

meaning that Ψλ(x1, x2, . . . , xN) is an eigenfunction of P̂ as well, that is

P̂ijΨλ(x1, x2, . . . , xi , . . . , xj , . . . , xN) = βΨλ(x1, x2, . . . , xi , . . . , xj , . . . , xN ),

where β is the eigenvalue of P̂. We have introduced the suffix ij in order to indicate that

we permute particles i and j . The Pauli principle tells us that the total wave function for

a system of fermions has to be antisymmetric, resulting in the eigenvalue β = −1.
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Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Φ(x1, x2, . . . , xN , α, β, . . . , σ) =
1√
N!

∣∣∣∣∣∣∣∣∣

ψα(x1) ψα(x2) . . . . . . ψα(xN )
ψβ(x1) ψβ(x2) . . . . . . ψβ(xN)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(x1) ψσ(x2) . . . . . . ψγ(xN)

∣∣∣∣∣∣∣∣∣

,

(2.0.7)

where xi stand for the coordinates and spin values of a particle i and α, β, . . . , γ are

quantum numbers needed to describe remaining quantum numbers.
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Definitions and notations

The single-particle function ψα(xi ) are eigenfunctions of the onebody Hamiltonian hi ,
that is

ĥ0(xi ) = t̂(xi ) + ûext(xi ),

with eigenvalues

ĥ0(xi )ψα(xi ) =
(

t̂(xi ) + ûext(xi )
)
ψα(xi ) = εαψα(xi ).

The energies εα are the so-called non-interacting single-particle energies, or

unperturbed energies. The total energy is in this case the sum over all single-particle

energies, if no two-body or more complicated many-body interactions are present.
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Definitions and notations

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E[Φ] =

∫
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized
∫

Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .
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Definitions and notations

In the Hartree-Fock method the trial function is the Slater determinant of Eq. (2.0.7)
which can be rewritten as

Φ(x1, x2, . . . , xN , α, β, . . . , ν) =
1√
N!

∑

P

(−)P P̂ψα(x1)ψβ(x2) . . . ψν(xN ) =
√

N!AΦH ,

(2.0.8)

where we have introduced the antisymmetrization operator A defined by the

summation over all possible permutations of two particles.
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Definitions and notations

It is defined as

A =
1

N!

∑

p

(−)pP̂, (2.0.9)

with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle
functions

ΦH(x1, x2, . . . , xN , α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xN ).
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Definitions and notations

Both Ĥ0 and ˆ̂
IH are invariant under all possible permutations of any two particles and

hence commute with A
[H0,A] = [HI ,A] = 0. (2.0.10)

Furthermore, A satisfies
A2 = A, (2.0.11)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations

The expectation value of Ĥ0

∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗

HAĤ0AΦHdτ

is readily reduced to ∫
Φ∗Ĥ0Φdτ = N!

∫
Φ∗

H Ĥ0AΦH dτ,

where we have used eqs. (2.0.10) and (2.0.11). The next step is to replace the
antisymmetrization operator by its definition Eq. (2.0.8) and to replace Ĥ0 with the sum
of one-body operators

∫
Φ∗Ĥ0Φdτ =

N∑

i=1

∑

p

(−)p
∫

Φ∗
H ĥ0P̂ΦHdτ.
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Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions ΦH because the individual single-particle wave functions are
orthogonal. We obtain then

∫
Φ∗Ĥ0Φdτ =

N∑

i=1

∫
Φ∗

H ĥ0ΦHdτ.

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

∫
Φ∗Ĥ0Φdτ =

N∑

µ=1

∫
ψ∗
µ(r)ĥ0ψµ(r)dr. (2.0.12)
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Definitions and notations

We introduce the following shorthand for the above integral

〈µ|ĥ0|µ〉 =
∫
ψ∗
µ(r)ĥ0ψµ(r),

and rewrite Eq. (2.0.12) as

∫
Φ∗Ĥ0Φdτ =

N∑

µ=1

〈µ|ĥ0|µ〉. (2.0.13)

29 / 402



Definitions and notations

The expectation value of the two-body part of the Hamiltonian is obtained in a similar
manner. We have ∫

Φ∗ĤIΦdτ = N!

∫
Φ∗

HAĤIAΦHdτ,

which reduces to

∫
Φ∗ĤIΦdτ =

N∑

i≤j=1

∑

p

(−)p
∫

Φ∗
HV (rij )P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.

30 / 402



Definitions and notations

Because of the dependence on the inter-particle distance rij , permutations of any two
particles no longer vanish, and we get

∫
Φ∗ĤIΦdτ =

N∑

i<j=1

∫
Φ∗

HV (rij )(1 − Pij )ΦHdτ.

where Pij is the permutation operator that interchanges particle i and particle j . Again

we use the assumption that the single-particle wave functions are orthogonal.
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Definitions and notations

We obtain

∫
Φ∗ĤIΦdτ =

1

2

N∑

µ=1

N∑

ν=1

[∫
ψ∗
µ(xi )ψ

∗
ν(xj )V (rij )ψµ(xi )ψν(xj )dxi xj

−
∫
ψ∗
µ(xi )ψ

∗
ν(xj )V (rij )ψν(xi )ψµ(xj )dxi xj

]
.

(2.0.14)

The first term is the so-called direct term. It is frequently also called the Hartree term,

while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.
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Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions ψµ(r), defined by the quantum numbers µ and r (recall that r also
includes spin degree) are defined as the overlap

ψα(x) = 〈x|α〉.
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Definitions and notations

We introduce the following shorthands for the above two integrals

〈µν|V |µν〉 =
∫
ψ∗
µ(xi )ψ

∗
ν(xj )V (rij )ψµ(xi )ψν(xj )dxi xj ,

and

〈µν|V |νµ〉 =
∫
ψ∗
µ(xi )ψ

∗
ν(xj )V (rij )ψν(xi )ψµ(xj )dxi xj .
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Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS.
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Definitions and notations

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS.

With these notations we rewrite Eq. (2.0.14) as

∫
Φ∗ĤIΦdτ =

1

2

N∑

µ=1

N∑

ν=1

〈µν|V |µν〉AS. (2.0.15)
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Definitions and notations

Combining Eqs. (2.0.13) and (6.0.133) we obtain the energy functional

E[Φ] =
N∑

µ=1

〈µ|ĥ0|µ〉+
1

2

N∑

µ=1

N∑

ν=1

〈µν|V |µν〉AS. (2.0.16)

which we will use as our starting point for the Hartree-Fock calculations later in this

course.
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Second quantization

We introduce the time-independent operators a†
α and aα which create and annihilate,

respectively, a particle in the single-particle state ϕα. We define the fermion creation
operator a†

α

a†
α|0〉 ≡ |α〉, (2.0.17)

and
a†
α|α1 . . . αn〉AS ≡ |αα1 . . . αn〉AS (2.0.18)
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Second quantization

In Eq. (2.0.17) the operator a†
α acts on the vacuum state |0〉, which does not contain

any particles. Alternatively, we could define a closed-shell nucleus or atom as our new
vacuum, but then we need to introduce the particle-hole formalism, see the discussion
to come.
In Eq. (2.0.18) a†

α acts on an antisymmetric n-particle state and creates an
antisymmetric (n + 1)-particle state, where the one-body state ϕα is occupied, under
the condition that α 6= α1, α2, . . . , αn. It follows that we can express an antisymmetric
state as the product of the creation operators acting on the vacuum state.

|α1 . . . αn〉AS = a†
α1

a†
α2
. . . a†

αn
|0〉 (2.0.19)
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Second quantization

It is easy to derive the commutation and anticommutation rules for the fermionic
creation operators a†

α. Using the antisymmetry of the states (2.0.19)

|α1 . . . αi . . . αk . . . αn〉AS = −|α1 . . . αk . . . αi . . . αn〉AS (2.0.20)

we obtain
a†
αi

a†
αk

= −a†
αk

a†
αi

(2.0.21)
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Second quantization

Using the Pauli principle
|α1 . . . αi . . . αi . . . αn〉AS = 0 (2.0.22)

it follows that
a†
αi

a†
αi

= 0. (2.0.23)

If we combine Eqs. (2.0.21) and (2.0.23), we obtain the well-known anti-commutation
rule

a†
αa†

β + a†
βa†

α ≡ {a†
α, a

†
β} = 0 (2.0.24)
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Second quantization

The hermitian conjugate of a†
α is

aα = (a†
α)

† (2.0.25)

If we take the hermitian conjugate of Eq. (2.0.24), we arrive at

{aα, aβ} = 0 (2.0.26)
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Second quantization

What is the physical interpretation of the operator aα and what is the effect of aα on a
given state |α1α2 . . . αn〉AS? Consider the following matrix element

〈α1α2 . . . αn|aα|α′
1α

′
2 . . . α

′
m〉 (2.0.27)

where both sides are antisymmetric. We distinguish between two cases

1. α ∈ {αi}. Using the Pauli principle of Eq. (2.0.22) it follows

〈α1α2 . . . αn|aα = 0 (2.0.28)

2. α /∈ {αi}. It follows that an hermitian conjugation

〈α1α2 . . . αn|aα = 〈αα1α2 . . . αn| (2.0.29)
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Second quantization

Eq. (2.0.29) holds for case (1) since the lefthand side is zero due to the Pauli principle.
We write Eq. (2.0.27) as

〈α1α2 . . . αn|aα|α′
1α

′
2 . . . α

′
m〉 = 〈α1α2 . . . αn|αα′

1α
′
2 . . . α

′
m (2.0.30)

Here we must have m = n + 1 if Eq. (2.0.30) has to be trivially different from zero.
Using Eqs. (2.0.28) and (2.0.28) we arrive at

〈α1α2 . . . αn|aα|α′
1α

′
2 . . . α

′
n+1〉 =

{
0 α ∈ {αi} ∨ {ααi} 6= {α′

i }
±1 α /∈ {αi} ∪ {ααi} = {α′

i }

}
(2.0.31)

44 / 402



Second quantization

For the last case, the minus and plus signs apply when the sequence α, α1, α2, . . . , αn
and α′

1, α
′
2, . . . , α

′
n+1 are related to each other via even and odd permutations. If we

assume that α /∈ {αi} we have from Eq. (2.0.31)

〈α1α2 . . . αn|aα|α′
1α

′
2 . . . α

′
n+1〉 = 0 (2.0.32)

when α ∈ {α′
i }. If α /∈ {α′

i }, we obtain

aα |α′
1α

′
2 . . . α

′
n+1〉︸ ︷︷ ︸

6=α

= 0 (2.0.33)

and in particular
aα|0〉 = 0 (2.0.34)
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Second quantization

If {ααi} = {α′
i }, performing the right permutations, the sequence α,α1, α2, . . . , αn is

identical with the sequence α′
1, α

′
2, . . . , α

′
n+1. This results in

〈α1α2 . . . αn|aα|αα1α2 . . . αn〉 = 1 (2.0.35)

and thus
aα|αα1α2 . . . αn〉 = |α1α2 . . . αn〉 (2.0.36)
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Second quantization

The action of the operator aα from the left on a state vector is to to remove one particle
in the state α. If the state vector does not contain the single-particle state α, the
outcome of the operation is zero. The operator aα is normally called for a destruction
or annihilation operator.

The next step is to establish the commutator algebra of a†
α and aβ .
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Second quantization

The action of the anti-commutator {a†
α,aα} on a given n-particle state is

a†
αaα |α1α2 . . . αn〉︸ ︷︷ ︸

6=α

= 0

aαa†
α |α1α2 . . . αn〉︸ ︷︷ ︸

6=α

= aα |αα1α2 . . . αn〉︸ ︷︷ ︸
6=α

= |α1α2 . . . αn〉︸ ︷︷ ︸
6=α

(2.0.37)

if the single-particle state α is not contained in the state.
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Second quantization

If it is present we arrive at

a†
αaα|α1α2 . . . αkααk+1 . . . αn−1〉 = a†

αaα(−1)k |αα1α2 . . . αn−1〉
= (−1)k |αα1α2 . . . αn−1〉 = |α1α2 . . . αkααk+1 . . . αn−1〉

aαa†
α|α1α2 . . . αkααk+1 . . . αn−1〉 = 0 (2.0.38)

From Eqs. (2.0.37) and (2.0.38) we arrive at

{a†
α, aα} = a†

αaα + aαa†
α = 1 (2.0.39)
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Second quantization

The action of a†
α, aβ , with α 6= β on a given state yields three possibilities. The first

case is a state vector which contains both α and β, then either α or β and finally none

of them.
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Second quantization

The first case results in

a†
αaβ |αβα1α2 . . . αn−2〉 = 0

aβa†
α|αβα1α2 . . . αn−2〉 = 0 (2.0.40)

while the second case gives

a†
αaβ |β α1α2 . . . αn−1︸ ︷︷ ︸

6=α

〉 = |αα1α2 . . . αn−1︸ ︷︷ ︸
6=α

〉

aβa†
α|β α1α2 . . . αn−1︸ ︷︷ ︸

6=α

〉 = aβ |αβ βα1α2 . . . αn−1︸ ︷︷ ︸
6=α

〉

= −|αα1α2 . . . αn−1︸ ︷︷ ︸
6=α

〉 (2.0.41)
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Second quantization

Finally if the state vector does not contain α and β

a†
αaβ |α1α2 . . . αn︸ ︷︷ ︸

6=α,β

〉 = 0

aβa†
α|α1α2 . . . αn︸ ︷︷ ︸

6=α,β

〉 = aβ |αα1α2 . . . αn︸ ︷︷ ︸
6=α,β

〉 = 0 (2.0.42)

For all three cases we have

{a†
α, aβ} = a†

αaβ + aβa†
α = 0, α 6= β (2.0.43)
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Second quantization

We can summarize our findings in Eqs. (2.0.39) and (2.0.43) as

{a†
α, aβ} = δαβ (2.0.44)

with δαβ is the Kroenecker δ-symbol.
The properties of the creation and annihilation operators can be summarized as (for
fermions)

a†
α|0〉 ≡ |α〉,

and
a†
α|α1 . . . αn〉AS ≡ |αα1 . . . αn〉AS.

from which follows
|α1 . . . αn〉AS = a†

α1
a†
α2
. . . a†

αn
|0〉.
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Second quantization

The hermitian conjugate has the folowing properties

aα = (a†
α)

†.

Finally we found
aα |α′

1α
′
2 . . . α

′
n+1〉︸ ︷︷ ︸

6=α

= 0, spesielt aα|0〉 = 0,

and
aα|αα1α2 . . . αn〉 = |α1α2 . . . αn〉,

and the corresponding commutator algebra

{a†
α, a

†
β} = {aα, aβ} = 0 {a†

α, aβ} = δαβ .

54 / 402



Operators in second quantization

A very useful operator is the so-called number-operator. Most physics cases we will

study in this text conserve the total number of particles. The number operator is

therefore a useful quantity which allows us to test that our many-body formalism

conserves the number of particles. In for example (d , p) or (p, d) reactions it is

important to be able to describe quantum mechanical states where particles get added

or removed. A creation operator a†
α adds one particle to the single-particle state α of a

give many-body state vector, while an annihilation operator aα removes a particle from

a single-particle state α.
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Operators in second quantization

Let us consider an operator proportional with a†
αaβ and α = β. It acts on an n-particle

state resulting in

a†
αaα|α1α2 . . . αn〉 =






0 α /∈ {αi}

|α1α2 . . . αn〉 α ∈ {αi}
(2.0.45)

Summing over all possible one-particle states we arrive at

(
∑

α

a†
αaα

)

|α1α2 . . . αn〉 = n|α1α2 . . . αn〉 (2.0.46)
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Operators in second quantization

The operator
N̂ =

∑

α

a†
αaα (2.0.47)

is called the number operator since it counts the number of particles in a give state

vector when it acts on the different single-particle states. It acts on one single-particle

state at the time and falls therefore under category one-body operators. Next we look

at another important one-body operator, namely Ĥ0 and study its operator form in the

occupation number representation.
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Operators in second quantization

We want to obtain an expression for a one-body operator which conserves the number
of particles. Here we study the one-body operator for the kinetic energy plus an
eventual external one-body potential. The action of this operator on a particular n-body
state with its pertinent expectation value has already been studied in coordinate space.
In coordinate space the operator reads

Ĥ0 =
∑

i

ĥ0(xi ) (2.0.48)

and the anti-symmetric n-particle Slater determinant is defined as

Φ(x1, x2, . . . , xn, α1, α2, . . . , αn) =
1√
n!

∑

p

(−1)pψα1 (x1)ψα2 (x2) . . . ψαn (xn).

(2.0.49)
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Operators in second quantization

Defining
ĥ0(xi )ψαi (xi ) =

∑

α′

k

ψα′

k
(xi )〈α′

k |ĥ0|αk 〉 (2.0.50)

we can easily evaluate the action of Ĥ0 on each product of one-particle functions in
Slater determinant. From Eqs. (2.0.49) (2.0.50) we obtain the following result without
permuting any particle pair

(
∑

i

ĥ0(xi )

)

ψα1 (x1)ψα2 (x2) . . . ψαn (xn)

=
∑

α′

1

〈α′
1|ĥ0|α1〉ψα′

1
(x1)ψα2 (x2) . . . ψαn (xn)

+
∑

α′

2

〈α′
2|ĥ0|α2〉ψα1 (x1)ψα′

2
(x2) . . . ψαn (xn)

+ . . .

+
∑

α′

n

〈α′
n|ĥ0|αn〉ψα1 (x1)ψα2 (x2) . . . ψα′

n
(xn) (2.0.51)
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Operators in second quantization

If we interchange the positions of particle 1 and 2 we obtain

(
∑

i

ĥ0(xi )

)

ψα1 (x2)ψα1 (x2) . . . ψαn (xn)

=
∑

α′

2

〈α′
2|ĥ0|α2〉ψα1 (x2)ψα′

2
(x1) . . . ψαn (xn)

+
∑

α′

1

〈α′
1|ĥ0|α1〉ψα′

1
(x2)ψα2 (x1) . . . ψαn (xn)

+ . . .

+
∑

α′

n

〈α′
n|ĥ0|αn〉ψα1 (x2)ψα1 (x2) . . . ψα′

n
(xn) (2.0.52)
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Operators in second quantization

We can continue by computing all possible permutations. We rewrite also our Slater
determinant in its second quantized form and skip the dependence on the quantum
numbers xi . Summing up all contributions and taking care of all phases (−1)p we
arrive at

Ĥ0|α1, α2, . . . , αn〉 =
∑

α′

1

〈α′
1|ĥ0|α1〉|α′

1α2 . . . αn〉

+
∑

α′

2

〈α′
2|ĥ0|α2〉|α1α

′
2 . . . αn〉

+ . . .

+
∑

α′

n

〈α′
n|ĥ0|αn〉|α1α2 . . . α

′
n〉 (2.0.53)
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Operators in second quantization

In Eq. (2.0.53) we have expressed the action of the one-body operator of Eq. (2.0.48)
on the n-body state of Eq. (2.0.49) in its second quantized form. This equation can be
further manipulated if we use the properties of the creation and annihilation operator
on each primed quantum number, that is

|α1α2 . . . α
′
k . . . αn〉 = a†

α′

k
aαk |α1α2 . . . αk . . . αn〉 (2.0.54)

Inserting this in the right-hand side of Eq. (2.0.53) results in

Ĥ0|α1α2 . . . αn〉 =
∑

α′

1

〈α′
1|ĥ0|α1〉a†

α′

1
aα1 |α1α2 . . . αn〉

+
∑

α′

2

〈α′
2|ĥ0|α2〉a†

α′

2
aα2 |α1α2 . . . αn〉

+ . . .

+
∑

α′

n

〈α′
n|ĥ0|αn〉a†

α′

n
aαn |α1α2 . . . αn〉

=
∑

α,β

〈α|ĥ0|β〉a†
αaβ |α1α2 . . . αn〉 (2.0.55)
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Operators in second quantization

In the number occupation representation or second quantization we get the following
expression for a one-body operator which conserves the number of particles

Ĥ0 =
∑

αβ

〈α|ĥ0|β〉a†
αaβ (2.0.56)

Obviously, Ĥ0 can be replaced by any other one-body operator which preserved the
number of particles. The stucture of the operator is therefore not limited to say the
kinetic or single-particle energy only.

The opearator Ĥ0 takes a particle from the single-particle state β to the single-particle

state α with a probability for the transition given by the expectation value 〈α|h|β〉.
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Operators in second quantization

It is instructive to verify Eq. (2.0.56) by computing the expectation value of Ĥ0 between
two single-particle states

〈α1|Ĥ0|α2〉 =
∑

αβ

〈α|ĥ0|β〉〈0|aα1 a†
αaβa†

α2
|0〉 (2.0.57)

Using the commutation relations for the creation and annihilation operators we have

aα1 a†
αaβa†

α2
= (δαα1 − a†

αaα1 )(δβα2
− a†

α2
aβ), (2.0.58)

which results in
〈0|aα1 a†

αaβa†
α2

|0〉 = δαα1δβα2
(2.0.59)

and
〈α1|Ĥ0|α2〉 =

∑

αβ

〈α|ĥ0|β〉δαα1δβα2
= 〈α1|ĥ0|α2〉 (2.0.60)

as expected.
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Topics for Week 36

Second quantization

◮ Monday:
◮ Summary from last week
◮ Second quantization and operators, two-body operator
◮ Anti-commutation rules
◮ Wick’s theorem
◮ Wednesday:
◮ Wick’s theorem: proof and examples of use thereof
◮ Exercises 3, 4 and 5 on Wednesday

The material is taken from chapter 3.1-3.6 and 4.1-4.4 of
Shavitt and Bartlett.
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Operators in second quantization

Let us now derive the expression for our two-body interaction part, which also
conserves the number of particles. We can proceed in exactly the same way as for the
one-body operator. In the coordinate representation our two-body interaction part takes
the following expression

ĤI =
∑

i<j

V (xi , xj ) (3.0.61)

where the summation runs over distinct pairs. The term V can be an interaction model

for the nucleon-nucleon interaction or the interaction between two electrons. It can also

include additional two-body interaction terms.
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Operators in second quantization

The action of this operator on a product of two single-particle functions is defined as

V (xi , xj)ψαk (xi )ψαl (xj ) =
∑

α′

kα
′

l

ψ′
αk

(xi )ψ
′
αl
(xj )〈α′

kα
′
l |V |αkαl 〉 (3.0.62)
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Operators in second quantization

We can now let ĤI act on all terms in the linear combination for |α1α2 . . . αn〉. Without
any permutations we have




∑

i<j

V (xi , xj )



ψα1(x1)ψα2 (x2) . . . ψαn (xn)

=
∑

α′

1α
′

2

〈α′
1α

′
2|V |α1α2〉ψ′

α1
(x1)ψ

′
α2

(x2) . . . ψαn (xn)

+ . . .

+
∑

α′

1α
′

n

〈α′
1α

′
n|V |α1αn〉ψ′

α1
(x1)ψα2 (x2) . . . ψ

′
αn

(xn)

+ . . .

+
∑

α′

2α
′

n

〈α′
2α

′
n|V |α2αn〉ψα1 (x1)ψ

′
α2

(x2) . . . ψ
′
αn

(xn)

+ . . . (3.0.63)

where on the rhs we have a term for each distinct pairs.
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Operators in second quantization

For the other terms on the rhs we obtain similar expressions and summing over all
terms we obtain

HI |α1α2 . . . αn〉 =
∑

α′

1,α
′

2

〈α′
1α

′
2|V |α1α2〉|α′

1α
′
2 . . . αn〉

+ . . .

+
∑

α′

1,α
′

n

〈α′
1α

′
n|V |α1αn〉|α′

1α2 . . . α
′
n〉

+ . . .

+
∑

α′

2,α
′

n

〈α′
2α

′
n|V |α2αn〉|α1α

′
2 . . . α

′
n〉

+ . . . (3.0.64)
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Operators in second quantization

We introduce second quantization via the relation

a†
α′

k
a†
α′

l
aαl aαk |α1α2 . . . αk . . . αl . . . αn〉

= (−1)k−1(−1)l−2a†
α′

k
a†
α′

l
aαl aαk |αkαl α1α2 . . . αn︸ ︷︷ ︸

6=αk ,αl

〉

= (−1)k−1(−1)l−2|α′
kα

′
l α1α2 . . . αn︸ ︷︷ ︸

6=α′

k ,α
′

l

〉

= |α1α2 . . . α
′
k . . . α

′
l . . . αn〉 (3.0.65)
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Operators in second quantization

Inserting this in (3.0.64) gives

HI |α1α2 . . . αn〉 =
∑

α′

1,α
′

2

〈α′
1α

′
2|V |α1α2〉a†

α′

1
a†
α′

2
aα2 aα1 |α1α2 . . . αn〉

+ . . .

=
∑

α′

1,α
′

n

〈α′
1α

′
n|V |α1αn〉a†

α′

1
a†
α′

n
aαn aα1 |α1α2 . . . αn〉

+ . . .

=
∑

α′

2,α
′

n

〈α′
2α

′
n|V |α2αn〉a†

α′

2
a†
α′

n
aαn aα2 |α1α2 . . . αn〉

+ . . .

=
′∑

α,β,γ,δ

〈αβ|V |γδ〉a†
αa†

βaδaγ |α1α2 . . . αn〉 (3.0.66)
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Operators in second quantization

Here we let
∑′ indicate that the sums running over α and β run over all single-particle

states, while the summations γ and δ run over all pairs of single-particle states. We
wish to remove this restriction and since

〈αβ|V |γδ〉 = 〈βα|V |δγ〉 (3.0.67)

we get

∑

α,β

〈αβ|V |γδ〉a†
αa†

βaδaγ =
∑

α,β

〈βα|V |δγ〉a†
αa†

βaδaγ (3.0.68)

=
∑

α,β

〈βα|V |δγ〉a†
βa†

αaγaδ (3.0.69)

where we have used the anti-commutation rules.
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Operators in second quantization

Changing the summation indices α and β in (3.0.69) we obtain

∑

α,β

〈αβ|V |γδ〉a†
αa†

βaδaγ =
∑

α,β

〈αβ|V |δγ〉a†
αa†

βaγaδ (3.0.70)

From this it follows that the restriction on the summation over γ and δ can be removed
if we multiply with a factor 1

2 , resulting in

ĤI =
1

2

∑

α,β,γ,δ

〈αβ|V |γδ〉a†
αa†

βaδaγ (3.0.71)

where we sum freely over all single-particle states α, β, γ og δ.
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Operators in second quantization

With this expression we can now verify that the second quantization form of ĤI in
Eq. (3.0.71) results in the same matrix between two anti-symmetrized two-particle
states as its corresponding coordinate space representation. We have

〈α1α2|ĤI |β1β2〉 =
1

2

∑

αβγ,δ

〈αβ|V |γδ〉〈0|aα2 aα1 a†
αa†

βaδaγa†
β1

a†
β2
|0〉. (3.0.72)

74 / 402



Operators in second quantization

Using the commutation relations we get

aα2 aα1 a†
αa†

βaδaγa†
β1

a†
β2

= aα2 aα1 a†
αa†

β(aδδγβ1
a†
β2

− aδa†
β1

aγa†
β2
)

= aα2 aα1 a†
αa†

β(δγβ1
δδβ2

− δγβ1
a†
β2

aδ − aδa†
β1
δγβ2

+ aδa†
β1

a†
β2

aγ)

= aα2 aα1 a†
αa†

β(δγβ1
δδβ2

− δγβ1
a†
β2

aδ

−δδβ1
δγβ2

+ δγβ2
a†
β1

aδ + aδa†
β1

a†
β2

aγ) (3.0.73)
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Operators in second quantization

The vacuum expectation value of this product of operators becomes

〈0|aα2 aα1 a†
αa†

βaδaγa†
β1

a†
β2
|0〉

= (δγβ1
δδβ2

− δδβ1
δγβ2

)〈0|aα2 aα1 a†
αa†

β |0〉
= (δγβ1

δδβ2
− δδβ1

δγβ2
)(δαα1 δβα2

− δβα1
δαα2 ) (3.0.74)
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Operators in second quantization

Insertion of Eq. (3.0.74) in Eq. (3.0.72) results in

〈α1α2|ĤI |β1β2〉 =
1

2

[
〈α1α2|V |β1β2〉 − 〈α1α2|V |β2β1〉

−〈α2α1|V |β1β2〉+ 〈α2α1|V |β2β1〉
]

= 〈α1α2|V |β1β2〉 − 〈α1α2|V |β2β1〉
= 〈α1α2|V |β1β2〉AS. (3.0.75)
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Operators in second quantization

The two-body operator can also be expressed in terms of the anti-symmetrized matrix
elements we discussed previously as

ĤI =
1

2

∑

αβγδ

〈αβ|V |γδ〉a†
αa†

βaδaγ

=
1

4

∑

αβγδ

[〈αβ|V |γδ〉 − 〈αβ|V |δγ〉] a†
αa†

βaδaγ

=
1

4

∑

αβγδ

〈αβ|V |γδ〉ASa†
αa†

βaδaγ (3.0.76)
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Operators in second quantization

The factors in front of the operator, either 1
4 or 1

2 tells whether we use antisymmetrized
matrix elements or not.
We can now express the Hamiltonian operator for a many-fermion system in the
occupation basis representation as

H =
∑

α,β

〈α|t + u|β〉a†
αaβ +

1

4

∑

α,β,γ,δ

〈αβ|V |γδ〉a†
αa†

βaδaγ . (3.0.77)

This is form we will use in the rest of these lectures, assuming that we work with

anti-symmetrized two-body matrix elements.
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Wick’s theorem

Wick’s theorem is based on two fundamental concepts, namely normal ordering and
contraction. The normal-ordered form of ÂB̂..X̂Ŷ, where the individual terms are either
a creation or annihilation operator, is defined as

{
ÂB̂..X̂Ŷ

}
≡ (−1)p [creation operators] · [annihilation operators] . (3.0.78)

The p subscript denotes the number of permutations that is needed to transform the
original string into the normal-ordered form. A contraction between to arbitrary
operators X̂ and Ŷ is defined as

X̂Ŷ ≡ 〈0|X̂Ŷ|0〉. (3.0.79)
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Wick’s theorem

It is also possible to contract operators inside a normal ordered products. We define
the original relative position between two operators in a normal ordered product as p,
the so-called permutation number. This is the number of permutations needed to bring
one of the two operators next to the other one. A contraction between two operators
with p 6= 0 inside a normal ordered is defined as

{
ÂB̂..X̂Ŷ

}
= (−1)p

{
ÂB̂..X̂Ŷ

}
. (3.0.80)

In the general case with m contractions, the procedure is similar, and the prefactor
changes to

(−1)p1+p2+..+pm . (3.0.81)
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Wick’s theorem

Wick’s theorem states that every string of creation and annihilation operators can be
written as a sum of normalordered products with all possible ways of contractions,

ÂB̂ĈD̂..R̂X̂ŶẐ =
{

ÂB̂ĈD̂..R̂X̂ŶẐ
}

(3.0.82)

+
∑

(1)

{
ÂB̂ĈD̂..R̂X̂ŶẐ

}
(3.0.83)

+
∑

(2)

{

ÂB̂ĈD̂..R̂X̂ŶẐ

}

(3.0.84)

+ ... (3.0.85)

+
∑

[

N
2

]

{

ÂB̂ĈD̂.. R̂X̂ŶẐ

}

. (3.0.86)
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Wick’s theorem

The
∑

(m) means the sum over all terms with m contractions, while
[

N
2

]
means the

largest integer that not do not exceeds N
2 where N is the number of creation and

annihilation operators. When N is even,

[
N

2

]
=

N

2
, (3.0.87)

and the last sum in Eq. (3.0.82) is over fully contracted terms. When N is odd,

[
N

2

]
6= N

2
, (3.0.88)

and non of the terms in Eq. (3.0.82) are fully contracted. See later for a proof.
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Wick’s theorem

An important extension of Wick’s theorem allow us to define contractions between
normal-ordered strings of operators. This is the so-called generalized Wick’s theorem,

{
ÂB̂ĈD̂..

}{
R̂X̂ŶẐ..

}
=
{

ÂB̂ĈD̂..R̂X̂ŶẐ
}

(3.0.89)

+
∑

(1)

{
ÂB̂ĈD̂..R̂X̂ŶẐ

}
(3.0.90)

+
∑

(2)

{

ÂB̂ĈD̂..R̂X̂ŶẐ

}

(3.0.91)

+ ... (3.0.92)
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Wick’s theorem

Turning back to the many-body problem, the vacuum expectation value of products of
creation and annihilation operators can be written, according to Wick’s theoren in Eq.
(3.0.82), as a sum over normal ordered products with all possible numbers and
combinations of contractions,

〈0|ÂB̂ĈD̂..R̂X̂ŶẐ|0〉 = 〈0|
{

ÂB̂ĈD̂..R̂X̂ŶẐ
}
|0〉 (3.0.93)

+
∑

(1)

〈0|
{

ÂB̂ĈD̂..R̂X̂ŶẐ
}
|0〉 (3.0.94)

+
∑

(2)

〈0|
{

ÂB̂ĈD̂..R̂X̂ŶẐ

}

|0〉 (3.0.95)

+ ... (3.0.96)

+
∑

[

N
2

]

〈0|
{

ÂB̂ĈD̂.. R̂X̂ŶẐ

}

|0〉. (3.0.97)
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Wick’s theorem

All vacuum expectation values of normal ordered products without fully contracted
terms are zero. Hence, the only contributions to the expectation value are those terms
that is fully contracted,

〈0|ÂB̂ĈD̂..R̂X̂ŶẐ|0〉 =
∑

(all)

〈0|
{

ÂB̂ĈD̂.. R̂X̂ŶẐ

}

|0〉 (3.0.98)

=
∑

(all)

ÂB̂ĈD̂.. R̂X̂ŶẐ. (3.0.99)
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Wick’s theorem

To obtain fully contracted terms, Eq. (3.0.87) must hold. When the number of creation
and annihilation operators is odd, the vacuum expectation value can be set to zero at
once. When the number is even, the expectation value is simply the sum of terms with
all possible combinations of fully contracted terms. Observing that the only
contractions that give nonzero contributions are

aαa†
β = δαβ , (3.0.100)

the terms that contribute are reduced even more.

Wick’s theorem provides us with an algebraic method for easy determine the terms that

contribute to the matrix element. Our next step is the particle-hole formalism, which is

a very useful formalism in many-body systems.
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Topics for Week 37

Second quantization

◮ Monday:
◮ Summary from last week
◮ Wick’s theorem, summary
◮ Particle-hole formalism
◮ Wednesday:
◮ Particle-hole formalism
◮ Diagrammatic representation of operators.
◮ Exercises 6 and 7, recommended.

The material is taken from chapter 3.1-3.6 and 4.1-4.4 of
Shavitt and Bartlett.
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Particle-hole formalism

Second quantization is a useful and elegant formalism for constructing many-body

states and quantum mechanical operators. As we will see later, one can express and

translate many physical processes into simple pictures such as Feynman diagrams.

Expecation values of many-body states are also easily calculated. However, although

the equations are seemingly easy to set up, from a practical point of view, that is the

solution of Schrödinger’s equation, there is no particular gain. The many-body equation

is equally hard to solve, irrespective of representation. The cliche that there is no free

lunch brings us down to earth again. Note however that a transformation to a particular

basis, for cases where the interaction obeys specific symmetries, can ease the solution

of Schrödinger’s equation.
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Particle-hole formalism

But there is at least one important case where second quantization comes to our
rescue. It is namely easy to introduce another reference state than the pure vacuum
|0〉, where all single-particle are active. With many particles present it is often useful to
introduce another reference state than the vacuum state |0〉. We will label this state |c〉
(c for core) and as we will see it can reduce considerably the complexity and thereby
the dimensionality of the many-body problem. It allows us to sum up to infinite order
specific many-body correlations. (add more stuff in the description below)

The particle-hole representation is one of these handy representations.
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Particle-hole formalism

In the original particle representation these states are products of the creation
operators a†

αi
acting on the true vacuum |0〉. Following (2.0.19) we have

|α1α2 . . . αn−1αn〉 = a†
α1

a†
α2
. . . a†

αn−1
a†
αn

|0〉 (4.0.101)

|α1α2 . . . αn−1αnαn+1〉 = a†
α1

a†
α2
. . . a†

αn−1
a†
αn

a†
αn+1

|0〉 (4.0.102)

|α1α2 . . . αn−1〉 = a†
α1

a†
α2
. . . a†

αn−1
|0〉 (4.0.103)
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Particle-hole formalism

If we use Eq. (4.0.101) as our new reference state, we can simplify considerably the
representation of this state

|c〉 ≡ |α1α2 . . . αn−1αn〉 = a†
α1

a†
α2
. . . a†

αn−1
a†
αn

|0〉 (4.0.104)

The new reference states for the n + 1 and n − 1 states can then be written as

|α1α2 . . . αn−1αnαn+1〉 = (−1)na†
αn+1

|c〉 ≡ (−1)n |αn+1〉c (4.0.105)

|α1α2 . . . αn−1〉 = (−1)n−1aαn |c〉 ≡ (−1)n−1|αn−1〉c (4.0.106)
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Particle-hole formalism

The first state has one additional particle with respect to the new vacuum state |c〉 and

is normally referred to as a one-particle state or one particle added to the many-body

reference state. The second state has one particle less than the reference vacuum

state |c〉 and is referred to as a one-hole state.
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Particle-hole formalism

When dealing with a new reference state it is often convenient to introduce new
creation and annihilation operators since we have from Eq. (4.0.106)

aα|c〉 6= 0 (4.0.107)

since α is contained in |c〉, while for the true vacuum we have aα|0〉 = 0 for all α.
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Particle-hole formalism

The new reference state leads to the definition of new creation and annihilation
operators which satisfy the following relations

bα|c〉 = 0 (4.0.108)

{b†
α, b

†
β} = {bα, bβ} = 0

{b†
α, bβ} = δαβ (4.0.109)

We assume also that the new reference state is properly normalized

〈c|c〉 = 1 (4.0.110)
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Particle-hole formalism

The physical interpretation of these new operators is that of so-called quasiparticle

states. This means that a state defined by the addition of one extra particle to a

reference state |c〉 may not necesseraly be interpreted as one particle coupled to a

core.
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Particle-hole formalism

We define now new creation operators that act on a state α creating a new
quasiparticle state

b†
α|c〉 =

{ a†
α|c〉 = |α〉, α > F

aα|c〉 = |α−1〉, α ≤ F
(4.0.111)

where F is the Fermi level representing the last occupied single-particle orbit of the

new reference state |c〉.
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Particle-hole formalism

The annihilation is the hermitian conjugate of the creation operator

bα = (b†
α)

†,

resulting in

b†
α =

{
a†
α α > F

aα α ≤ F
bα =

{ aα α > F

a†
α α ≤ F

(4.0.112)

98 / 402



Particle-hole formalism

With the new creation and annihilation operator we can now construct many-body
quasiparticle states, with one-particle-one-hole states, two-particle-two-hole states etc
in the same fashion as we previously constructed many-particle states. We can write a
general particle-hole state as

|β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh

〉 ≡ b†
β1

b†
β2
. . . b†

βnp︸ ︷︷ ︸
>F

b†
γ1

b†
γ2
. . . b†

γnh︸ ︷︷ ︸
≤F

|c〉 (4.0.113)
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Particle-hole formalism

We can now rewrite our one-body and two-body operators in terms of the new creation
and annihilation operators. The number operator becomes

N̂ =
∑

α

a†
αaα =

∑

α>F

b†
αbα + nc −

∑

α≤F

b†
αbα (4.0.114)

where nc is the number of particle in the new vacuum state |c〉. The action of N̂ on a
many-body state results in

N|β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh

〉 = (np + nc − nh)|β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh

〉
(4.0.115)
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Particle-hole formalism

Here n = np + nc − nh is the total number of particles in the quasi-particle state of
Eq. (4.0.113). Note that N̂ counts the total number of particles present

Nqp =
∑

α

b†
αbα, (4.0.116)

gives us the number of quasi-particles as can be seen by computing

Nqp = |β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh

〉 = (np + nh)|β1β2 . . . βnpγ
−1
1 γ−1

2 . . . γ−1
nh

〉
(4.0.117)

where nqp = np + nh is the total number of quasi-particles.
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Particle-hole formalism

We express the one-body operator Ĥ0 in terms of the quasi-particle creation and
annihilation operators, resulting in

Ĥ0 =
∑

αβ>F

〈α|h|β〉b†
αbβ +

∑

α > F
β ≤ F

[
〈α|h|β〉b†

αb†
β + 〈β|h|α〉bβbα

]

+
∑

α≤F

〈α|h|α〉 −
∑

αβ≤F

〈β|h|α〉b†
αbβ (4.0.118)
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Particle-hole formalism

The first term gives contribution only for particle states, while the last one contributes

only for holestates. The second term can create or destroy a set of quasi-particles and

the third term is the contribution from the vacuum state |c〉. The physical meaning of

these terms will be discussed in the next section, where we attempt at a diagrammatic

representation.
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Particle-hole formalism

Before we continue with the expressions for the two-body operator, we introduce a
nomenclature we will use for the rest of this text. It is inspired by the notation used in
coupled cluster theories. We reserve the labels i , j , k , . . . for hole states and a, b, c, . . .
for states above F , viz. particle states. This means also that we will skip the constraint
≤ F or > F in the summation symbols. Our operator Ĥ0 reads now

Ĥ0 =
∑

ab

〈a|h|b〉b†
abb +

∑

ai

[
〈a|h|i〉b†

ab†
i + 〈i |h|a〉biba

]

+
∑

i

〈i |h|i〉 −
∑

ij

〈j |h|i〉b†
i bj (4.0.119)
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Particle-hole formalism

The two-particle operator in the particle-hole formalism is more complicated since we
have to translate four indices αβγδ to the possible combinations of particle and hole
states. When performing the commutator algebra we can regroup the operator in five
different terms

ĤI = Ĥ(a)
I + Ĥ(b)

I + Ĥ(c)
I + Ĥ(d)

I + Ĥ(e)
I (4.0.120)

Using anti-symmetrized matrix elements, the term Ĥ(a)
I is

Ĥ(a)
I =

1

4

∑

abcd

〈ab|V |cd〉b†
ab†

bbd bc (4.0.121)
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Particle-hole formalism

The next term Ĥ(b)
I reads

Ĥ(b)
I =

1

4

∑

abci

(
〈ab|V |ci〉b†

ab†
bb†

i bc + 〈ai |V |cb〉b†
abi bbbc

)
(4.0.122)

This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state. For Ĥ(c)

I we have

Ĥ(c)
I =

1

4

∑

abij

(
〈ab|V |ij〉b†

ab†
bb†

j b†
i + 〈ij |V |ab〉babbbjbi

)
+

1

2

∑

abij

〈ai |V |bj〉b†
ab†

j bbbi +
1

2

∑

abi

〈ai |V |bi〉b†
abb. (4.0.123)

106 / 402



Particle-hole formalism

The first line stands for the creation of a two-particle-two-hole state, while the second
line represents the creation to two one-particle-one-hole pairs while the last term
represents a contribution to the particle single-particle energy from the hole states, that
is an interaction between the particle states and the hole states within the new vacuum
state. The fourth term reads

Ĥ(d)
I =

1

4

∑

aijk

(
〈ai |V |jk〉b†

ab†
k b†

j bi + 〈ji |V |ak〉b†
k bj biba

)
+

1

4

∑

aij

(
〈ai |V |ji〉b†

ab†
j + 〈ji |V |ai〉 − 〈ji |V |ia〉bjba

)
. (4.0.124)
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Particle-hole formalism

The terms in the first line stand for the creation of a particle-hole state interacting with
hole states, we will label this as a two-hole-one-particle contribution. The remaining
terms are a particle-hole state interacting with the holes in the vacuum state. Finally we
have

Ĥ(e)
I =

1

4

∑

ijkl

〈kl |V |ij〉b†
i b†

j blbk +
1

2

∑

ijk

〈ij |V |kj〉b†
k bi +

1

2

∑

ij

〈ij |V |ij〉 (4.0.125)

The first terms represents the interaction between two holes while the second stands

for the interaction between a hole and the remaining holes in the vacuum state. It

represents a contribution to single-hole energy to first order. The last term collects all

contributions to the energy of the ground state of a closed-shell system arising from

hole-hole correlations.
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Notation
Second quantization

Antisymmetrized wavefunction

ΦAS(α1, . . . , αA;x1, . . . xA) =
1√
A

∑

P̂

(−1)PP̂
A∏

i=1

ψαi (xi)

≡ |α1 . . . αA〉
= a†

α1
. . . a†

αA
|0〉

a†
p|0〉 = |p〉, ap|q〉 = δpq |0〉

δpq =
{

ap,a
†
q

}

0 =
{

a†
p,aq

}
= {ap,aq} =

{
a†

p,a
†
q

}
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Notation
Second quantization, quasiparticles

Reference state

|Φ0〉 = |α1 . . . αA〉, α1, . . . , αA ≤ αF

Creation and annihilation operators

{
a†

p,aq

}
= δpq,p,q ≤ αF

{
ap,a

†
q

}
= δpq ,p,q > αF

i , j , . . . ≤ αF , a,b, . . . > αF , p,q, . . .− any

ai |Φ0〉 = |Φi〉 a†
a|Φ0〉 = |Φa〉

a†
i |Φ0〉 = 0 aa|Φ0〉 = 0
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Notation
Second quantization, operators

Onebody operator

F̂ =
∑

pq

〈p|f̂ |q〉a†
paq
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Notation
Second quantization, operators

Twobody operator

V̂ =
1
4

∑

pqrs

〈pq|v̂ |rs〉ASa†
pa†

qasar ≡
1
4

∑

pqrs

〈pq|v̂ |rs〉a†
pa†

qasar

where we have defined the antisymmetric matrix elements

〈pq|v̂ |rs〉AS = 〈pq|v̂ |rs〉 − 〈pq|v̂ |sr〉.
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Notation
Second quantization, operators

Threebody operator

V̂3 =
1

36

∑

pqrstu

〈pqr |v̂3|stu〉ASa†
pa†

qa†
r auatas ≡

1
36

∑

pqrstu

〈pqr |v̂3|stu〉a†
pa†

qa†
r auatas

where we have defined the antisymmetric matrix elements

〈pqr |v̂3|stu〉AS = 〈pqr |v̂3|stu〉+ 〈pqr |v̂3|tus〉+ 〈pqr |v̂3|ust〉
− 〈pqr |v̂3|sut〉 − 〈pqr |v̂3|tsu〉 − 〈pqr |v̂3|uts〉.
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Notation
Second quantization, operators

Normal ordered operators
{

aaab . . . a
†
ca†

d

}
= (−1)Pa†

ca†
d . . . aaab

All creation operators to the left and all annihilation operators to
the right times a factor determined by how many operators
have been switched.
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Definitions
The basics, Normal ordered Hamiltonian

Definition
The normal ordered Hamiltonian is given by

ĤN =
1

36

∑

pqr
stu

〈pqr |v̂3|stu〉
{

a†
pa†

qa†
r auat as

}

+
1
4

∑

pqrs

〈pq||rs〉
{

a†
pa†

qasar

}
+
∑

pq

f p
q

{
a†

paq

}

= ĤN
3 + V̂N + F̂N

where

F̂N =
∑

pq

f p
q

{
a†

paq

}
V̂N =

1
4

∑

pqrs

〈pq||rs〉
{

a†
pa†

qasar

}

ĤN
3 =

1
36

∑

pqr
stu

〈pqr |v̂3|stu〉
{

a†
pa†

qa†
r auat as

}
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Definitions
The basics, Normal ordered Hamiltonian

Definition
The amplitudes are given by

f p
q = 〈p|ĥ0|q〉+

∑

i

〈pi|v̂ |qi〉 + 1
2

∑

ij

〈pij|v̂3|qij〉

〈pq||rs〉 = 〈pq|v̂ |rs〉+
∑

i

〈pqi|v̂3|rsi〉,

In relation to the Hamiltonian, ĤN is given by

ĤN = Ĥ − E0

E0 = 〈Φ0|Ĥ|Φ0〉

=
∑

i

〈i|ĥ0|i〉 +
1
2

∑

ij

〈ij|v̂ |ij〉 + 1
6

∑

ijk

〈ijk |v̂3|ijk〉,

where E0 is the energy expectation value between reference states.
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Definitions
The basics, Normal ordered Hamiltonian

Derivation
We start with the Hamiltonian

Ĥ = Ĥ0 + ĤI

where

Ĥ0 =
∑

pq

〈p|ĥ0|q〉a†
paq

ĤI =
1
4

∑

pqrs

〈pq|v̂ |rs〉a†
pa†

qasar

Ĥ3 =
1
36

∑

pqr
stu

〈pqr |v̂3|stu〉a†
pa†

qa†
r auat as
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Definitions
The basics, Normal ordered Hamiltonian

Derivation, onebody part

Ĥ0 =
∑

pq

〈p|ĥ0|q〉a†
paq

a†
paq =

{
a†

paq

}
+

{
a†

paq

}

=
{

a†
paq

}
+ δpq∈i

Ĥ0 =
∑

pq

〈p|ĥ0|q〉a†
paq

=
∑

pq

〈p|ĥ0|q〉
{

a†
paq

}
+ δpq∈i

∑

pq

〈p|ĥ0|q〉

=
∑

pq

〈p|ĥ0|q〉
{

a†
paq

}
+
∑

i

〈i|ĥ0|i〉
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Definitions
The basics, Normal ordered Hamiltonian

Derivation, onebody part
A onebody part

F̂N ⇐
∑

pq

〈p|ĥ0|q〉
{

a†
paq

}

and a scalar part
E0 ⇐

∑

i

〈i |ĥ0|i〉
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Definitions
The basics, Normal ordered Hamiltonian

Derivation, twobody part

ĤI =
1
4

∑

pqrs

〈pq|v̂ |rs〉a†
pa†

qasar

a†
pa†

qasar =
{

a†
pa†

qasar

}

+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}

+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}

=
{

a†
pa†

qasar

}

+ δqs∈i

{
a†

par

}
− δqr∈i

{
a†

pas

}
− δps∈i

{
a†

qar

}

+ δpr∈i

{
a†

qas

}
+ δpr∈iδqs∈i − δps∈iδqr∈i
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Definitions
The basics, Normal ordered Hamiltonian

Derivation, twobody part

ĤI =
1
4

∑

pqrs

〈pq|v̂ |rs〉a†
pa†

qasar

a†
pa†

qasar =
{

a†
pa†

qasar

}

+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}

+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}
+

{
a†

pa†
qasar

}

=
{

a†
pa†

qasar

}

+ δqs∈i

{
a†

par

}
− δqr∈i

{
a†

pas

}
− δps∈i

{
a†

qar

}

+ δpr∈i

{
a†

qas

}
+ δpr∈iδqs∈i − δps∈iδqr∈i
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Definitions
The basics, Normal ordered Hamiltonian

Derivation, twobody part

ĤI =
1
4

∑

pqrs

〈pq|v̂ |rs〉a†
pa†

qasar

=
1
4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}
+

1
4

∑

pqrs

(
δqs∈i〈pq|v̂ |rs〉

{
a†

par

}

− δqr∈i〈pq|v̂ |rs〉
{

a†
pas

}
− δps∈i〈pq|v̂ |rs〉

{
a†

qar

}

+ δpr∈i〈pq|v̂ |rs〉
{

a†
qas

}
+ δpr∈iδqs∈i − δps∈iδqr∈i

)
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Definitions
The basics, Normal ordered Hamiltonian

Derivation, twobody part

=
1
4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}

+
1
4

∑

pqi

(
〈pi|v̂ |qi〉 − 〈pi|v̂ |iq〉 − 〈ip|v̂ |qi〉 + 〈ip|v̂ |iq〉

){
a†

paq

}

+
1
4

∑

ij

(
〈ij|v̂ |ij〉 − 〈ij|v̂ |ji〉

)

=
1
4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}
+
∑

pqi

〈pi|v̂ |qi〉
{

a†
paq

}
+

1
2

∑

ij

〈ij|v̂ |ij〉
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Definitions
The basics, Normal ordered Hamiltonian

Derivation, twobody part
A twobody part

V̂N ⇐ 1
4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}

A onebody part

F̂N ⇐
∑

pqi

〈pi |v̂ |qi〉
{

a†
paq

}

and a scalar part

E0 ⇐ 1
2

∑

ij

〈ij |v̂ |ij〉
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Definitions
The basics, Normal ordered Hamiltonian

Twobody Hamiltonian

ĤN =
1
4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}
+
∑

pq

f p
q

{
a†

paq

}

= V̂N + F̂N

where

F̂N =
∑

pq

f p
q

{
a†

paq

}

V̂N =
1
4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}
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Definitions
The basics, Normal ordered Hamiltonian

Twobody Hamiltonian
The amplitudes are given by

f p
q = 〈p|ĥ0|q〉+

∑

i

〈pi|v̂ |qi〉

〈pq||rs〉 = 〈pq|v̂ |rs〉

In relation to the Hamiltonian, ĤN is given by

ĤN = Ĥ − E0

E0 = 〈Φ0|Ĥ|Φ0〉

=
∑

i

〈i|ĥ0|i〉+
1
2

∑

ij

〈ij|v̂ |ij〉

where E0 is the energy expectation value between reference states.
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Diagram elements - Directed lines

Figure: Particle line Figure: Hole line

◮ A line represents a contraction between second quantized

operators of the type a†
i aj = δij and aaa†

b = δab.
◮ Hole (vacant) states are represented as downgoing lines
◮ Particle (virtual) states are represented as upgoing lines
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Diagram elements - Onebody Hamiltonian

F̂N =
∑

pq f p
q

{
a†

paq

}

Level: -1
Level: 0 Level: 0

Level: +1

◮ Horisontal dashed line segment with one vertex. Assume
time axis pointing upward, with the state 〈p| being above
the vertex and the state |q〉 being below.

◮ Excitation level identify the number of particle/hole pairs
created by the operator.
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Topics for Week 38

Second quantization

◮ Monday:
◮ Summary from last week
◮ Diagrammatic representation of operators and expectation

values
◮ Wednesday:
◮ Diagrammatic representation of operators and expectation

values
◮ Begin of Hartree-Fock theory
◮ Exercises 8-11 (three-body part of 11 optional)
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Repetition from last week: Particle-hole formalism

We defined the normal-ordered Hamiltonian wrt to the new vacuum as:

Twobody Hamiltonian

ĤN =
1

4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}
+
∑

pq

f p
q

{
a†

paq

}

= V̂N + F̂N

where

F̂N =
∑

pq

f p
q

{
a†

paq

}

V̂N =
1

4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}

How do we translate this to the standard particle-hole operators?
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Repetition from last week: Particle-hole formalism

We can define

b†
α =

{
a†
α α > F

aα α ≤ F
bα =

{ aα α > F

a†
α α ≤ F
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Repetition from last week: Particle-hole formalism

The compact notation is

Ĥ0 =
∑

pq

〈p|h0|q〉
{

a†
paq

}
+
∑

i

〈i |h0|i〉.

Spelling it out we can write H0 as

Ĥ0 =
∑

ab

〈a|h0|b〉b†
abb +

∑

ai

[
〈a|h0|i〉b†

ab†
i + 〈i |h0|a〉biba

]

+
∑

i

〈i |h0|i〉 −
∑

ij

〈j |h0|i〉b†
i bj
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This translates into the following diagram elements

Level: -1
Level: 0 Level: 0

Level: +1

◮ Horisontal dashed line segment with one vertex. Assume
time axis pointing upward, with the state 〈p| being above
the vertex and the state |q〉 being below.

◮ Excitation level identify the number of particle/hole pairs
created by the operator.
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Repetition from last week: Particle-hole formalism

Similarly, the compact notation for the two-body operator A twobody part

V̂N ⇐ 1

4

∑

pqrs

〈pq|v̂ |rs〉
{

a†
pa†

qasar

}

A onebody part

F̂N ⇐
∑

pqi

〈pi |v̂|qi〉
{

a†
paq

}

and a scalar part

E0 ⇐ 1

2

∑

ij

〈ij |v̂|ij〉

has its root in the particle-hole operators as:
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Repetition from last week: Particle-hole formalism

ĤI = Ĥ(a)
I + Ĥ(b)

I + Ĥ(c)
I + Ĥ(d)

I + Ĥ(e)
I

Using anti-symmetrized matrix elements, the term Ĥ(a)
I is

Ĥ(a)
I =

1

4

∑

abcd

〈ab|V |cd〉b†
ab†

bbd bc
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Particle-hole formalism

The next term Ĥ(b)
I reads

Ĥ(b)
I =

1

2

∑

abci

(
〈ab|V |ci〉b†

ab†
bb†

i bc + 〈ai |V |cb〉b†
abi bbbc

)

This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state. For Ĥ(c)

I we have

Ĥ(c)
I =

1

4

∑

abij

(
〈ab|V |ij〉b†

ab†
bb†

j b†
i + 〈ij |V |ab〉babbbjbi

)
+

∑

abij

〈ai |V |bj〉b†
ab†

j bbbi +
∑

abi

〈ai |V |bi〉b†
abb.
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Particle-hole formalism

The first line stands for the creation of a two-particle-two-hole state, while the second
line represents the creation to two one-particle-one-hole pairs while the last term
represents a contribution to the particle single-particle energy from the hole states, that
is an interaction between the particle states and the hole states within the new vacuum
state. The fourth term reads

Ĥ(d)
I =

1

2

∑

aijk

(
〈ai |V |jk〉b†

ab†
k b†

j bi + 〈ji |V |ak〉b†
k bj biba

)
+

∑

aij

(
〈ai |V |ji〉b†

ab†
j + 〈ji |V |ai〉bjba

)
.
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Particle-hole formalism

The terms in the first line stand for the creation of a particle-hole state interacting with
hole states, we will label this as a two-hole-one-particle contribution. The remaining
terms are a particle-hole state interacting with the holes in the vacuum state. Finally we
have

Ĥ(e)
I =

1

4

∑

ijkl

〈kl |V |ij〉b†
i b†

j bl bk −
∑

ijk

〈ij |V |kj〉b†
k bi +

1

2

∑

ij

〈ij |V |ij〉

The first terms represents the interaction between two holes while the second stands

for the interaction between a hole and the remaining holes in the vacuum state. It

represents a contribution to single-hole energy to first order. The last term collects all

contributions to the energy of the ground state of a closed-shell system arising from

hole-hole correlations.
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Diagram elements - Twobody Hamiltonian

V̂N = 1
4

∑
pqrs〈pq|v̂ |rs〉

{
a†

pa†
qasar

}

Level: -2
Level: -1 Level: -1

Level: 0 Level: 0 Level: 0

Level: +1 Level: +1
Level: +2
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Diagram rules for operators

◮ Label all lines.
◮ Sum over all indices.
◮ For two-body operators draw dotted lines for the operator

from endpoint to endpoint. Keep only topologically distinct
diagrams and draw incoming and outgoing lines at every
endpoint.

◮ Mark the lines as either holes or particles.
◮ Extract matrix elements from diagrams as follows: f out

in or
〈out|f |in〉, 〈leftout, rightout|v̂ |leftin, rightin〉)

◮ For the two-body operators, crossing lines (below or above
the interaction line) give rise to a minus sign.

◮ For hole states, a hole line which goes through the whole
diagram, add a minus sign.
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Diagram elements - Onebody cluster operator

Level: +1

◮ We have here assumed that a one-body operator has
acted on a 1p1h Slater determinant |Φa

i 〉.
◮ Horisontal line segment with one vertex.
◮ Excitation level of +1.

141 / 402



Diagram elements - Twobody cluster operator

Level: +2

◮ We have here assumed that a one-body operator has
acted on a 2p2h Slater determinant |Φab

ij 〉.
◮ Horisontal line segment with two vertices.
◮ Excitation level of +2.
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The expectation value of the energy

E = 〈Φ0|HN |Φ0〉

◮ No external lines.
◮ Final excitation level: 0

Elements: ĤN Elements:
Cluster operator
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Topics for Week 39

Hartree-Fock theory

◮ Monday:
◮ Summary from last week
◮ Basic ingredients
◮ Reminder on variational calculus
◮ Hartree-Fock theory (coordinate space, traditional

approach) and Thouless’ theorem
◮ Wednesday:
◮ Hartree-Fock theory, stability and diagrammatic

interpretation
◮ Koopman’s theorem
◮ Exercises 12, 13 a, b and c.
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Hartree-Fock: our first many-body approach

HF theory is an algorithm for a finding an approximative expression for the ground state
of a given Hamiltonian. The basic ingredients are

◮ Define a single-particle basis {ψα} so that

ĥHFψα = εαψα

with
ĥHF = t̂ + ûext + ûHF

◮ where ûHF is a single-particle potential to be determined by the HF algorithm.

◮ The HF algorithm means to choose ûHF in order to have

〈Ĥ〉 = EHF = 〈Φ0|Ĥ|Φ0〉

a local minimum with Φ0 being the SD ansatz for the ground state.

◮ The variational principle ensures that EHF ≥ Ẽ0, Ẽ0 the exact ground state
energy.
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Hartree-Fock:

Let us now compute the Hamiltonian matrix for a system consisting of a Slater
determinant for the ground state |Φ0〉 and two 1p1h SDs |Φa

i 〉 and |Φb
j 〉. This can

obviously be generalized to many more 1p1h SDs. Using diagrammatic as well as
algebraic representations we obtain the following expectation values

〈Φ0|Ĥ|Φ0〉 = E0,

〈Φa
i |Ĥ|Φ0〉 = 〈a|̂f |i〉,

〈Φb
j |Ĥ|Φ0〉 = 〈b|̂f |j〉,

〈Φa
i |Ĥ|Φb

j 〉 = 〈aj |v̂|ib〉,

and the diagonal elements

〈Φa
i |Ĥ|Φa

i 〉 = E0 + εa − εi + 〈ai |v̂|ia〉,

and
〈Φb

j |Ĥ|Φb
j 〉 = E0 + εb − εj + 〈bj |v̂|jb〉.
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Hartree-Fock

We can then set up a Hamiltonian matrix to be diagonalized




E0 〈i |̂f |a〉 〈j |̂f |b〉

〈a|̂f |i〉 E0 + εa − εi + 〈ai |v̂|ia〉 〈aj |v̂|ib〉
〈b|̂f |j〉 〈bi |v̂|ja〉 E0 + εb − εj + 〈bj |v̂|jb〉



 .

The HF method corresponds to finding a similarity transformation where the
non-diagonal matrix elements

〈i |̂f |a〉 = 0

. We will link this expectation value with the HF method, meaning that we want to find

〈i |ĥHF|a〉 = 0
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Variational Calculus and Lagrangian Multiplier
The calculus of variations involves problems where the quantity to be minimized or
maximized is an integral.
In the general case we have an integral of the type

E[Φ] =

∫ b

a
f (Φ(x),

∂Φ

∂x
, x)dx,

where E is the quantity which is sought minimized or maximized. The problem is that

although f is a function of the variables Φ, ∂Φ/∂x and x , the exact dependence of Φ

on x is not known. This means again that even though the integral has fixed limits a

and b, the path of integration is not known. In our case the unknown quantities are the

single-particle wave functions and we wish to choose an integration path which makes

the functional E[Φ] stationary. This means that we want to find minima, or maxima or

saddle points. In physics we search normally for minima. Our task is therefore to find

the minimum of E[Φ] so that its variation δE is zero subject to specific constraints. In

our case the constraints appear as the integral which expresses the orthogonality of

the single-particle wave functions. The constraints can be treated via the technique of

Lagrangian multipliers
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Euler-Lagrange equations

We assume the existence of an optimum path, that is a path for which E[Φ] is
stationary. There are infinitely many such paths. The difference between two paths δΦ
is called the variation of Φ.
We call the variation η(x) and it is scaled by a factor α. The function η(x) is arbitrary
except for

η(a) = η(b) = 0,

and we assume that we can model the change in Φ as

Φ(x, α) = Φ(x, 0) + αη(x),

and
δΦ = Φ(x, α)− Φ(x, 0) = αη(x).
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Euler-Lagrange equations

We choose Φ(x, α = 0) as the unkonwn path that will minimize E . The value
Φ(x, α 6= 0) describes a neighbouring path.
We have

E[Φ(α)] =

∫ b

a
f (Φ(x, α),

∂Φ(x, α)

∂x
, x)dx.

In the slides I will use the shorthand

Φx(x, α) =
∂Φ(x, α)

∂x
.

In our case a = 0 and b = ∞ and we know the value of the wave function.
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Euler-Lagrange equations

The condition for an extreme of

E[Φ(α)] =

∫ b

a
f (Φ(x, α),Φx (x, α), x)dx,

is [
∂E[Φ(α)]

∂x

]

α=0
= 0.

The α dependence is contained in Φ(x, α) and Φx(x, α) meaning that

[
∂E[Φ(α)]

∂α

]
=

∫ b

a

(
∂f

∂Φ

∂Φ

∂α
+

∂f

∂Φx

∂Φx

∂α

)
dx.

We have defined
∂Φ(x, α)

∂α
= η(x)

and thereby
∂Φx (x, α)

∂α
=

d(η(x))

dx
.
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Euler-Lagrange equations

Using
∂Φ(x, α)

∂α
= η(x),

and
∂Φx (x, α)

∂α
=

d(η(x))

dx
,

in the integral gives

[
∂E[Φ(α)]

∂α

]
=

∫ b

a

(
∂f

∂Φ
η(x) +

∂f

∂Φx

d(η(x))

dx

)
dx.

Integrate the second term by parts

∫ b

a

∂f

∂Φx

d(η(x))

dx
dx = η(x)

∂f

∂Φx
|ba −

∫ b

a
η(x)

d

dx

∂f

∂Φx
dx,

and since the first term dissappears due to η(a) = η(b) = 0, we obtain

[
∂E[Φ(α)]

∂α

]
=

∫ b

a

(
∂f

∂Φ
− d

dx

∂f

∂Φx

)
η(x)dx = 0.
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Euler-Lagrange equations

[
∂E[Φ(α)]

∂α

]
=

∫ b

a

(
∂f

∂Φ
− d

dx

∂f

∂Φx

)
η(x)dx = 0,

can also be written as

α

[
∂E[Φ(α)]

∂α

]

α=0
=

∫ b

a

(
∂f

∂Φ
− d

dx

∂f

∂Φx

)
δΦ(x)dx = δE = 0.

The condition for a stationary value is thus a partial differential equation

∂f

∂Φ
− d

dx

∂f

∂Φx
= 0,

known as Euler’s equation. Can easily be generalized to more variables.
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Lagrangian Multipliers

Consider a function of three independent variables f (x, y , z) . For the function f to be
an extreme we have

df = 0.

A necessary and sufficient condition is

∂f

∂x
=
∂f

∂y
=
∂f

∂z
= 0,

due to

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz.

In physical problems the variables x, y , z are often subject to constraints (in our case Φ

and the orthogonality constraint) so that they are no longer all independent. It is

possible at least in principle to use each constraint to eliminate one variable and to

proceed with a new and smaller set of independent varables.
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Lagrangian Multipliers

The use of so-called Lagrangian multipliers is an alternative technique when the
elimination of of variables is incovenient or undesirable. Assume that we have an
equation of constraint on the variables x, y , z

φ(x, y , z) = 0,

resulting in

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz = 0.

Now we cannot set anymore

∂f

∂x
=
∂f

∂y
=
∂f

∂z
= 0,

if df = 0 is wanted because there are now only two independent variables! Assume x

and y are the independent variables. Then dz is no longer arbitrary.
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Lagrangian Multipliers

However, we can add to

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz,

a multiplum of dφ, viz. λdφ, resulting in

df + λdφ = (
∂f

∂z
+ λ

∂φ

∂x
)dx + (

∂f

∂y
+ λ

∂φ

∂y
)dy + (

∂f

∂z
+ λ

∂φ

∂z
)dz = 0.

Our multiplier is chosen so that

∂f

∂z
+ λ

∂φ

∂z
= 0.

156 / 402



Lagrangian Multipliers

However, we took dx and dy as to be arbitrary and thus we must have

∂f

∂x
+ λ

∂φ

∂x
= 0,

and
∂f

∂y
+ λ

∂φ

∂y
= 0.

When all these equations are satisfied, df = 0. We have four unknowns, x, y , z and λ.
Actually we want only x, y , z, λ need not to be determined, it is therefore often called
Lagrange’s undetermined multiplier. If we have a set of constraints φk we have the
equations

∂f

∂xi
+
∑

k

λk
∂φk

∂xi
= 0.
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Variational Calculus and Lagrangian Multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

E =

∫
dxdydzψ∗(x, y , z)Ĥψ(x, y , z),

with the constraint ∫
dxdydzψ∗(x, y , z)ψ(x, y , z) = 1,

and a Hamiltonian

Ĥ = −1

2
∇2 + V (x, y , z).

I will skip the variables x, y , z below, and write for example V (x, y , z) = V .
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Variational Calculus and Lagrangian Multiplier

The integral involving the kinetic energy can be written as, if we assume periodic
boundary conditions or that the function ψ vanishes strongly for large values of x, y , z,

∫
dxdydzψ∗

(
−1

2
∇2
)
ψdxdydz = ψ∗∇ψ|+

∫
dxdydz

1

2
∇ψ∗∇ψ.

Inserting this expression into the expectation value for the energy and taking the
variational minimum we obtain

δE = δ

{∫
dxdydz

(
1

2
∇ψ∗∇ψ + Vψ∗ψ

)}
= 0.

159 / 402



Variational Calculus and Lagrangian Multiplier

The constraint appears in integral form as

∫
dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational minimum we
obtain the final variational equation

δ

{∫
dxdydz

(
1

2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ

)}
= 0.

Introducing the function f

f =
1

2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ =

1

2
(ψ∗

x ψx + ψ∗
y ψy + ψ∗

z ψz) + Vψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x, y , z and introduced the shorthand ψx ,

ψy and ψz for the various derivatives.
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Variational Calculus and Lagrangian Multiplier

For ψ∗ the Euler equation results in

∂f

∂ψ∗
− ∂

∂x

∂f

∂ψ∗
x
− ∂

∂y

∂f

∂ψ∗
y
− ∂

∂z

∂f

∂ψ∗
z

= 0,

which yields

−1

2
(ψxx + ψyy + ψzz) + Vψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system. Then the
last equation is nothing but the standard Schrödinger equation and the variational
approach discussed here provides a powerful method for obtaining approximate
solutions of the wave function.
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Finding the Hartree-Fock functional E [Φ]

We rewrite our Hamiltonian (we specialize to atomic physics, but the interactions can
easily be changed with other one and two-body ones)

Ĥ = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

Z

ri
+

N∑

i<j

1

rij
,

as

Ĥ = Ĥ0 + ĤI =
N∑

i=1

ĥo(xi ) +
N∑

i<j=1

1

rij
,

ĥ0(xi ) = −1

2
∇2

i − Z

ri
.
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Finding the Hartree-Fock functional E [Φ]

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E[Φ] =

∫
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized
∫

Φ∗Φdτ = 1,

where we have used the shorthand dτ = dx1dx2 . . . dxN .
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Finding the Hartree-Fock functional E [Φ]

In the Hartree-Fock method the trial function is the Slater determinant which can be
rewritten as

Ψ(x1, x2, . . . , xN , α, β, . . . , ν) =
1√
N!

∑

P

(−)P Pψα(x1)ψβ(x2) . . . ψν(xN ) =
√

N!AΦH ,

where we have introduced the anti-symmetrization operator A defined by the
summation over all possible permutations of two fermions. It is defined as

A =
1

N!

∑

P

(−)P P,

with the the Hartree-function given by the simple product of all possible single-particle
function (in case of atomic systems: two electrons for helium, four electrons for
beryllium and ten for neon)

ΦH(x1, x2, . . . , xN , α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xN ).
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Finding the Hartree-Fock functional E [Φ]

Both Ĥ0 and ĤI are invariant under permutations of fermions, and hence commute with
A

[H0,A] = [HI ,A] = 0.

Furthermore, A satisfies
A2 = A,

since every permutation of the Slater determinant reproduces it.
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Variational Calculus and Lagrangian Multiplier, back to
Hartree-Fock

Our functional is written (recall that we have specialized to the case of atoms) as

E[Φ] =
N∑

µ=1

∫
ψ∗
µ(xi )ĥ0(xi )ψµ(xi )dxi+

1

2

N∑

µ=1

N∑

ν=1

[∫
ψ∗
µ(xi )ψ

∗
ν (xj )

1

rij
ψµ(xi )ψν (xj )dxi dxj

−
∫
ψ∗
µ(xi )ψ

∗
ν(xj )

1

rij
ψν(xi )ψµ(xj )dxi dxj

]

The more compact version is

E[Φ] =
N∑

µ=1

〈µ|ĥ0|µ〉+
1

2

N∑

µ=1

N∑

ν=1

[

〈µν| 1

rij
|µν〉 − 〈µν| 1

rij
|νµ〉

]

.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

If we generalize the Euler-Lagrange equations to more variables and introduce N2

Lagrange multipliers which we denote by ǫµν , we can write the variational equation for
the functional of E

δE −
N∑

µ=1

N∑

ν=1

ǫµνδ

∫
ψ∗
µψν = 0.

For the orthogonal wave functions ψµ this reduces to

δE −
N∑

µ=1

ǫµδ

∫
ψ∗
µψµ = 0.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Variation with respect to the single-particle wave functions ψµ yields then

N∑

µ=1

∫
δψ∗

µ ĥ0(xi )ψµdxi +
1

2

N∑

µ=1

N∑

ν=1

[∫
δψ∗

µψ
∗
ν

1

rij
ψµψνdxi dxj −

∫
δψ∗

µψ
∗
ν

1

rij
ψνψµdxi dxj

]

+
N∑

µ=1

∫
ψ∗
µĥ0(xi )δψµdxi +

1

2

N∑

µ=1

N∑

ν=1

[∫
ψ∗
µψ

∗
ν

1

rij
δψµψνdxi dxj −

∫
ψ∗
µψ

∗
ν

1

rij
ψνδψµdxi dxj

]

−
N∑

µ=1

Eµ

∫
δψ∗

µψµdxi −
N∑

µ=1

Eµ

∫
ψ∗
µδψµdxi =
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Although the variations δψ and δψ∗ are not independent, they may in fact be treated as
such, so that the terms dependent on either δψ and δψ∗ individually may be set equal
to zero. To see this, simply replace the arbitrary variation δψ by iδψ, so that δψ∗ is
replaced by −iδψ∗, and combine the two equations. We thus arrive at the
Hartree-Fock equations



−1

2
∇2

i − Z

ri
+

N∑

ν=1

∫
ψ∗
ν(xj )

1

rij
ψν(xj )dxj



ψµ(xi )

−




N∑

ν=1

∫
ψ∗
ν(xj )

1

rij
ψµ(xj )dxj



ψν(xi ) = ǫµψµ(xi ).

Notice that the integration
∫

dxj implies an integration over the spatial coordinates rj

and a summation over the spin-coordinate of fermion j .
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The two first terms are the one-body kinetic energy and the electron-nucleus potential.

The third or direct term is the averaged electronic repulsion of the other electrons. This

term is identical to the Coulomb integral introduced in the simple perturbative approach

to the helium atom. As written, the term includes the ’self-interaction’ of electrons when

i = j . The self-interaction is cancelled in the fourth term, or the exchange term. The

exchange term results from our inclusion of the Pauli principle and the assumed

determinantal form of the wave-function. The effect of exchange is for electrons of

like-spin to avoid each other.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

A theoretically convenient form of the Hartree-Fock equation is to regard the direct and
exchange operator defined through

V d
µ(xi ) =

∫
ψ∗
µ(xj )

1

rij
ψµ(xj )dxj

and

V ex
µ (xi )g(xi ) =

(∫
ψ∗
µ(xj )

1

rij
g(xj )dxj

)

ψµ(xi ),

respectively.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The function g(xi ) is an arbitrary function, and by the substitution g(xi ) = ψν(xi ) we
get

V ex
µ (xi )ψν(xi ) =

(∫
ψ∗
µ(xj )

1

rij
ψν(xj )dxj

)

ψµ(xi ).
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

We may then rewrite the Hartree-Fock equations as

ĥHF (xi )ψν(xi ) = ǫνψν(xi ),

with

ĥHF (xi ) = ĥ0(xi ) +
N∑

µ=1

V d
µ (xi )−

N∑

µ=1

V ex
µ (xi ),

and where ĥ0(i) is the one-body part. The latter is normally chosen as a part which
yields solutions in closed form. The harmonic oscilltor is a classical problem thereof.
We normally rewrite the last equation as

ĥHF (xi ) = ĥ0(xi ) + ûHF (xi ).
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Rewriting the energy functional

The last equation
ĥHF (xi ) = ĥ0(xi ) + ûHF (xi ),

allows us to rewrite the ground state energy (adding and subtracting ûHF (xi )

EHF
0 = 〈Φ0|Ĥ|Φ0〉 =

N∑

i≤F

〈i |ĥ0 + ûHF |j〉+ 1

2

N∑

i≤F

N∑

j≤F

[〈ij |v̂|ij〉 − 〈ij |v̂|ji〉]−
N∑

i≤F

〈i |ûHF |i〉,

as

EHF
0 =

N∑

i≤F

εi +
1

2

N∑

i≤F

N∑

j≤F

[〈ij |v̂|ij〉 − 〈ij |v̂|ji〉]−
N∑

i≤F

〈i |ûHF |i〉,

which is nothing but

EHF
0 =

N∑

i≤F

εi −
1

2

N∑

i≤F

N∑

j≤F

[〈ij |v̂ |ij〉 − 〈ij |v̂|ji〉] .

This form will be used in our discussion of Koopman’s theorem.
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Hartree-Fock by varying the coefficients of a wave
function expansion

Another possibility is to expand the single-particle functions in a known basis and vary
the coefficients, that is, the new single-particle wave function is written as a linear
expansion in terms of a fixed chosen orthogonal basis (for example harmonic oscillator,
Laguerre polynomials etc)

ψa =
∑

λ

Caλψλ. (6.0.132)

In this case we vary the coefficients Caλ. If the basis has infinitely many solutions, we
need to truncate the above sum. In all our equations we assume a truncation has been
made.
The single-particle wave functions ψλ(r), defined by the quantum numbers λ and r are
defined as the overlap

ψλ(r) = 〈r|λ〉.
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Hartree-Fock by varying the coefficients of a wave
function expansion

We will omit the radial dependence of the wave functions and introduce first the
following shorthands for the Hartree and Fock integrals

〈µν|V |µν〉 =
∫
ψ∗
µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj ,

and

〈µν|V |νµ〉 =
∫
ψ∗
µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(ri )dri rj .
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Hartree-Fock by varying the coefficients of a wave
function expansion

Since the interaction is invariant under the interchange of two particles it means for
example that we have

〈µν|V |µν〉 = 〈νµ|V |νµ〉,

or in the more general case

〈µν|V |στ〉 = 〈νµ|V |τσ〉.
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Hartree-Fock by varying the coefficients of a wave
function expansion

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .
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Hartree-Fock by varying the coefficients of a wave
function expansion

With these notations we rewrite the Hartree-Fock functional as

∫
Φ∗Ĥ1Φdτ =

1

2

A∑

µ=1

A∑

ν=1

〈µν|V |µν〉AS . (6.0.133)

Combining Eqs. (2.0.13) and (6.0.133) we obtain the energy functional

E[Φ] =
N∑

µ=1

〈µ|h|µ〉 + 1

2

N∑

µ=1

N∑

ν=1

〈µν|V |µν〉AS . (6.0.134)
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Hartree-Fock by varying the coefficients of a wave
function expansion

If we vary the above energy functional with respect to the basis functions |µ〉, this
corresponds to what was done in the previous case. We are however interested in
defining a new basis defined in terms of a chosen basis as defined in Eq. (6.0.132).
We can then rewrite the energy functional as

E[Ψ] =
N∑

a=1

〈a|h|a〉+ 1

2

N∑

ab=1

〈ab|V |ab〉AS , (6.0.135)

where Ψ is the new Slater determinant defined by the new basis of Eq. (6.0.132).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Using Eq. (6.0.132) we can rewrite Eq. (6.0.135) as

E[Ψ] =
N∑

a=1

∑

αβ

C∗
aαCaβ〈α|h|β〉+

1

2

N∑

ab=1

∑

αβγδ

C∗
aαC∗

bβCaγCbδ〈αβ|V |γδ〉AS . (6.0.136)
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Hartree-Fock by varying the coefficients of a wave
function expansion

We wish now to minimize the above functional. We introduce again a set of Lagrange
multipliers, noting that since 〈a|b〉 = δa,b and 〈α|β〉 = δα,β , the coefficients Caγ obey
the relation

〈a|b〉 = δa,b =
∑

αβ

C∗
aαCaβ〈α|β〉 =

∑

α

C∗
aαCaα,

which allows us to define a functional to be minimized that reads

E[Ψ]−
N∑

a=1

ǫa
∑

α

C∗
aαCaα. (6.0.137)
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Hartree-Fock by varying the coefficients of a wave
function expansion

Minimizing with respect to C∗
kα, remembering that C∗

kα and Ckα are independent, we
obtain

d

dC∗
kα

[

E[Ψ]−
∑

a

ǫa
∑

α

C∗
aαCaα

]

= 0, (6.0.138)

which yields for every single-particle state k the following Hartree-Fock equations

∑

γ

Ckγ〈α|h|γ〉+
N∑

a=1

∑

βγδ

C∗
aβCaδCkγ〈αβ|V |γδ〉AS = ǫk Ckα. (6.0.139)
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Hartree-Fock by varying the coefficients of a wave
function expansion

We can rewrite this equation as

∑

γ




〈α|h|γ〉 +
N∑

a

∑

βδ

C∗
aβCaδ〈αβ|V |γδ〉AS




Ckγ = ǫk Ckα. (6.0.140)

Note that the sums over greek indices run over the number of basis set functions (in

principle an infinite number).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Defining

hHF
αγ = 〈α|h|γ〉+

N∑

a=1

∑

βδ

C∗
aβCaδ〈αβ|V |γδ〉AS ,

we can rewrite the new equations as

∑

γ

hHF
αγCkγ = ǫk Ckα. (6.0.141)

Note again that the sums over greek indices run over the number of basis set functions

(in principle an infinite number).

185 / 402



Topics for Week 40

Hartree-Fock

◮ Monday:
◮ Summary from last week
◮ Thouless’ theorem
◮ Stability of Hartree-Fock theory
◮ Wednesday:
◮ Electron gas
◮ Begin of configuration interaction theory
◮ Exercises 14, 16 and 18
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Hartree-Fock formalism in second quantization,
Thouless’ theorem

We wish now to derive the Hartree-Fock equations using our second-quantized
formalism and study the stability of the equations. Our SD ansatz for the ground state
of the system is approximated as

|Φ0〉 = |c〉 = a†
i a†

j . . . a
†
l |0〉.

We wish to determine ûHF so that EHF
0 = 〈c|Ĥ |c〉 becomes a local minimum.

An arbitrary Slater determinant |c′〉 which is not orthogonal to a determinant

|c〉 =
n∏

i=1

a†
i |0〉, can be written as

|c′〉 = exp






∞∑

a>F

∑

i≤F

Caia
†
aai




 |c〉
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Thouless’ theorem

An arbitrary Slater determinant |c′〉 which is not orthogonal to a determinant

|c〉 =
n∏

i=1

a†
αi
|0〉, can be written as

|c′〉 = exp





∑

a>F

∑

i≤F

Caia
†
aai




 |c〉

Proof: see blackboard.
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Stability of the Hartree-Fock equations
The variational condition for deriving the Hartree-Fock equations guarantees only that
the expectation value 〈c|Ĥ|c〉 has an extreme value, not necessarily a minimum. To
figure out whether the extreme value we have found is a minimum, we can use second
quantization to analyze our results and find a criterion for the above expectation value
to a local minimum. We will use Thouless’ theorem and show that

〈c′|Ĥ|c′〉
〈c′|c′〉 ≥ 〈c|Ĥ |c〉 = E0,

with
|c′〉 = |c〉 + |δc〉.

Using Thouless’ theorem we can write out |c′〉 as

|c′〉 = exp





∑

a>F

∑

i≤F

δCai a
†
aai




 |c〉 =




1 +
∑

a>F

∑

i≤F

δCai a
†
aai +

1

2!

∑

ab>F

∑

ij≤F

δCaiδCbj a
†
aaia

†
baj + . . .






where the amplitudes δC are small.
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Stability of the Hartree-Fock equations

The norm of |c′〉 is given by (using the intermediate normalization condition 〈c′|c〉 = 1)

〈c′|c′〉 = 1 +
∑

a>F

∑

i≤F

|δCai |2 + O(δC3
ai ).

The expectation value for the energy is now given by (using the Hartree-Fock condition)

〈c′|Ĥ|c′〉 = 〈c|Ĥ |c〉+
∑

ab>F

∑

ij≤F

δC∗
aiδCbj 〈c|a†

i aaĤa†
baj |c〉+

1

2!

∑

ab>F

∑

ij≤F

δCaiδCbj 〈c|Ĥa†
aaia

†
baj |c〉+

1

2!

∑

ab>F

∑

ij≤F

δC∗
aiδC

∗
bj 〈c|a

†
j aba†

i aaĤ|c〉+ . . .

We will skip higher-order terms later.
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Stability of the Hartree-Fock equations

We have already calculated the second term on the rhs of the previous equation

〈c|
({

a†
i aa

}
Ĥ
{

a†
baj

})
|c〉 =

∑

pq

∑

ijab

δC∗
aiδCbj 〈p|ĥ0|q〉〈c|

({
a†

i aa

}{
a†

paq

}{
a†

baj

})
|c〉+

1

4

∑

pqrs

∑

ijab

δC∗
aiδCbj 〈pq|v̂ |rs〉〈c|

({
a†

i aa

}{
a†

pa†
qasar

}{
a†

baj

})
|c〉,

resulting in

E0

∑

ai

|δCai |2 +
∑

ai

|δCai |2(εa − εi)−
∑

ijab

〈aj |v̂ |bi〉δC∗
aiδCbj .
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Stability of the Hartree-Fock equations

The third term in the rhs of the last equation can then be written out (where is the
reference energy and why do we only consider the two-particle interaction V̂N?)

1

2!
〈c|
(

V̂N

{
a†

aai

}{
a†

baj

})
|c〉 =

1

8

∑

pqrs

∑

ijab

δCaiδCbj〈pq|v̂ |rs〉〈c|
({

a†
pa†

qasar

}{
a†

aai

}{
a†

baj

})
|c〉

=
1

8

∑

pqrs

∑

ijab

〈pq|v̂ |rs〉δCaiδCbj 〈c|

({

a†
pa†

qasar a†
aaia

†
baj

}

+

{

a†
pa†

qasar a†
aaia

†
baj

}

+

{

a†
pa†

qasar a†
aai a

†
baj

}

+

{

a†
pa†

qasar a
†
aaia

†
baj

})
|c〉

=
1

2

∑

ijab

〈ij |v̂|ab〉δCaiδCbj
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Stability of the Hartree-Fock equations

The final term in the rhs of the last equation can then be written out as

1

2!
〈c|
({

a†
j ab

}{
a†

i aa

}
V̂N

)
|c〉 = 1

2!
〈c|
(

V̂N

{
a†

aai

}{
a†

baj

})†
|c〉

which is nothing but

1

2!
〈c|
(

V̂N

{
a†

aai

}{
a†

baj

})
|c〉∗ =

1

2

∑

ijab

(〈ij |v̂ |ab〉)∗δC∗
aiδC

∗
bj

or
1

2

∑

ijab

(〈ab|v̂ |ij〉)δC∗
aiδC

∗
bj

where we have used the relation

〈a|Â|b〉 = (〈b|Â†|a〉)∗

due to the hermiticity of Ĥ and V̂ .
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Stability of the Hartree-Fock equations

We define two matrix elements

Aai,bj = −〈aj |v̂|bi〉

Bai,bj = 〈ab|v̂ |ij〉

both being anti-symmetrized.
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Stability of the Hartree-Fock equations
We can then write out the energy

〈c′|H|c′〉 =
(

1 +
∑

ai

|δCai |2
)

〈c|H|c〉+

∑

ai

|δCai |2(εHF
a − εHF

i ) +
∑

ijab

Aai,bjδC
∗
aiδCbj+

1

2

∑

ijab

B∗
ai,bjδCaiδCbj +

1

2

∑

ijab

Bai,bjδC
∗
aiδC

∗
bj + O(δC3

ai ),

which allows us to rewrite it as

〈c′|H|c′〉 =
(

1 +
∑

ai

|δCai |2
)

〈c|H|c〉 +∆E + O(δC3
ai ),

and skipping higher-order terms we have

〈c′|Ĥ|c′〉
〈c′|c′〉 = E0 +

∆E(
1 +

∑
ai |δCai |2

) .
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Stability of the Hartree-Fock equations

We have defined

∆E =
1

2
〈χ|M̂|χ〉

with the vectors
χ = [δC δC∗]T

and the matrix

M̂ =

(
∆+ A B

B∗ ∆+ A∗

)
,

with ∆ai,bj = (εa − εi)δabδij .
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Stability of the Hartree-Fock equations

The condition

∆E =
1

2
〈χ|M̂|χ〉 ≥ 0

for an arbitrary vector
χ = [δC δC∗]T

means that all eigenvalues of the matrix have to be larger than or equal zero. A
necessary (but no sufficient) condition is that the matrix elements (for all ai )

(εa − εi)δabδij + Aai,bj ≥ 0.

This equation can be used as a first test of the stability of the Hartree-Fock equation.
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The electron gas

The electron gas is perhaps the only realistic model of a system of many interacting
particles that allows for a solution of the Hartree-Fock equations on a closed form.
Furthermore, to first order in the interaction, one can also compute on a closed form
the total energy and several other properties of a many-particle systems. The model
gives a very good approximation to the properties of valence electrons in metals. The
assumptions are

◮ System of electrons that is not influenced by external forces except by an
attraction provided by a uniform background of ions. These ions give rise to a
uniform background charge. The ions are stationary.

◮ The system as a whole is neutral.

◮ We assume we have Ne electrons in a cubic box of length L and volume Ω = L3.
This volume contains also a uniform distribution of positive charge with density
Nee/Ω.
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The electron gas
This is a homogeneous system and the one-particle wave functions are given by plane
wave functions normalized to a volume Ω for a box with length L (the limit L → ∞ is to
be taken after we have computed various expectation values)

ψkσ(r) =
1√
Ω

exp (ikr)ξσ

where k is the wave number and ξσ is a spin function for either spin up or down

ξσ=+1/2 =

(
1
0

)
ξσ=−1/2 =

(
0
1

)
.

We assume that we have periodic boundary conditions which limit the allowed wave
numbers to

ki =
2πni

L
i = x, y , z ni = 0,±1,±2, . . .

We assume first that the electrons interact via a central, symmetric and translationally
invariant interaction V (r12) with r12 = |r1 − r2|. The interaction is spin independent.
The total Hamiltonian consists then of kinetic and potential energy

Ĥ = T̂ + V̂ .

The operator for the kinetic energy can be written as

T̂ =
∑

kσ

~2k2

2m
a†

kσakσ .
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The electron gas
The Hamilton operator is given by

Ĥ = Ĥel + Ĥb + Ĥel−b,

with the electronic part

Ĥel =
N∑

i=1

p2
i

2m
+

e2

2

∑

i 6=j

e−µ|ri−rj |

|ri − rj |
,

where we have introduced an explicit convergence factor (the limit µ→ 0 is performed
after having calculated the various integrals). Correspondingly, we have

Ĥb =
e2

2

∫ ∫
drdr′

n(r)n(r′)e−µ|r−r′ |

|r − r′| ,

which is the energy contribution from the positive background charge with density
n(r) = N/Ω. Finally,

Ĥel−b = −e2

2

N∑

i=1

∫
dr

n(r)e−µ|r−xi |

|r − xi |
,

is the interaction between the electrons and the positive background.
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The electron gas

In exercise 18 we show that the Hartree-Fock energy can be written as

εHF
k =

~2k2

2me
− e2

Ω2

∑

k′≤kF

∫
drei(k ′−k )r

∫
dr ′

ei(k−k ′)r′

|r − r ′|

resulting in

εHF
k =

~2k2

2me
− e2kF

2π

[

2 +
k2

F − k2

kkF
ln

∣∣∣∣
k + kF

k − kF

∣∣∣∣

]
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The electron gas

We introduce a convergence factor e−µ|r−r′| and use
∑

k → Ω
(2π)3

∫
dk . The results

can be rewritten in terms of the density

n =
k3

F

3π2
=

3

4πr3
s
,

where n = Ne/Ω, Ne being the number of electrons, and rs is the radius of a sphere

which represents the volum per conducting electron. It can be convenient to use the

Bohr radius a0 = ~2/e2me. For most metals we have a relation rs/a0 ∼ 2 − 6.
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The electron gas, total energy (Exercise 19)

We wish to show first that

Ĥb =
e2

2

N2
e

Ω

4π

µ2
,

and

Ĥel−b = −e2 N2
e

Ω

4π

µ2
.

And then that the final Hamiltonian can be written as

H = H0 + HI ,

with

H0 =
∑

kσ

~2k2

2me
a†

kσakσ,

and

HI =
e2

2Ω

∑

σ1σ2

∑

q6=0,k,p

4π

q2
a†

k+q,σ1
a†

p−q,σ2
apσ2 akσ1

.
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The electron gas, total energy

Finally, we want to calculate E0/Ne = 〈Φ0|H|Φ0〉/Ne for for this system to first order in
the interaction. Using

ρ =
k3

F

3π2
=

3

4πr3
0

,

with ρ = Ne/Ω, r0 being the radius of a sphere representing the volume an electron
occupies and the Bohr radius a0 = ~

2/e2m, that the energy per electron can be written
as

E0/Ne =
e2

2a0

[
2.21

r2
s

− 0.916

rs

]
.

Here we have defined rs = r0/a0 to be a dimensionless quantity.
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The electron gas, total energy

Let us now calculate the following part of the Hamiltonian

Ĥb =
e2

2

∫∫
n(r)n(r ′)e−µ|r−r′|

|r − r ′|
d3r d3r ′,

where n(r) = Ne/Ω, the density of the positive backgroun charge. We define
r12 = r − r ′, reulting in d3r12 = d3r , and allowing us to rewrite the integral as

Ĥb =
e2N2

e

2Ω2

∫∫
e−µ|r12|

|r12|
d3r12 d3r ′ =

e2N2
e

2Ω

∫
e−µ|r12|

|r12|
d3r12.

Here we have used that
∫

d3r = Ω. We change to spherical coordinates and the lack
of angle dependencies yields a factor 4π, resulting in

Ĥb =
4πe2N2

e

2Ω

∫ ∞

0
re−µr dr .
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The electron gas, total energy
Solving by partial integration

∫ ∞

0
re−µr dr =

[
− r

µ
e−µr

]∞

0
+

1

µ

∫ ∞

0
e−µr dr =

1

µ

[
− 1

µ
e−µr

]∞

0
=

1

µ2
,

gives

Ĥb =
e2

2

N2
e

Ω

4π

µ2
.

The next term is

Ĥel−b = −e2
N∑

i=1

∫
n(r)e−µ|r−x i |

|r − x i |
d3r .

Inserting n(r) and changing variables in the same way as in the previous integral
y = r − x i , we get d3y = d3r . This gives

Ĥel−b = −e2Ne

Ω

∑

i=1N

∫
e−µ|y|

|y |
d3y = −4πe2Ne

Ω

N∑

i=1

∫ ∞

0
ye−µy dy .

We have already seen this type of integral. The answer is

Ĥel−b = −4πe2Ne

Ω

N∑

i=1

1

µ2
,

which gives

Ĥel−b = −e2 N2
e

Ω

4π

µ2
.
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The electron gas, total energy

Finally, we need to evaluate Ĥel . This term reads

Ĥel =

Ne∑

i=1

p̂2
i

2me
+

e2

2

∑

i 6=j

e−µ|r i−r j |

r i − r j
.

The last term represents the repulsion between two electrons. It is a central symmetric
interaction and is translationally invariant. The potential is given by the expression

v(|r |) = e2 eµ|r|

|r |
,

which we derived last week in connection with the Hartree-Fock derivation.
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The electron gas, total energy

The results becomes

∫
v(|r |)e−iq·r d3r = e2

∫
eµ|r|

|r |
e−iq·r d3r = e2 4π

µ2 + q2
,

which gives us

Ĥel =
∑

kσ

~
2k2

2m
â†

kσâkσ +
e2

2Ω

∑

σσ′

∑

kpq

4π

µ2 + q2
â†

k+q,σâ†
p−q,σ′

âpσ′ âkσ

=
∑

kσ

~
2k2

2me
â†

kσâkσ +
e2

2Ω

∑

σσ′

∑

kpq
q 6=0

4π

q2
â†

k+q,σâ†
p−q,σ′

âpσ′ âkσ+

e2

2Ω

∑

σσ′

∑

kp

4π

µ2
â†

k,σ â†
p,σ′

âpσ′ âkσ ,

where in the last sum we have split the sum over q in two parts, one with q 6= 0 and

one with q = 0. In the first term we also let µ→ 0.

208 / 402



The electron gas, total energy

The last term has the following set of creation and annihilation operatord

â†
k,σ â†

p,σ′
âpσ′ âkσ = −â†

k,σ â†
p,σ′

âkσ âpσ′ = −â†
k,σ âpσ′δpk δσσ′ + â†

k,σ âkσ â†
p,σ′

âpσ′ ,

which gives ∑

σσ′

∑

kp

â†
k,σâ†

p,σ′
âpσ′ âkσ = N̂2 − N̂,

where we have used the expression for the number operator. The term to the first

power in N̂ goes to zero in the thermodynamic limit since we are interested in the

energy per electron E0/Ne. This term will then be proportional with 1/(Ωµ2). In the

thermodynamical limit Ω → ∞ we can set this term equal to zero.
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The electron gas, total energy

We then get

Ĥel =
∑

kσ

~2k2

2m
â†

kσâkσ +
e2

2Ω

∑

σσ′

∑

kpq
q 6=0

4π

q2
â†

k+q,σ â†
p−q,σ′

âpσ′ âkσ +
e2

2

N2
e

Ω

4π

µ2
.

The total Hamiltonian is Ĥ = Ĥel + Ĥb + Ĥel−b . Collecting all our terms we end up with

Ĥ0 =
∑

kσ

~2k2

2me
â†

kσâkσ,

and

ĤI =
e2

2Ω

∑

σσ′

∑

kpq
q 6=0

4π

q2
â†

k+q,σâ†
p−q,σ′

âpσ′ âkσ ,
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The electron gas, total energy

Now we need E0 = 〈Φ0|Ĥ|Φ0〉. The kinetic energy gives simply

〈Φ0|Ĥ0|Φ0〉 =
~2Ω

10π2me
k5

F .
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The electron gas, total energy

The expectation value for ĤI is

〈Φ0|ĤI |0〉 = 〈Φ0|




e2

2Ω

∑

σσ′

∑

kpq
q 6=0

4π

q2
â†

k+q,σâ†
p−q,σ′

âpσ′ âkσ



 |Φ0〉

=
e2

2Ω

∑

σσ′

∑

kpq
q 6=0

4π

q2
〈Φ0|â†

k+q,σ â†
p−q,σ′

âpσ′ âkσ |Φ0〉.
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The electron gas, total energy

For the matrix element to be different from zero 0, we must have k + q = p and
σ = σ′. We must also have p ≤ kF and k ≤ kF . We get

〈Φ0|ĤI |0〉 = −4πe2

2Ω

∑

σ

∑

k,p 6=k
k,p≤kF

1

|p − k |2
= −4πe2

Ω

∑

k ,p 6=k
k,p≤kF

1

|p − k |2
.

Changing to an integral we get

〈Φ0|ĤI |Φ0〉 = −4πe2

Ω

(
Ω

(2π)3

)2 ∫ kF

0

∫ kF

0

1

|p − k |2
d3k d3p.
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The electron gas, total energy

Using spherical coordinates

∫ kF

0

∫ kF

0

1

|p − k |2 d3k d3p = 2π
∫ kF

0

∫ π

0

∫ kF

0

k2 sin θ

p2 + k2 − 2kp cos θ
dkdθ d3p,

since p is a constant in the integral over k . First we integrate over θ, resulting in

∫ kF

0

∫ kF

0

1

|p − k |2
d3k d3p = 2π

∫ kF

0

∫ kF

0

[
k2 ln

(
k2 + p2 − 2kp cos θ

)

2kp

]θ=π

θ=0

dk d3p

= π

∫ kF

0

∫ kF

0

k

p
ln
(
(p + k)2

(p − k)2

)
dk d3p

= 2π
∫ kF

0

∫ kF

0

k

p
ln

∣∣∣∣
p + k

p − k

∣∣∣∣ dk d3p

= 2π
∫ kF

0

∫ kF

0

k

p
ln |p + k | − k

p
ln |k − p| dk d3p.
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The electron gas, total energy

We use the following relations

∫
k ln |k + p| = 1

2
k2 ln |k + p| − k2

4
− 1

2
p2 ln |k + p|+ kp

2
+ C,

which give

∫ kF

0
k ln |k + p| = 1

2
k2

F ln |kF + p| −
k2

F

4
− 1

2
p2 ln |kF + p|+ kF p

2
+

1

2
p2 ln p,

and

∫ kF

0
k ln |k − p| = 1

2
k2

F ln |kF − p| −
k2

F

4
− 1

2
p2 ln |kF − p| − kF p

2
+

1

2
p2 ln p.
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The electron gas, total energy

Summing up we get

∫ kF

0

∫ kF

0

1

|p − k |2
d3k d3p = 2π

∫ kF

0

1

p

(
1

2
k2

F ln

∣∣∣∣
kF + p

kF − p

∣∣∣∣ −
1

2
p2 ln

∣∣∣∣
kF + p

kF − p

∣∣∣∣ + kF p
)

d3p

= 2πkF
4

3
πk3

F + π

∫ kF

0

(
k2

F

p
− p

)

ln

∣∣∣∣
kF + p

kF − p

∣∣∣∣ d3p

=
8π2

3
k4

F + 4π2
∫ kF

0

(
k2

F p − p3
)

ln

∣∣∣∣
kF + p

kF − p

∣∣∣∣ dp.
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The electron gas, total energy

Utilizing ∫ kF

0
p ln |p + kF | dp =

1

4
k2

F (2 ln kF + 1) ,

∫ kF

0
p3 ln |p + kF | dp =

1

48
k4

F (12 ln kF + 7) ,

∫ kF

0
p ln |p − kF | dp =

1

4
k2

F (2 ln kF − 3) ,

and ∫ kF

0
p3 ln |p − kF | dp =

1

48
k4

F (12 ln kF − 25) .
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The electron gas, total energy
This gives

∫ kF

0

∫ kF

0

1

|p − k |2
d3k d3p =

8π2

3
πk4

F + 4π2
(

k2
F

1

4
k2

F (2 ln kF + 1)− k2
F

1

4
k2

F (2 ln kF − 3)−

1

48
k4

F (12 ln kF + 7) +
1

48
k4

F (12 ln kF − 25)
)
,

which we can bring together to

∫ kF

0

∫ kF

0

1

|p − k |2
d3k d3p =

8

3
π2k4

F + 4π2
(

k4
F − 2

3
k4

F

)
= 4π2k4

F .

Inserting this in the expression for 〈Φ0|ĤI |Φ0〉 we obtain

〈Φ0|ĤI |Φ0〉 = −4πe2

Ω

(
Ω

(2π)3

)2

4π2k4
F .

We get
E0

N
=

1

N

(
~

2Ω

10π2m
k5

F − 4πe2

Ω

(
Ω

(2π)3

)2

4π2k4
F

)

.
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The electron gas, total energy

Inserting kF we get

E0

N
=

~
2Ω

10π2mN
k5

F − 4πe2

ΩN

(
Ω

(2π)3

)2

4π2k4
F

=
~2Ω

10π2mN
k5

F − e2Ω

4π3N
k4

F

=
~

2Ω

10π2mN

(
3π2N

Ω

)5/3

− e2Ω

4π3N

(
3π2N

Ω

)4/3

=
~2N2/3

Ω2/3

(3π2)5/3

10π2m
− e2Ω1/3

N1/3

(3π2)4/3

4π3
.
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The electron gas, total energy

Finally, we introduce

r0 =

(
3Ω

4πN

)1/3

, og a0 =
~

2

e2m
,

which gives

E0

N
= ~

2 (3π
2)5/3

10π2m

(
3

4π

)2/3 1

r2
0

− e2 (3π
2)4/3

4π3

(
3

4π

)1/3 1

r0

=
1

2

(
~2

m

2.21

r2
0

− e2 0.916

r0

)
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The electron gas, total energy

Finally we define rs = r0/a0, and get

E0

N
=

e2

2a0

(
2.21

r2
s

− 0.916

rs

)
.

To find the minimum we take the partial derivative

∂

∂rs

(
E0

N

)
= 0 ⇒ 2 × 2.21

r3
s

− 0.916

r2
s

= 0,

which results in

rs =
2 × 2.21

0.916
≈ 4.83.
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Topics for Week 41

Configuration interaction theory

◮ Monday:
◮ Summary from last week on the electron gas
◮ Calculating the total energy for the electron gas (slides

only, and first hour)
◮ Configuration interaction theory
◮ Wednesday:
◮ No lecture
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Configuration interaction theory, understanding
excitations

We always start with a ’vacuum’ reference state, the Slater determinant for the believed
dominating configuration of the ground state. Here a simple case of eight particles with
single-particle wave functions φi(xi )

Φ0 =
1√
8!





φ1(x1) φ1(x2) . . . φ1(x8)
φ2(x1) φ2(x2) . . . φ2(x8)
φ3(x1) φ3(x2) . . . φ3(x8)
. . . . . . . . . . . .
. . . . . . . . . . . .

φ8(x1) φ8(x2) . . . φ8(x8)





We can allow for a linear combination of excitations beyond the ground state, viz., we
could assume that we include 1p-1h and 2p-2h excitations

Ψ2p−2h = (1 + T1 + T2)Φ0

T1 is a 1p-1h excitation while T2 is a 2p-2h excitation.
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Configuration interaction theory

The single-particle wave functions of

Φ0 =
1√
8!





φ1(x1) φ1(x2) . . . φ1(x8)
φ2(x1) φ2(x2) . . . φ2(x8)
φ3(x1) φ3(x2) . . . φ3(x8)
. . . . . . . . . . . .
. . . . . . . . . . . .

φ8(x1) φ8(x2) . . . φ8(x8)





are normally chosen as the solutions of the so-called non-interacting part of the

Hamiltonian, H0. A typical basis is provided by the harmonic oscillator problem or

hydrogen-like wave functions.
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Excitations in Pictures

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛

Φ0ǫF

ǫ4
ǫ3

ǫ2
ǫ1

✒

❘

❛

From T1

T1 ∝ a+
a ai

❛

✒

❘

to T 2
1

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛

Φ0ǫF

ǫ4
ǫ3

ǫ2
ǫ1

✒

❘

❛ ❛

✒

❘

From T2

T2 ∝ a+
a a+

b ajai

❛❛

✒

❘

✒

❘

to T 2
2
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Excitations in Pictures

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛

Φ0ǫF

ǫ4
ǫ3

ǫ2
ǫ1

✒

❘

❛

From T1

T1 ∝ a+
a ai

❛

✒

❘

to T 2
1

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛

Φ0ǫF

ǫ4
ǫ3

ǫ2
ǫ1

✒

❘

❛ ❛

✒

❘

From T2

T2 ∝ a+
a a+

b ajai

❛❛

✒

❘

✒

❘

to T 2
2
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Excitations in Pictures

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛
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ǫ2
ǫ1

✒

❘

❛

From T1

T1 ∝ a+
a ai

❛

✒

❘

to T 2
1

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛

Φ0ǫF

ǫ4
ǫ3

ǫ2
ǫ1

✒

❘
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✒

❘

From T2

T2 ∝ a+
a a+

b ajai

❛❛

✒

❘

✒

❘

to T 2
2
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Excitations in Pictures

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛
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❛
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❘
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❛ ❛ ❛ ❛

❛ ❛ ❛ ❛

Φ0ǫF

ǫ4
ǫ3

ǫ2
ǫ1

✒

❘

❛ ❛

✒

❘

From T2

T2 ∝ a+
a a+

b ajai

❛❛

✒

❘

✒

❘

to T 2
2

228 / 402



Excitations in Pictures

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛
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✒
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✒
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✒
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✒
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Excitations

❛ ❛ ❛ ❛

❛ ❛ ❛ ❛

ǫF

ǫ4
ǫ3

ǫ2
ǫ1

✒

❘

❛

❛

✒

❘

❛❛

✒

❘

✒

❘

2p − 2h
1p − 1h ❅❅❘
❄❅❅❘

Truncations

◮ Truncated basis of Slater
determinants with 2p − 2h has
Ψ2p−2h = (1 + T1 + T2)Φ0

◮ Energy contains then

E2p−2h =

〈Φ0(1+T †
1+T †

2)|H|(1+T1+T2)Φ0〉
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Topics for Week 42
Configuration Interaction theory and Perturbation theory

◮ Monday:
◮ Configuration interaction theory
◮ Wednesday:
◮ Configuration interaction theory (Only lecture notes from

the blacboard)
◮ Start many-body perturbation theory,

Rayleigh-Schrödinger and Brillouin-Wigner perturbation
theory (chapter 2 of Shavitt and Bartlett)

◮ Rayleigh-Schrödinger and Brillouin-Wigner perturbation
theory

Exercises this week: We will discuss ( as a regular lecture)
exercises 18 and 19. These results, in particular the density
dependence of the energy, will be used in our discussion of
density functional theory later this semester.
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Configuration interaction (CI) theory

We have defined the ansatz for the ground state as

|Φ0〉 =
(

n∏

i=1

â†
i

)

|0〉,

where the i define different single-particle states up to the Fermi level. We have
assumed that we have n fermions. A given one-particle-one-hole (1p1h) state can be
written as

|Φa
i 〉 = â†

aâi |Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†

aâ†
bâj âi |Φ0〉,

and a general npnh state as

|Φabc...
ijk... 〉 = â†

aâ†
bâ†

c . . . âk âj âi |Φ0〉.

232 / 402



Configuration interaction (CI) theory

We can then expand our exact state function for the ground state as

|Ψ0〉 = C0|Φ0〉+
∑

ai

Ca
i |Φa

i 〉+
∑

abij

Cab
ij |Φab

ij 〉 + · · · = (C0 + Ĉ)|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑

ai

Ca
i â†

aâi +
∑

abij

Cab
ij â†

aâ†
b âj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by hypothesis
non-zero, we may arbitrarily set C0 = 1 with corresponding proportional changes in all
other coefficients. Using this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ)|Φ0〉.
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Configuration interaction (CI) theory

We rewrite
|Ψ0〉 = C0|Φ0〉+

∑

ai

Ca
i |Φa

i 〉+
∑

abij

Cab
ij |Φab

ij 〉+ . . . ,

in a more compact form as

|Ψ0〉 =
∑

PH

CP
HΦP

H =

(
∑

PH

CP
H ÂP

H

)

|Φ0〉,

where H stands for 0, 1, . . . , n hole states and P for 0, 1, . . . , n particle states. Our
requirement of unit normalization gives

〈Ψ0|Φ0〉 =
∑

PH

|CP
H |2 = 1,

and the energy can be written as

E = 〈Ψ0|Ĥ|Φ0〉 =
∑

PP′HH′

C∗P
H 〈ΦP

H |Ĥ|ΦP′

H′〉CP′

H′ .
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Configuration interaction (CI) theory

Normally
E = 〈Ψ0|Ĥ|Φ0〉 =

∑

PP′HH′

C∗P
H 〈ΦP

H |Ĥ|ΦP′

H′〉CP′

H′ ,

is solved by diagonalization setting up the Hamiltonian matrix defined by the basis of all
possible Slater determinants. A diagonalization is equivalent to finding the variational
minimum of

〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉,

where λ is a variational multiplier to be identified with the energy of the system. The
minimization process results in

δ
[
〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉

]
=
∑

P′H′

{
δ[C∗P

H ]〈ΦP
H |Ĥ|ΦP′

H′〉CP′

H′ + C∗P
H 〈ΦP

H |Ĥ|ΦP′

H′〉δ[CP′

H′ ].

. −λ(δ[C∗P
H ]CP′

H′ + C∗P
H δ[CP′

H′ ]
}
= 0.

Since the coefficients δ[C∗P
H ] and δ[CP′

H′
] are complex conjugates it is necessary and

sufficient to require the quantities that multiply with δ[C∗P
H ] to vanish.
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Configuration interaction (CI) theory

This leads to ∑

P′H′

〈ΦP
H |Ĥ|ΦP′

H′〉CP′

H′ − λCP
H = 0,

for all sets of P and H.
If we then multiply by the corresponding C∗P

H and sum over PH we obtain

∑

PP′HH′

C∗P
H 〈ΦP

H |Ĥ|ΦP′

H′〉CP′

H′ − λ
∑

PH

|CP
H |2 = 0,

leading to the identification λ = E . This means that we have for all PH sets

∑

P′H′

〈ΦP
H |Ĥ − E|ΦP′

H′ 〉 = 0. (9.0.142)
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Configuration interaction (CI) theory

An alternative way to derive the last equation is to start from

(Ĥ − E)|Ψ0〉 = (Ĥ − E)
∑

P′H′

CP′

H′ |ΦP′

H′〉 = 0,

and if this equation is successively projected against all ΦP
H in the expansion of Ψ, then

the last equation on the previous slide results. As stated previously, one solves this
equation normally by diagonalization. If we are able to solve this equation exactly (that
is numerically exactly) in a large Hilbert space (it will be truncated in terms of the
number of single-particle states included in the definition of Slater determinants), it can
then serve as a benchmark for other many-body methods which approximate the
correlation operator Ĉ.

For reasons to come (link with Coupled-Cluster theory and Many-Body perturbation

theory), we will rewrite Eq. (9.0.142) as a set of coupled non-linear equations in terms

of the unknown coefficients CP
H .

237 / 402



Configuration interaction (CI) theory

To see this, we look at 〈ΦP
H | = 〈Φ0| in Eq. (9.0.142), that is we multiply with 〈Φ0| from

the left in
(Ĥ − E)

∑

P′H′

CP′

H′ |ΦP′

H′〉 = 0,

and we assume that we have a two-body operator at most. Using Slater’s rule gives
then and equation for the correlation energy in terms of Ca

i and Cab
ij . We get then

〈Φ0|Ĥ − E|Φ0〉+
∑

ai

〈Φ0|Ĥ − E|Φa
i 〉Ca

i +
∑

abij

〈Φ0|Ĥ − E|Φab
ij 〉Cab

ij = 0,

or
E − E0 = ∆E =

∑

ai

〈Φ0|Ĥ|Φa
i 〉Ca

i +
∑

abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij ,

where the E0 is the reference energy and ∆E becomes the correlation energy. We

have already computed the expectation values 〈Φ0|Ĥ|Φa
i and 〈Φ0|Ĥ|Φab

ij 〉.
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Configuration interaction (CI) theory

We can rewrite

E − E0 = ∆E =
∑

ai

〈Φ0|Ĥ|Φa
i 〉Ca

i +
∑

abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij ,

as
∆E =

∑

ai

〈i |̂f |a〉Ca
i +

∑

abij

〈ij |v̂ |ab〉Cab
ij .

This equation determines the correlation energy but not the coefficients C. We need
more equations. Our next step is to set up

〈Φa
i |Ĥ−E|Φ0〉+

∑

bj

〈Φa
i |Ĥ−E|Φb

j 〉Cb
j +
∑

bcjk

〈Φa
i |Ĥ−E|Φbc

jk 〉Cbc
jk +

∑

bcdjkl

〈Φa
i |Ĥ−E|Φbcd

jkl 〉Cbcd
jkl = 0,

as this equation will allow us to find an expression for the coefficents Ca
i since we can

rewrite this equation as

〈i |̂f |a〉+〈Φa
i |Ĥ|Φa

i 〉Ca
i +
∑

bj 6=ai

〈Φa
i |Ĥ|Φb

j 〉Cb
j +
∑

bcjk

〈Φa
i |Ĥ|Φbc

jk 〉Cbc
jk +

∑

bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl 〉Cbcd
jkl = 0.
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Configuration interaction (CI) theory
We rewrite this equation as

Ca
i = −(〈Φa

i |Ĥ|Φa
i )

−1



〈i |̂f |a〉+
∑

bj 6=ai

〈Φa
i |Ĥ|Φb

j 〉Cb
j + .

.
∑

bcjk

〈Φa
i |Ĥ|Φbc

jk 〉Cbc
jk +

∑

bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl 〉Cbcd
jkl



 .

Since these equations are solved iteratively ( that is we can start with a guess for the
coefficients Ca

i ), it is common to start the iteration by setting

Ca
i = − 〈i |̂f |a〉

〈Φa
i |Ĥ|Φa

i 〉
,

and the denominator can be written as

Ca
i =

〈i |̂f |a〉
〈i |̂f |i〉 − 〈a|̂f |a〉+ 〈ai |v̂ |ai〉

.

The observant reader will however see that we need an equation for Cbc
jk and Cbcd

jkl as

well. To find equations for these coefficients we need then to continue our

multiplications from the left with the various ΦP
H terms.
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Configuration interaction (CI) theory

For Cbc
jk we need then

〈Φab
ij |Ĥ − E|Φ0〉+

∑

kc

〈Φab
ij |Ĥ − E|Φc

k 〉Cc
k +

∑

cdkl

〈Φab
ij |Ĥ − E|Φcd

kl 〉Ccd
kl +

∑

cdeklm

〈Φab
ij |Ĥ − E|Φcde

klm 〉Ccde
klm +

∑

cdefklmn

〈Φab
ij |Ĥ − E|Φcdef

klmn〉Ccdef
klmn = 0,

and we can isolate the coefficients Ccd
kl in a similar way as we did for the coefficients

Ca
i . At the end we can rewrite our solution of the Schrödinger equation in terms of n

coupled equations for the coefficients CP
H . This is a very cumbersome way of solving

the equation. However, by using this iterative scheme we can illustrate how we can

compute the various terms in the wave operator or correlation operator Ĉ. We will later

identify the calculation of the various terms CP
H as parts of different many-body

approximations to full CI. In particular, we will relate this non-linear scheme with

Coupled Cluster theory and many-body perturbation theory.
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Configuration interaction (CI) theory

If we use a Hartree-Fock basis, can you simplify this equation

∆E =
∑

ai

〈i |̂f |a〉Ca
i +

∑

abij

〈ij |v̂ |ab〉Cab
ij .

and what about

〈Φa
i |Ĥ−E|Φ0〉+

∑

bj

〈Φa
i |Ĥ−E|Φb

j 〉Cb
j +
∑

bcjk

〈Φa
i |Ĥ−E|Φbc

jk 〉Cbc
jk +

∑

bcdjkl

〈Φa
i |Ĥ−E|Φbcd

jkl 〉Cbcd
jkl = 0,

and

〈Φab
ij |Ĥ − E|Φ0〉+

∑

kc

〈Φab
ij |Ĥ − E|Φc

k 〉Cc
k +

∑

cdkl

〈Φab
ij |Ĥ − E|Φcd

kl 〉Ccd
kl +

∑

cdeklm

〈Φab
ij |Ĥ − E|Φcde

klm〉Ccde
klm +

∑

cdefklmn

〈Φab
ij |Ĥ − E|Φcdef

klmn〉Ccdef
klmn = 0?
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Topics for Week 43

Time-independent Perturbation theory

◮ Monday:
◮ Derivation of Brillouin-Wigner and Rayleigh-Schrödinger

perturbation theory
◮ Wave operator in perturbation theory
◮ Wednesday:
◮ Discussion of diagrams and derivation of diagram rules

The material can be found in chapters 4 and 5 of Shavitt and
Bartlett. We will finish exercise 19 and start with exercise 24.
This exercises deals with the derivation of
Rayleigh-Schrödinger and Brillouin-Wigner perturbation theory.
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Perturbation theory (time-independent)

We assume here that we are only interested in the ground state of the system and
expand the exact wave function in term of a series of Slater determinants

|Ψ0〉 = |Φ0〉+
∞∑

m=1

Cm|Φm〉,

where we have assumed that the true ground state is dominated by the solution of the
unperturbed problem, that is

Ĥ0|Φ0〉 = W0|Φ0〉.

The state |Ψ0〉 is not normalized, rather we have used an intermediate normalization

〈Φ0|Ψ0〉 = 1 since we have 〈Φ0|Φ0〉 = 1.
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Perturbation theory (time-independent)

The Schrödinger equation is
Ĥ|Ψ0〉 = E|Ψ0〉,

and multiplying the latter from the left with 〈Φ0| gives

〈Φ0|Ĥ|Ψ0〉 = E〈Φ0|Ψ0〉 = E,

and subtracting from this equation

〈Ψ0|Ĥ0|Φ0〉 = W0〈Ψ0|Φ0〉 = W0,

and using the fact that the both operators Ĥ and Ĥ0 are hermitian results in

∆E = E − W0 = 〈Φ0|ĤI |Ψ0〉,

which is an exact result. We call this quantity the correlation energy.
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Perturbation theory (time-independent)

This equation forms the starting point for all perturbative derivations. However, as it
stands it represents nothing but a mere formal rewriting of Schrödinger’s equation and
is not of much practical use. The exact wave function |Ψ0〉 is unknown. In order to
obtain a perturbative expansion, we need to expand the exact wave function in terms of
the interaction ĤI .
Here we have assumed that our model space defined by the operator P̂ is
one-dimensional, meaning that

P̂ = |Φ0〉〈Φ0|,

and

Q̂ =
∞∑

m=1

|Φm〉〈Φm|.
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Perturbation theory (time-independent)

We can thus rewrite the exact wave function as

|Ψ0〉 = (P̂ + Q̂)|Ψ0〉 = |Φ0〉 + Q̂|Ψ0〉.

Going back to the Schrödinger equation, we can rewrite it as, adding and a subtracting
a term ω|Ψ0〉 as (

ω − Ĥ0

)
|Ψ0〉 =

(
ω − E + ĤI

)
|Ψ0〉,

where ω is an energy variable to be specified later.
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Perturbation theory (time-independent)

We assume also that the resolvent of
(
ω − Ĥ0

)
exits, that is it has an inverse which

defined the unperturbed Green’s function as

(
ω − Ĥ0

)−1
=

1(
ω − Ĥ0

) .
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Perturbation theory (time-independent)

We can rewrite Schrödinger’s equation as

|Ψ0〉 =
1

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

and multiplying from the left with Q̂ results in

Q̂|Ψ0〉 =
Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

which is possible since we have defined the operator Q̂ in terms of the eigenfunctions

of Ĥ.
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Perturbation theory (time-independent)

These operators commute meaning that

Q̂
1(

ω − Ĥ0

) Q̂ = Q̂
1(

ω − Ĥ0

) =
Q̂(

ω − Ĥ0

) .

With these definitions we can in turn define the wave function as

|Ψ0〉 = |Φ0〉+
Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉.
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Perturbation theory (time-independent)

|Ψ0〉 = |Φ0〉+
Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉.

This equation is again nothing but a formal rewrite of Schrödinger’s equation and does

not represent a practical calculational scheme. It is a non-linear equation in two

unknown quantities, the energy E and the exact wave function |Ψ0〉. We can however

start with a guess for |Ψ0〉 on the right hand side of the last equation.

251 / 402



Perturbation theory (time-independent)

The most common choice is to start with the function which is expected to exhibit the
largest overlap with the wave function we are searching after, namely |Φ0〉. This can
again be inserted in the solution for |Ψ0〉 in an iterative fashion and if we continue along
these lines we end up with

|Ψ0〉 =
∞∑

i=0

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

for the wave function and

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

which is now a perturbative expansion of the exact energy in terms of the interaction ĤI

and the unperturbed wave function |Ψ0〉.
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Brillouin-Wigner theory

In our equations for |Ψ0〉 and ∆E in terms of the unperturbed solutions |Φi〉 we have
still an undetermined parameter ω and a dependecy on the exact energy E . Not much
has been gained thus from a practical computational point of view.
In Brilluoin-Wigner perturbation theory it is customary to set ω = E . This results in the
following perturbative expansion for the energy ∆E

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|
(

ĤI + ĤI
Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)

|Φ0〉.
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Brillouin-Wigner theory

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|
(

ĤI + ĤI
Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)

|Φ0〉.

This expression depends however on the exact energy E and is again not very
convenient from a practical point of view. It can obviously be solved iteratively, by
starting with a guess for E and then solve till some kind of self-consistency criterion
has been reached.

Actually, the above expression is nothing but a rewrite again of the full Schrödinger

equation.
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Rayleigh-Schrödinger (RS) perturbation theory

In RS perturbation theory we set ω = W0 and obtain the following expression for the
energy difference

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

W0 − Ĥ0

(
ĤI −∆E)

}i

|Φ0〉 =

〈Φ0|
(

ĤI + ĤI
Q̂

W0 − Ĥ0
(ĤI −∆E) + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E)

Q̂

W0 − Ĥ0
(ĤI −∆E) + . . .

)

|Φ0〉.
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Rayleigh-Schrödinger perturbation theory

Recalling that Q̂ commutes with Ĥ0 and since ∆E is a constant we obtain that

Q̂∆E|Φ0〉 = Q̂∆E|Q̂Φ0〉 = 0.

Inserting this results in the expression for the energy results in

∆E = 〈Φ0|
(

ĤI + ĤI
Q̂

W0 − Ĥ0
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E)

Q̂

W0 − Ĥ0
ĤI + . . .

)

|Φ0〉.
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Rayleigh-Schrödinger perturbation theory

We can now this expression in terms of a perturbative expression in terms of ĤI where
we iterate the last expression in terms of ∆E

∆E =
∞∑

i=1

∆E(i).

We get the following expression for ∆E(i)

∆E(1) = 〈Φ0|ĤI |Φ0〉,

which is just the contribution to first order in perturbation theory,

∆E(2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉,

which is the contribution to second order.
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Rayleigh-Schrödinger perturbation theory

∆E(3) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤIΦ0〉−〈Φ0|ĤI

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI |Φ0〉,

being the third-order contribution. The last term is a so-called unlinked diagram!
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Rayleigh-Schrödinger perturbation theory

The fourth order term is

∆E(4) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤIΦ0〉−

〈Φ0|ĤI
Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤIΦ0〉

−〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤIΦ0〉

+〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤIΦ0〉−

〈Φ0|ĤI
Q̂

W0 − Ĥ0
〈Φ0|ĤI

Q̂

W0 − Ĥ0
ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI |Φ0〉,
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Topics for Week 44

Perturbation theory

◮ Monday:
◮ Summary from last week
◮ Diagram examples, rules and unlinked diagrams
◮ Wednesday:
◮ Diagram rules and examples
◮ Introduction to time-dependent perturbation theory
◮ Schrödinger, Heisenberg and interaction pictures
◮ Linked diagram theorem

Exercises 24, 25, and 28.
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Diagram rules

◮ Draw all topologically distinct diagrams by linking up particle and hole lines with
various interaction vertices. Two diagrams can be made topologically equivalent
by deformation of fermion lines under the restriction that the ordering of the
vertices is not changed and particle lines and hole lines remain particle and hole
lines.

◮ For the explicit evaluation of a diagram: Sum freely over all internal indices and
label all lines.

◮ Extract matrix elements for the one-body operators (if present) as 〈out|̂f |in〉 and
for the two-body operator (if present) as 〈left out, right out||v̂ ||left in, right in〉.
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Diagram rules

◮ Calculate the phase factor: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent pair of lines (particle lines or hole

lines) that begin at the same interaction vertex and end at the same (yet different
from the first) interaction vertex.

◮ For each interval between successive interaction vertices with minimum one
single-particle state above the Fermi level with n hole states and m particle
states there is a factor

1
∑n

i ǫi −
∑m

a ǫa
.
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Topics for Week 45

Time-dependent Perturbation theory

◮ Monday:
◮ Summary from last week
◮ Pictures and adiabatic hypothesis
◮ Goldstone’s Linked diagram theorem and Gell-Mann’s and

Low’s theorem
◮ Linked and unlinked diagrams, examples
◮ Wednesday:
◮ Gell-Mann’s and Low’s theorem
◮ Wick’s theorem for time-dependent products
◮ More on diagram rules and examples

Exercises 26 and 30.
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Schrödinger picture

The time-dependent Schrödinger equation (or equation of motion) reads

ı~
∂

∂t
|ΨS(t)〉 = ĤΨS(t)〉,

where the subscript S stands for Schrödinger here. A formal solution is given by

|ΨS(t)〉 = exp (−ıĤ(t − t0)/~)|ΨS(t0)〉.

The Hamiltonian Ĥ is hermitian and the exponent represents a unitary operator with an

operation carried ut on the wave function at a time t0.
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Interaction picture

Our Hamiltonian is normally written out as the sum of an unperturbed part Ĥ0 and an
interaction part ĤI , that is

Ĥ = Ĥ0 + ĤI .

In general we have [Ĥ0, ĤI ] 6= 0 since [T̂ , V̂ ] 6= 0. We wish now to define a unitary
transformation in terms of Ĥ0 by defining

|ΨI(t)〉 = exp (ıĤ0t/~)|ΨS(t)〉,

which is again a unitary transformation carried out now at the time t on the wave

function in the Schrödinger picture.
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Interaction picture

We can easily find the equation of motion by taking the time derivative

ı~
∂

∂t
|ΨI(t)〉 = −Ĥ0 exp (ıĤ0t/~)ΨS(t)〉 + exp (ıĤ0t/~)ı~

∂

∂t
ΨS(t)〉.
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Interaction picture

Using the definition of the Schrödinger equation, we can rewrite the last equation as

ı~
∂

∂t
|ΨI(t)〉 = exp (ıĤ0t/~)

[
−Ĥ0 + Ĥ0 + ĤI

]
exp (−ıĤ0t/~)ΨI(t)〉,

which gives us

ı~
∂

∂t
|ΨI(t)〉 = ĤI(t)ΨI(t)〉,

with
ĤI(t) = exp (ıĤ0t/~)ĤI exp (−ıĤ0t/~).
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Interaction picture

The order of the operators is important since Ĥ0 and ĤI do generally not commute. The
expectation value of an arbitrary operator in the interaction picture can now be written
as

〈Ψ′
S(t)|ÔS |ΨS(t)〉 = 〈Ψ′

I(t)| exp (ıĤ0t/~)ÔI exp (−ıĤ0t/~)|ΨI(t)〉,

and using the definition

ÔI(t) = exp (ıĤ0t/~)ÔI exp (−ıĤ0t/~),

we obtain
〈Ψ′

S(t)|ÔS |ΨS(t)〉 = 〈Ψ′
I(t)|ÔI(t)|ΨI(t)〉,

stating that a unitary transformation does not change expectation values!
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Interaction picture

If the take the time derivative of the operator in the interaction picture we arrive at the
following equation of motion

ı~
∂

∂t
ÔI(t) = exp (ıĤ0t/~)

[
ÔSĤ0 − Ĥ0ÔS

]
exp (−ıĤ0t/~) =

[
ÔI(t), Ĥ0

]
.

Here we have used the time-independence of the Schrödinger equation together with

the observation that any function of an operator commutes with the operator itself.

269 / 402



Interaction picture

In order to solve the equation of motion equation in the interaction picture, we define a
unitary operator time-development operator Û(t, t ′). Later we will derive its connection
with the linked-diagram theorem, which yields a linked expression for the actual
operator. The action of the operator on the wave function is

|ΨI(t)〉 = Û(t, t0)|ΨI(t0)〉,

with the obvious value Û(t0, t0) = 1.
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Interaction picture

The time-development operator U has the properties that

Û†(t, t ′)Û(t, t ′) = Û(t, t ′)Û†(t, t ′) = 1,

which implies that U is unitary

Û†(t, t ′) = Û−1(t, t ′).

Further,
Û(t, t ′)Û(t ′t ′′) = Û(t, t ′′)

and
Û(t, t ′)Û(t ′, t) = 1,

which leads to
Û(t, t ′) = Û†(t ′, t).
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Interaction picture

Using our definition of Schrödinger’s equation in the interaction picture, we can then
construct the operator Û. We have defined

|ΨI(t)〉 = exp (ıĤ0t/~)|ΨS(t)〉,

which can be rewritten as

|ΨI(t)〉 = exp (ıĤ0t/~) exp (−ıĤ(t − t0)/~)|ΨS(t0)〉,

or
|ΨI(t)〉 = exp (ıĤ0t/~) exp (−ıĤ(t − t0)/~) exp (−ıĤ0t0/~)|ΨI(t0)〉.
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Interaction picture

From the last expression we can define

Û(t, t0) = exp (ıĤ0t/~) exp (−ıĤ(t − t0)/~) exp (−ıĤ0t0/~).

It is then easy to convince oneself that the properties defined above are satisfied by the

definition of Û.
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Interaction picture

We derive the equation of motion for Û using the above definition. This results in

ı~
∂

∂t
Û(t, t0) = ĤI(t)Û(t, t0),

which we integrate from t0 to a time t resulting in

Û(t, t0)− Û(t0, t0) = Û(t, t0)− 1 = − ı

~

∫ t

t0

dt ′ĤI(t
′)Û(t ′, t0),

which can be rewritten as

Û(t, t0) = 1 − ı

~

∫ t

t0

dt ′ĤI(t
′)Û(t ′, t0).
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Interaction picture

We can solve this equation iteratively keeping in mind the time-ordering of the of the
operators

Û(t, t0) = 1 − ı

~

∫ t

t0

dt ′ĤI(t
′) +

(−ı
~

)2 ∫ t

t0

dt ′
∫ t′

t0

dt ′′ĤI(t
′)ĤI(t

′′) + . . .

The third term can be written as

∫ t

t0

dt ′
∫ t′

t0

dt ′′ĤI(t
′)ĤI(t

′′) =
1

2

∫ t

t0

dt ′
∫ t′

t0

dt ′′ĤI(t
′)ĤI(t

′′)+
1

2

∫ t

t0

dt ′′
∫ t

t′′
dt ′ĤI(t

′)ĤI(t
′′).
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Interaction picture

We obtain this expression by changing the integration order in the second term via a
change of the integration variables t ′ and t ′′ in

1

2

∫ t

t0

dt ′
∫ t′

t0

dt ′′ĤI(t
′)ĤI(t

′′).

We can rewrite the terms which contain the double integral as

∫ t

t0

dt ′
∫ t′

t0

dt ′′ĤI(t
′)ĤI(t

′′) =

1

2

∫ t

t0

dt ′
∫ t′

t0

dt ′′
[
ĤI(t

′)ĤI(t
′′)Θ(t ′ − t ′′) + ĤI(t

′)ĤI(t
′′)Θ(t ′′ − t ′)

]
,

with Θ(t ′′ − t ′) being the standard Heavyside or step function. The step function

allows us to give a specific time-ordering to the above expression.
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Interaction picture

With the Θ-function we can rewrite the last expression as

∫ t

t0

dt ′
∫ t′

t0

dt ′′ĤI(t
′)ĤI(t

′′) =
1

2

∫ t

t0

dt ′
∫ t′

t0

dt ′′T̂
[
ĤI(t

′)ĤI(t
′′)
]
,

where T̂ is the so-called time-ordering operator.
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Interaction picture

With this definition, we can rewrite the expression for Û as

Û(t, t0) =
∞∑

n=0

(−ı
~

)n 1

n!

∫ t

t0

dt1 . . .
∫ t

t0

dtN T̂
[
ĤI(t1) . . . ĤI(tn)

]
= T̂ exp

[
−ı
~

∫ t

t0

dt ′ĤI(t
′)

]

.

The above time-evolution operator in the interaction picture will be used to derive

various contributions to many-body perturbation theory. See also exercise 26 for a

discussion of the various time orderings.
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Heisenberg picture

We wish now to define a unitary transformation in terms of Ĥ by defining

|ΨH(t)〉 = exp (ıĤt/~)|ΨS(t)〉,

which is again a unitary transformation carried out now at the time t on the wave
function in the Schrödinger picture. If we combine this equation with Schrödinger’s
equation we obtain the following equation of motion

ı~
∂

∂t
|ΨH(t)〉 = 0,

meaning that |ΨH(t)〉 is time independent. An operator in this picture is defined as

ÔH(t) = exp (ıĤt/~)ÔS exp (−ıĤt/~).
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Heisenberg picture

The time dependence is then in the operator itself, and this yields in turn the following
equation of motion

ı~
∂

∂t
ÔH(t) = exp (ıĤt/~)

[
ÔHĤ − ĤÔH

]
exp (−ıĤt/~) =

[
ÔH(t), Ĥ

]
.

We note that an operator in the Heisenberg picture can be related to the corresponding
operator in the interaction picture as

ÔH(t) = exp (ıĤt/~)ÔS exp (−ıĤt/~) =

exp (ıĤI t/~) exp (−ıĤ0t/~)ÔI exp (ıĤ0t/~) exp (−ıĤI t/~).

280 / 402



Heisenberg picture

With our definition of the time evolution operator we see that

ÔH(t) = Û(0, t)ÔI Û(t, 0),

which in turn implies that ÔS = ÔI(0) = ÔH(0), all operators are equal at t = 0. The
wave function in the Heisenberg formalism is related to the other pictures as

|ΨH〉 = |ΨS(0)〉 = |ΨI(0)〉,

since the wave function in the Heisenberg picture is time independent. We can relate
this wave function to that a given time t via the time evolution operator as

|ΨH〉 = Û(0, t)|ΨI(t)〉.
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Adiabatic hypothesis

We assume that the interaction term is switched on gradually. Our wave function at
time t = −∞ and t = ∞ is supposed to represent a non-interacting system given by
the solution to the unperturbed part of our Hamiltonian Ĥ0. We assume the ground
state is given by |Φ0〉, which could be a Slater determinant.
We define our Hamiltonian as

Ĥ = Ĥ0 + exp (−εt/~)ĤI ,

where ε is a small number. The way we write the Hamiltonian and its interaction term is

meant to simulate the switching of the interaction.
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Adiabatic hypothesis

The time evolution of the wave function in the interaction picture is then

|ΨI(t)〉 = Ûε(t, t0)|ΨI(t0)〉,

with

Ûε(t, t0) =
∞∑

n=0

(−ı
~

)n 1

n!

∫ t

t0

dt1 . . .
∫ t

t0

dtN exp (−ε(t1 + · · ·+ tn)/~)T̂
[
ĤI(t1) . . . ĤI(tn)

]
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Adiabatic hypothesis

In the limit t0 → −∞, the solution ot Schrödinger’s equation is |Φ0〉, and the
eigenenergies are given by

Ĥ0|Φ0〉 = W0|Φ0〉,

meaning that
|ΨS(t0)〉 = exp (−ıW0t0/~)|Φ0〉,

with the corresponding interaction picture wave function given by

|ΨI(t0)〉 = exp (ıĤ0t0/~)|ΨS(t0)〉 = |Φ0〉.
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Adiabatic hypothesis

The solution becomes time independent in the limit t0 → −∞. The same conclusion
can be reached by looking at

ı~
∂

∂t
|ΨI(t)〉 = exp (ε|t|/~)ĤI |ΨI(t)〉

and taking the limit t → −∞. We can rewrite the equation for the wave function at a
time t = 0 as

|ΨI(0)〉 = Ûε(0,−∞)|Φ0〉.
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Topics for Week 46

Perturbation theory and Coupled cluster theory

◮ Monday:
◮ Repetion from last week
◮ Gell-Mann and Low’s theorem on the ground state
◮ Time-dependent Perturbation theory, computation of

diagrams
◮ Wednesday:
◮ Coupled cluster theory, chapter 9 of Shavitt and Bartlett
◮ Wednesday:
◮ Exercises: 31 a, b, c and d.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

Our wave function for ground state (after Gell-Mann and Low, see Phys. Rev. 84, 350
(1951)) is then

|Ψ0〉
〈Φ0|Ψ0〉

= lim
ǫ→0

lim
t′→−∞

U(0,−∞)|Φ0〉
〈Φ0|U(0,−∞)|Φ0〉

,

and we ask whether this quantity exists to all orders in perturbation theory. Goldstone’s
theorem states that only linked diagrams enter the expression for the final binding
energy. It means that energy difference reads now

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

W0 − Ĥ0
ĤI

}i

|Φ0〉L,

where the subscript L indicates that only linked diagrams are included. In our
Rayleigh-Schrödinger expansion, the energy difference included also unlinked
diagrams.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

If it does, Gell-Mann and Low showed that it is an eigenstate of Ĥ with eigenvalue

Ĥ
|Ψ0〉

〈Φ0|Ψ0〉
= E

|Ψ0〉
〈Φ0|Ψ0〉

and multiplying from the left with 〈Φ0| we can rewrite the last equation as

E − W0 =
〈Φ0|ĤI |Ψ0〉
〈Φ0|Ψ0〉

,

since Ĥ0|Φ0〉 = W0|Φ0〉. The numerator and the denominators of the last equation do

not exist separately. The theorem of Gell-Mann and Low asserts that this ratio exists.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

We note that also that the term D is nothing but the denominator of the equation for the
energy. We obtain then the following expression for the energy

E − W0 = ∆E = NL = 〈Φ0(0)|ĤIUǫ(0,−∞)|Φ0(−∞)〉L,

and Goldstone’s theorem is then proved. The corresponding expression from
Rayleigh-Schrödinger perturbation theory is given by

∆E = 〈Φ0|
(

ĤI + ĤI
Q̂

W0 − Ĥ0
ĤI + ĤI

Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤI + . . .

)

|Φ0〉C .
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

An important point in the derivation of the Gell-Mann and Low theorem

E − W0 =
〈Φ0|ĤI |Ψ0〉
〈Φ0|Ψ0〉

,

is that the numerator and the denominators of the last equation do not exist separately.
The theorem of Gell-Mann and Low asserts that this ratio exists. To prove it we
proceed as follows. Consider the expression

(Ĥ0 − E)Uǫ(0,−∞)|Φ0〉 =
[
Ĥ0,Uǫ(0,−∞)

]
|Φ0〉.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

To evaluate the commutator

(Ĥ0 − E)Uǫ(0,−∞)|Φ0〉 =
[
Ĥ0,Uǫ(0,−∞)

]
|Φ0〉.

we write the associate commutator as
[
Ĥ0, ĤI(t1)ĤI(t2) . . . ĤI(tn)

]
=
[
Ĥ0, ĤI(t1)

]
ĤI(t2) . . . ĤI(tn)+

· · ·+ ĤI(t1)
[
Ĥ0, ĤI(t2)

]
ĤI(t3) . . . ĤI(tn) + . . .

Using the equation of motion for an operator in the interaction picture we have

ı~
∂

∂t
ĤI(t) =

[
ĤI(t), Ĥ0

]
.

Each of the above commutators yield then a time derivative!
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

We have then

[
Ĥ0, ĤI(t1)ĤI(t2) . . . ĤI(tn)

]
= ı~

(
∂

∂tn
+

∂

∂t1
+ · · ·+ ∂

∂tn

)
ĤI(t1)ĤI(t2) . . . ĤI(tn),

meaning that we can rewrite

(Ĥ0 − E)Uǫ(0,−∞)|Φ0〉 =
[
Ĥ0,Uǫ(0,−∞)

]
|Φ0〉,

as

(Ĥ0−E)Uǫ(0,−∞)|Φ0〉 = −
∞∑

n=1

(−ı
~

)n−1 1

n!

∫ t

t0

dt1 . . .
∫ t

t0

dtN exp (−ε(t1 + · · ·+ tn)/~)

×
n∑

i=1

(
∂

∂ti
)T̂
[
ĤI(t1) . . . ĤI(tn)

]
.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

All the time derivatives in this equation

(Ĥ0−E)Uǫ(0,−∞)|Φ0〉 = −
∞∑

n=1

(−ı
~

)n−1 1

n!

∫ t

t0

dt1 . . .
∫ t

t0

dtN exp (−ε(t1 + · · ·+ tn)/~)

×
n∑

i=1

(
∂

∂ti
)T̂
[
ĤI(t1) . . . ĤI(tn)

]
,

make the same contribution, as can be seen by changing dummy variables. We can

therefore retain just one time derivative ∂/∂t and multiply with n. Integrating by parts

wrt t1 we obtain two terms.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

Integrating by parts wrt t1 one can finally show that

|Ψ0〉
〈Φ0|Ψ0〉

= lim
ǫ→0

lim
t′→−∞

U(0,−∞)|Φ0〉
〈Φ0|U(0,−∞)|Φ0〉

,

For more details about the derivation, see Gell-Mann and Low, Phys. Rev. 84, 350

(1951). See also chapter 6.2 of Raimes or Fetter and Walecka, chapter 3.6.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

In the present discussion of the time-dependent theory we will make use of the
so-called complex-time approach to describe the time evolution operator U. This
means that we allow the time t to be rotated by a small angle ǫ relative to the real time
axis. The complex time t is then related to the real time t̃ by

t = t̃(1 − iǫ).

Let us first study the true eigenvector Ψα which evolves from the unperturbed
eigenvectors Φα through the action of the time development operator

Uε(t, t ′) = lim
ǫ→0

lim
t′→−∞

∞∑

n=0

(−i)n

n!

∫ t

t′
dt1

∫ t

t′
dt2 . . .

∫ t

t′
dtn

×T [H1(t1)H1(t2) . . .H1(tn)] ,

where T stands for the correct time-ordering.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

In time-dependent perturbation theory we let Ψα develop from Φα in the remote past to
a given time t

|Ψα〉
〈ψα|Ψα〉

= lim
ǫ→0

lim
t′→−∞

Uε(t, t ′)|ψα〉
〈ψα|U(t, t ′)|Φα〉

,

and similarly, we let Ψβ develop from Φβ in the remote future

〈Ψβ |〈
ψβ |Ψβ

〉 = lim
ǫ→0

lim
t′→∞

〈ψβ |Uε(t ′, t)

〈ψβ |Uε(t ′, t)|Φβ〉
.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

Here we are interested in the expectation value of a given operator O acting at a time
t = 0. This can be achieved from the two previous equations defining

|Ψ′
α,β〉 =

|Ψα,β〉〈
Φα,β |Ψα,β

〉

we have

Oαβ =
Nβα

DβDα
,

where we have introduced

Nβα = 〈Φβ |Uε(∞, 0)OUε(0,−∞)|Φα〉,

and
Dα,β =

√
〈ψα,β |Uε(∞, 0)Uε(0,−∞)|Φα,β〉.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

If the operator O stands for the hamiltonian H we obtain

〈Ψ′
λ|H|Ψ′

λ〉〈
Ψ′

λ|Ψ′
λ

〉

At this stage, it is important to observe that our expression for the expectation value of
a given operator O is hermitian insofar O† = O. This is readily demonstrated. The
above equation is of the general form

U(t, t0)OU(t0,−t),

and noting that

U†(t, t0) =
(

eiH0t e−iH(t−t0)e−iH0t
)†

= U(t0,−t),

since H† = H and H†
0 = H0, we have that

(U(t, t0)OU(t0,−t))† = U(t, t0)OU(t0,−t).

The question we pose now is what happens in the limit ε→ 0? Do we get results which

are meaningful?
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

Our wave function for ground state is then

|Ψ0〉
〈Φ0|Ψ0〉

= lim
ǫ→0

lim
t′→−∞

U(0,−∞)|Φ0〉
〈Φ0|U(0,−∞)|Φ0〉

,

meaning that the energy difference is given by

E0 − W0 = ∆E0 = lim
ǫ→0

lim
t′→−∞

〈Φ0|ĤIUε(0,−∞)|Φ0〉
〈Φ0|Uε(0,−∞)|Φ0〉

,

and we ask whether this quantity exists to all orders in perturbation theory.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

If it does, Gell-Mann and Low showed that it is an eigenstate of Ĥ with eigenvalue

Ĥ
|Ψ0〉

〈Φ0|Ψ0〉
= E0

|Ψ0〉
〈Φ0|Ψ0〉

and multiplying from the left with 〈Φ0| we can rewrite the last equation as

E0 − W0 =
〈Φ0|ĤI |Ψ0〉
〈Φ0|Ψ0〉

,

since Ĥ0|Φ0〉 = W0|Φ0〉. The numerator and the denominators of the last equation do

not exist separately. The theorem of Gell-Mann and Low asserts that this ratio exists.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

Goldstone’s theorem states that only linked diagrams enter the expression for the final
binding energy. It means that energy difference reads now

∆E0 =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

W0 − Ĥ0
ĤI

}i

|Φ0〉L,

where the subscript L indicates that only linked diagrams are included. In our

Rayleigh-Schrödinger expansion, the energy difference included also unlinked

diagrams.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

From this term we can obtain both linked and unlinked contributions. Goldstone’s
theorem states that only linked diagrams enter the expression for the final binding
energy. A linked diagram (or connected diagram) is a diagram which is linked to the
last interaction vertex at t = 0.

We label the number of linked diagrams with the variable ν and the number of unlinked

with µ with n = ν + µ. The number of unlinked diagrams is then µ = n − ν.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

In general, the way we can distribute µ unlinked diagrams among the total of n
diagrams is given by the combinatorial factor

(
n
µ

)
=

n!

µ!ν!
,

and using the following relation

∞∑

n=0

1

n!

∞∑

µ+ν=n

n!

µ!ν!
=

∞∑

µ=0

1

µ!

∞∑

ν

1

ν!
,

we can rewrite the numerator N as

N = 〈Φ0(0)|ĤI Uǫ(0,−∞)|Φ0(−∞)〉L〈Φ0(0)|Uǫ(0,−∞)|Φ0(−∞)〉 = NLD.

303 / 402



Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

We define NL to contain only linked terms with the subscript L indicating that only

linked diagrams appear, that is those diagrams which are linked to the last interaction

vertex.
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Goldstone’s theorem and Gell-Mann and Low theorem
on the ground state

We note that also that the term D is nothing but the denominator of the equation for the
energy. We obtain then the following expression for the energy

E0 − W0 = ∆E0 = NL = 〈Φ0(0)|ĤI Uǫ(0,−∞)|Φ0(−∞)〉L,

and Goldstone’s theorem is then proved. The corresponding expression from
Rayleigh-Schrödinger perturbation theory is given by

∆E0 = 〈Φ0|
(

ĤI + ĤI
Q̂

W0 − Ĥ0
ĤI + ĤI

Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤI + . . .

)

|Φ0〉C .

305 / 402



Topics for Week 47

Coupled cluster theory

◮ Monday:
◮ Repetion from last week
◮ Coupled cluster theory with doubles only, chapter 9 of

Shavitt and Bartlett
◮ Wednesday:
◮ Coupled cluster theory, chapter 10 of Shavitt and Bartlett
◮ Thursday:
◮ Exercises: Exercise 33 e, f, g, h, i (exam 2011).

306 / 402



Coupled Cluster summary

The wavefunction is given by

|Ψ〉 ≈ |ΨCC〉 = eT̂ |Φ0〉 =
(

N∑

n=1

1
n!

T̂ n

)
|Φ0〉,

where T̂ is the cluster operator defined as

T̂ = T̂1 + T̂2 + . . . + T̂N

T̂n =

(
1
n!

)2 ∑

i1,i2,...in
a1,a2,...an

ta1a2...an
i1i2...in

a†
a1

a†
a2
. . . a†

anain . . . ai2ai1.

307 / 402



Coupled Cluster summary cont.

The energy is given by

ECC = 〈Φ0||Φ0〉,

where is a similarity transformed Hamiltonian

= e−T̂ ĤNeT̂

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉.

308 / 402



Coupled Cluster summary cont.

The coupled cluster energy is a function of the unknown cluster
amplitudes ta1a2...an

i1i2...in
, given by the solutions to the amplitude

equations
0 = 〈Φa1...an

i1...in
||Φ0〉.
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Coupled Cluster summary cont.

is expanded using the .

= ĤN +
[
ĤN , T̂

]
+

1
2

[[
ĤN , T̂

]
, T̂
]
+ . . .

1
n!

[
. . .
[
ĤN , T̂

]
, . . . T̂

]
+++

and simplified using the connected cluster theorem

= ĤN +
(

ĤN T̂
)

c
+

1
2

(
ĤN T̂ 2

)
c
+ · · · + 1

n!

(
ĤN T̂ n

)
c
+++
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CCSD with twobody Hamiltonian

Truncating the cluster operator T̂ at the n = 2 level, defines
CCSD approximation to the Coupled Cluster wavefunction. The
coupled cluster wavefunction is now given by

|ΨCC〉 = eT̂1+T̂2 |Φ0〉

where

T̂1 =
∑

ia

ta
i a†

aai

T̂2 =
1
4

∑

ijab

tab
ij a†

aa†
bajai .
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CCSD with twobody Hamiltonian cont.

Normal ordered Hamiltonian

Ĥ =
∑

pq

f p
q

{
a†

paq

}
+

1
4

∑

pqrs

〈pq||rs〉
{

a†
pa†

qasar

}

+ E0

= F̂N + V̂N + E0 = ĤN + E0

where

f p
q = 〈p|̂t |q〉+

∑

i

〈pi |v̂ |qi〉

〈pq||rs〉 = 〈pq|v̂ |rs〉

E0 =
∑

i

〈i |̂t |i〉+ 1
2

∑

ij

〈ij |v̂ |ij〉
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Diagram equations - Derivation

Contract ĤN with T̂ in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

◮ Contract one ĤN element with 0,1 or multiple T̂ elements.
◮ All T̂ elements must have atleast one contraction with ĤN .
◮ No contractions between T̂ elements are allowed.
◮ A single T̂ element can contract with a single element of

ĤN in different ways.
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Contract ĤN with T̂ in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

◮ Contract one ĤN element with 0,1 or multiple T̂ elements.
◮ All T̂ elements must have atleast one contraction with ĤN .
◮ No contractions between T̂ elements are allowed.
◮ A single T̂ element can contract with a single element of

ĤN in different ways.
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Diagram equations - Derivation

Contract ĤN with T̂ in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

◮ Contract one ĤN element with 0,1 or multiple T̂ elements.
◮ All T̂ elements must have atleast one contraction with ĤN .
◮ No contractions between T̂ elements are allowed.
◮ A single T̂ element can contract with a single element of

ĤN in different ways.
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Diagram equations - Derivation

Contract ĤN with T̂ in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

◮ Contract one ĤN element with 0,1 or multiple T̂ elements.
◮ All T̂ elements must have atleast one contraction with ĤN .
◮ No contractions between T̂ elements are allowed.
◮ A single T̂ element can contract with a single element of

ĤN in different ways.
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Diagram equations - Derivation

Contract ĤN with T̂ in all possible unique combinations that
satisfy a given form. The diagram equation is the sum of all
these diagrams.

◮ Contract one ĤN element with 0,1 or multiple T̂ elements.
◮ All T̂ elements must have atleast one contraction with ĤN .
◮ No contractions between T̂ elements are allowed.
◮ A single T̂ element can contract with a single element of

ĤN in different ways.

317 / 402



Diagram elements - Directed lines

Figure: Particle line Figure: Hole line

◮ Represents a contraction between second quantized
operators.

◮ External lines are connected to one operator vertex and
infinity.

◮ Internal lines are connected to operator vertices in both
ends.
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Diagram elements - Onebody Hamiltonian

Level: -1
Level: 0 Level: 0

Level: +1

◮ Horisontal dashed line segment with one vertex.
◮ Excitation level identify the number of particle/hole pairs

created by the operator.
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Diagram elements - Twobody Hamiltonian

Level: -2
Level: -1 Level: -1

Level: 0 Level: 0 Level: 0

Level: +1 Level: +1
Level: +2
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Diagram elements - Onebody cluster operator

Level: +1

◮ Horisontal line segment with one vertex.
◮ Excitation level of +1.
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Diagram elements - Twobody cluster operator

Level: +2

◮ Horisontal line segment with two vertices.
◮ Excitation level of +2.
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CCSD energy equation - Derivation

ECCSD = 〈Φ0||Φ0〉

◮ No external lines.
◮ Final excitation level: 0

Elements: ĤN Elements: T̂
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CCSD energy equation

ECCSD = + +
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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CCSD energy equation

ECCSD = f i
ata

i +
1
4
〈ij ||ab〉tab

ij +
1
2
〈ij ||ab〉ta

i tb
j

Note the implicit sum over repeated indices.
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CCSD T̂1 amplitude equation - Derivation

0 = 〈Φa
i ||Φ0〉

◮ One pair of particle/hole
external lines.

◮ Final excitation level: +1

Elements: ĤN Elements: T̂
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CCSD T̂1 amplitude equation

0 = + + +

+ + + +

+ + + +

+ + [scale=0.4]graphics/ccsdhbar04n
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
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CCSD T̂1 amplitude equation

0 = f a
i + f a

e te
i − f m

i ta
m + 〈ma||ei〉te

m + f m
e tae

im +
1
2
〈am||ef 〉tef

im

− 1
2
〈mn||ei〉tea

mn − f m
e te

i ta
m + 〈am||ef 〉te

i t f
m − 〈mn||ei〉te

mta
n

+ 〈mn||ef 〉te
mt fa

ni −
1
2
〈mn||ef 〉te

i taf
mn − 1

2
〈mn||ef 〉ta

n tef
mi

− 〈mn||ef 〉te
i ta

mt f
n
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CCSD T̂2 amplitude equation - Derivation

0 = 〈Φab
ij ||Φ0〉

◮ Two pairs of particle/hole
external lines.

◮ Final excitation level: +2

Elements: ĤN Elements: T̂
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CCSD T̂2 amplitude equation

0 = + + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
◮ Antisymmetrize a pair of external particle/hole line that

does not connect to the same operator.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
◮ Antisymmetrize a pair of external particle/hole line that

does not connect to the same operator.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
◮ Antisymmetrize a pair of external particle/hole line that

does not connect to the same operator.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
◮ Antisymmetrize a pair of external particle/hole line that

does not connect to the same operator.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
◮ Antisymmetrize a pair of external particle/hole line that

does not connect to the same operator.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
◮ Antisymmetrize a pair of external particle/hole line that

does not connect to the same operator.
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Diagram rules

◮ Label all lines.
◮ Sum over all internal indices.
◮ Extract matrix elements. (f out

in , 〈lout, rout||lin, rin〉)
◮ Extract cluster amplitudes with indices in the order left to

right. Incoming lines are subscripts, while outgoing lines
are superscripts. (tout

in , t lout,rout
lin,rin )

◮ Calculate the phase: (−1)holelines+loops

◮ Multiply by a factor of 1
2 for each equivalent line and each

ecuivalent vertex.
◮ Antisymmetrize a pair of external particle/hole line that

does not connect to the same operator.
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CCSD T̂2 amplitude equation

0 = 〈ab||ij〉+ P(ij)〈ab||ej〉te
i − P(ab)〈am||ij〉tb

m + P(ab)f b
e tae

ij − P(ij)f m
i tab

mj

+
1

2
〈ab||ef 〉tef

ij +
1

2
〈mn||ij〉tab

mn + P(ij)P(ab)〈mb||ej〉tae
im

+
1

2
P(ij)〈ab||ef 〉te

i t f
j +

1

2
P(ab)〈mn||ij〉ta

mtb
n − P(ij)P(ab)〈mb||ej〉te

i ta
m

+
1

4
〈mn||ef 〉tef

ij tab
mn +

1

2
P(ij)P(ab)〈mn||ef 〉tae

im t fb
nj −

1

2
P(ab)〈mn||ef 〉tae

ij tbf
mn

− 1

2
P(ij)〈mn||ef 〉tef

mi t
ab
nj − P(ij)f m

e te
i tab

mj − P(ab)f m
e tae

ij tb
m

+ P(ij)P(ab)〈am||ef 〉te
i t fb

mj −
1

2
P(ab)〈am||ef 〉tef

ij tb
m + P(ab)〈bm||ef 〉tae

ij t f
m

− P(ij)P(ab)〈mn||ej〉tae
im tb

n +
1

2
P(ij)〈mn||ej〉te

i tab
mn − P(ij)〈mn||ei〉te

mtab
nj

− 1

2
P(ij)P(ab)〈am||ef 〉te

i t f
j tb

m +
1

2
P(ij)P(ab)〈mn||ej〉te

i ta
mtb

n

+
1

4
P(ij)〈mn||ef 〉te

i tab
mn t f

j − P(ij)P(ab)〈mn||ef 〉te
i ta

mt fb
nj

+
1

4
P(ab)〈mn||ef 〉ta

m tef
ij tb

n − P(ij)〈mn||ef 〉te
m t f

i tab
nj − P(ab)〈mn||ef 〉tae

ij tb
mt f

n

+
1

4
P(ij)P(ab)〈mn||ef 〉te

i ta
mt f

j tb
n
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The expansion

ECC = 〈Ψ0|
(

ĤN +
[
ĤN , T̂

]
+

1
2

[[
ĤN , T̂

]
, T̂
]
+

1
3!

[[[
ĤN , T̂

]
, T̂
]
, T̂
]

+
1
4!

[[[[
ĤN , T̂

]
, T̂
]
, T̂
]
, T̂
]
++

)
|Ψ0〉

0 = 〈Ψab...
ij... |

(
ĤN +

[
ĤN , T̂

]
+

1
2

[[
ĤN , T̂

]
, T̂
]
+

1
3!

[[[
ĤN , T̂

]
, T̂
]
, T̂
]

+
1
4!

[[[[
ĤN , T̂

]
, T̂
]
, T̂
]
, T̂
]
++

)
|Ψ0〉
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The CCSD energy equation revisited
The expanded CC energy equation involves an infinite sum
over nested commutators

ECC = 〈Ψ0|
(

ĤN +
[
ĤN , T̂

]
+

1
2

[[
ĤN , T̂

]
, T̂
]

+
1
3!

[[[
ĤN , T̂

]
, T̂
]
, T̂
]

+
1
4!

[[[[
ĤN , T̂

]
, T̂
]
, T̂
]
, T̂
]
++

)
|Ψ0〉,

but fortunately we can show that it truncates naturally,
depending on the Hamiltonian.

The first term is zero by construction.

〈Ψ0|ĤN |Ψ0〉 = 0
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The CCSD energy equation revisited.

The second term can be split up into different pieces

〈Ψ0|
[
ĤN , T̂

]
|Ψ0〉 = 〈Ψ0|

([
F̂N , T̂1

]
+
[
F̂N , T̂2

]
+
[
V̂N , T̂1

]
+
[
V̂N , T̂2

])
|Ψ0〉

Since we need the explicit expressions for the commutators both in
the next term and in the amplitude equations, we calculate them
separately.
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The expansion -
[
F̂N , T̂1

]

[
F̂N , T̂1

]
=
∑

pqia

(
f p
q

{
a†

paq

}
ta
i

{
a†

aai

}
− ta

i

{
a†

aai

}
f p
q

{
a†

paq

})

=
∑

pqia

f p
q ta

i

({
a†

paq

}{
a†

aai

}
−
{

a†
aai

}{
a†

paq

})

{
a†

aai

}{
a†

paq

}
=
{

a†
aaia

†
paq

}
=
{

a†
paqa†

aai

}

{
a†

paq

}{
a†

aai

}
=
{

a†
paqa†

aai

}

+

{
a†

paqa†
aai

}
+

{
a†

paqa†
aai

}

+

{
a†

paqa†
aai

}

=
{

a†
paqa†

aai

}
+ δqa

{
a†

pai

}
+ δpi

{
aqa†

a

}
+ δqaδpi
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The expansion -
[
F̂N , T̂1

]

[
F̂N , T̂1
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=
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The expansion -
[
F̂N , T̂1

]
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The expansion -
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The expansion -
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]

[
F̂N , T̂1

]
=
∑

pqia

(
f p
q

{
a†

paq

}
ta
i

{
a†

aai

}
− ta

i

{
a†

aai

}
f p
q

{
a†

paq

})

=
∑

pqia

f p
q ta

i

({
a†

paq

}{
a†

aai

}
−
{

a†
aai

}{
a†

paq

})

{
a†

aai

}{
a†

paq

}
=
{

a†
aaia

†
paq

}
=
{

a†
paqa†

aai

}

{
a†

paq

}{
a†

aai

}
=
{

a†
paqa†

aai

}

+

{
a†

paqa†
aai

}
+

{
a†

paqa†
aai

}

+

{
a†

paqa†
aai

}

=
{

a†
paqa†

aai

}
+ δqa

{
a†

pai

}
+ δpi

{
aqa†

a

}
+ δqaδpi
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The expansion -
[
F̂N , T̂1

]

[
F̂N , T̂1

]
=
∑

pqia

(
f p
q

{
a†

paq

}
ta
i

{
a†

aai

}
− ta

i

{
a†

aai

}
f p
q

{
a†

paq

})

=
∑

pqia

f p
q ta

i

({
a†

paq

}{
a†

aai

}
−
{

a†
aai

}{
a†

paq

})

{
a†

aai

}{
a†

paq

}
=
{

a†
aaia

†
paq

}
=
{

a†
paqa†

aai

}

{
a†

paq

}{
a†

aai

}
=
{

a†
paqa†

aai

}

+

{
a†

paqa†
aai

}
+

{
a†

paqa†
aai

}

+

{
a†

paqa†
aai

}

=
{

a†
paqa†

aai

}
+ δqa

{
a†

pai

}
+ δpi

{
aqa†

a

}
+ δqaδpi
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The expansion -
[
F̂N , T̂1

]

[
F̂N , T̂1

]
=
∑

pqia

(
f p
q

{
a†

paq

}
ta
i

{
a†

aai

}
− ta

i

{
a†

aai

}
f p
q

{
a†

paq

})

=
∑

pqia

f p
q ta

i

({
a†

paq

}{
a†

aai

}
−
{

a†
aai

}{
a†

paq

})

{
a†

aai

}{
a†

paq

}
=
{

a†
aaia

†
paq

}
=
{

a†
paqa†

aai

}

{
a†

paq

}{
a†

aai

}
=
{

a†
paqa†

aai

}

+

{
a†

paqa†
aai

}
+

{
a†

paqa†
aai

}

+

{
a†

paqa†
aai

}

=
{

a†
paqa†

aai

}
+ δqa

{
a†

pai

}
+ δpi

{
aqa†

a

}
+ δqaδpi
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The expansion -
[
F̂N , T̂1

]

Wicks theorem gives us
{

a†
paq

}{
a†

aai

}
−
{

a†
aai

}{
a†

paq

}
= δqa

{
a†

pai

}
+ δpi

{
aqa†

a

}
+ δqaδpi .

Inserted into the original expression, we arrive at the explicit
value of the commutator

[
F̂N , T̂1

]
=
∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
q ta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i

=
(

F̂N T̂1

)
c
.

The subscript means that the product only includes terms
where the operators are connected by atleast one shared index.
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The expansion -
[
F̂N , T̂2

]

[
F̂N , T̂2

]
=


∑

pq

f p
q

{
a†

paq

}
,
1
4

∑

ijab

tab
ij

{
a†

aa†
bajai

}



=
1
4

∑

pq
ijab

[{
a†

paq

}
,
{

a†
aa†

bajai

}]

=
1
4

∑

pq
ijab

f p
q tab

ij

({
a†

paq

}{
a†

aa†
bajai

}
−
{

a†
aa†

bajai

}{
a†

paq

})
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The expansion -
[
F̂N , T̂2

]

{
a†

aa†

bajai

}{
a†

paq

}
=
{

a†
aa†

bajaia
†
paq

}

=
{

a†
paqa†

aa†
baj ai

}

{
a†

paq

}{
a†

aa†

bajai

}
=
{

a†
paqa†

aa†

baj ai

}
+

{
a†

paqa†
aa†

baj ai

}
+

{
a†

paqa†
aa†

bajai

}

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baja

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baj a

=
{

a†
paqa†

aa†

baj ai

}
− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

}
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The expansion -
[
F̂N , T̂2

]

{
a†

aa†

bajai

}{
a†

paq

}
=
{

a†
aa†

bajaia
†
paq

}

=
{

a†
paqa†

aa†
baj ai

}

{
a†

paq

}{
a†

aa†

bajai

}
=
{

a†
paqa†

aa†

baj ai

}
+

{
a†

paqa†
aa†

baj ai

}
+

{
a†

paqa†
aa†

bajai

}

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baja

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baj a

=
{

a†
paqa†

aa†

baj ai

}
− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

}
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The expansion -
[
F̂N , T̂2

]

{
a†

aa†

bajai

}{
a†

paq

}
=
{

a†
aa†

bajaia
†
paq

}

=
{

a†
paqa†

aa†
baj ai

}

{
a†

paq

}{
a†

aa†

bajai

}
=
{

a†
paqa†

aa†

baj ai

}
+

{
a†

paqa†
aa†

baj ai

}
+

{
a†

paqa†
aa†

bajai

}

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baja

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baj a

=
{

a†
paqa†

aa†

baj ai

}
− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

}
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The expansion -
[
F̂N , T̂2

]

{
a†

aa†

bajai

}{
a†

paq

}
=
{

a†
aa†

bajaia
†
paq

}

=
{

a†
paqa†

aa†
baj ai

}

{
a†

paq

}{
a†

aa†

bajai

}
=
{

a†
paqa†

aa†

baj ai

}
+

{
a†

paqa†
aa†

baj ai

}
+

{
a†

paqa†
aa†

bajai

}

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baja

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baj a

=
{

a†
paqa†

aa†

baj ai

}
− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

}
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The expansion -
[
F̂N , T̂2

]

{
a†

aa†

bajai

}{
a†

paq

}
=
{

a†
aa†

bajaia
†
paq

}

=
{

a†
paqa†

aa†
baj ai

}

{
a†

paq

}{
a†

aa†

bajai

}
=
{

a†
paqa†

aa†

baj ai

}
+

{
a†

paqa†
aa†

baj ai

}
+

{
a†

paqa†
aa†

bajai

}

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baja

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baj a

=
{

a†
paqa†

aa†

baj ai

}
− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

}
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The expansion -
[
F̂N , T̂2

]

{
a†

aa†

bajai

}{
a†

paq

}
=
{

a†
aa†

bajaia
†
paq

}

=
{

a†
paqa†

aa†
baj ai

}

{
a†

paq

}{
a†

aa†

bajai

}
=
{

a†
paqa†

aa†

baj ai

}
+

{
a†

paqa†
aa†

baj ai

}
+

{
a†

paqa†
aa†

bajai

}

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baja

+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

bajai

}
+

{
a†

paqa†
aa†

baj a

=
{

a†
paqa†

aa†

baj ai

}
− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

}
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The expansion -
[
F̂N , T̂2

]

Wicks theorem gives us
({

a†
paq

}{
a†

aa†
bajai

}
−
{

a†
aa†

bajai

}{
a†

paq

})
=

− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}
+ δqa

{
a†

pa†

bajai

}

− δqb

{
a†

pa†
aajai

}
− δpjδqa

{
a†

bai

}
+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}

− δpiδqb

{
a†

aaj

}

Inserted into the original expression, we arrive at

[
F̂N , T̂2

]
=

1
4

∑

pq
abij

f p
q tab

ij

(
−δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

})
.
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The expansion -
[
F̂N , T̂2

]

Wicks theorem gives us
({

a†
paq

}{
a†

aa†
bajai

}
−
{

a†
aa†

bajai

}{
a†

paq

})
=

− δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}
+ δqa

{
a†

pa†

bajai

}

− δqb

{
a†

pa†
aajai

}
− δpjδqa

{
a†

bai

}
+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}

− δpiδqb

{
a†

aaj

}

Inserted into the original expression, we arrive at

[
F̂N , T̂2

]
=

1
4

∑

pq
abij

f p
q tab

ij

(
−δpj

{
aqa†

aa†

bai

}
+ δpi

{
aqa†

aa†

baj

}

+ δqa

{
a†

pa†

bajai

}
− δqb

{
a†

pa†
aaj ai

}
− δpjδqa

{
a†

bai

}

+ δpiδqa

{
a†

baj

}
+ δpjδqb

{
a†

aai

}
− δpiδqb

{
a†

aaj

})
.
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The expansion -
[
F̂N , T̂2

]

After renaming indices and changing the order of operators, we
arrive at the explicit expression

[
F̂N , T̂2

]
=

1
2

∑

qijab

f i
qtab

ij

{
aqa†

aa†
baj

}
+

1
2

∑

pijab

f p
a tab

ij

{
a†

pa†
bajai

}

+
∑

ijab

f i
atab

ij

{
a†

baj

}

=
(

F̂N T̂2

)
c
.

The subscript implies that only the connected terms from the
product contribute.
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The expansion - 1
2

[[
F̂N , T̂1

]
, T̂1

]

[
F̂N , T̂1

]
=
∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i

[[
F̂N , T̂1

]
, T̂1

]
=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i ,
∑

jb

tb
j

{
a†

baj

}

=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
,
∑

jb

tb
j

{
a†

baj

}

=
∑

pabij

f p
a ta

i tb
j

[{
a†

pai

}
,
{

a†

baj

}]
+
∑

qabij

f i
q ta

i tb
j

[{
aqa†

a

}
,
{

a†

baj

}]

{
a†

baj

}{
a†

pai

}
=
{

a†

baja
†
pai

}
=
{

a†
paia

†

baj

}

{
a†

baj

}{
aqa†

a

}
=
{

a†

bajaqa†
a

}
=
{

aqa†
aa†

baj

}
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The expansion - 1
2

[[
F̂N , T̂1

]
, T̂1

]

[
F̂N , T̂1

]
=
∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i

[[
F̂N , T̂1

]
, T̂1

]
=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i ,
∑

jb

tb
j

{
a†

baj

}

=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
,
∑

jb

tb
j

{
a†

baj

}

=
∑

pabij

f p
a ta

i tb
j

[{
a†

pai

}
,
{

a†

baj

}]
+
∑

qabij

f i
q ta

i tb
j

[{
aqa†

a

}
,
{

a†

baj

}]

{
a†

baj

}{
a†

pai

}
=
{

a†

baja
†
pai

}
=
{

a†
paia

†

baj

}

{
a†

baj

}{
aqa†

a

}
=
{

a†

bajaqa†
a

}
=
{

aqa†
aa†

baj

}
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The expansion - 1
2

[[
F̂N , T̂1

]
, T̂1

]

[
F̂N , T̂1

]
=
∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i

[[
F̂N , T̂1

]
, T̂1

]
=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i ,
∑

jb

tb
j

{
a†

baj

}

=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
,
∑

jb

tb
j

{
a†

baj

}

=
∑

pabij

f p
a ta

i tb
j

[{
a†

pai

}
,
{

a†

baj

}]
+
∑

qabij

f i
q ta

i tb
j

[{
aqa†

a

}
,
{

a†

baj

}]

{
a†

baj

}{
a†

pai

}
=
{

a†

baja
†
pai

}
=
{

a†
paia

†

baj

}

{
a†

baj

}{
aqa†

a

}
=
{

a†

bajaqa†
a

}
=
{

aqa†
aa†

baj

}
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The expansion - 1
2

[[
F̂N , T̂1

]
, T̂1

]

[
F̂N , T̂1

]
=
∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i

[[
F̂N , T̂1

]
, T̂1

]
=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
+
∑

ai

f i
ata

i ,
∑

jb

tb
j

{
a†

baj

}

=
[∑

pai

f p
a ta

i

{
a†

pai

}
+
∑

qai

f i
qta

i

{
aqa†

a

}
,
∑

jb

tb
j

{
a†

baj

}

=
∑

pabij

f p
a ta

i tb
j

[{
a†

pai

}
,
{

a†

baj

}]
+
∑

qabij

f i
q ta

i tb
j

[{
aqa†

a

}
,
{

a†

baj

}]

{
a†

baj

}{
a†

pai

}
=
{

a†

baja
†
pai

}
=
{

a†
paia

†

baj

}

{
a†

baj

}{
aqa†

a

}
=
{

a†

bajaqa†
a

}
=
{

aqa†
aa†

baj

}
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The expansion -
[[

F̂N , T̂1

]
, T̂1

]

1
2

[[
F̂N , T̂1

]
, T̂1

]
=

1
2


∑

pabij

f p
a ta

i tb
j δpj

{
ai a

†
b

}
−
∑

qabij

f i
q ta

i tb
j δqb

{
a†

aaj

}



= −1
2

2
∑

abij

f j
bta

j tb
i

{
a†

aai

}

= −
∑

abij

f j
bta

j tb
i

{
a†

aai

}

=
1
2

(
F̂N T̂ 2

1

)
c
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The CCSD energy equation revisited

〈Φ0|
[
V̂N , T̂1

]
|Φ0〉 = 〈Φ0|

[
1
4

∑

pqrs

〈pq||rs〉
{

a†
pa†

qasar

}
,
∑

ia

ta
i

{
a†

aai

}]
|Φ0〉

=
1
4

∑

pqr
sia

〈pq||rs〉ta
i 〈Φ0|

[{
a†

pa†
qasar

}
,
{

a†
aai

}]
|Φ0〉

= 0
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The CCSD energy equation revisited

〈Φ0|
[
V̂N , T̂2

]
|Φ0〉 =

〈Φ0|


1

4

∑

pqrs

〈pq||rs〉
{

a†
pa†

qasar

}
,

1
4

∑

ijab

tab
ij

{
a†

aa†

bajai

}

 |Φ0〉

=
1
16

∑

pqr
sijab

〈pq||rs〉tab
ij 〈Φ0|

[{
a†

pa†
qasar

}
,
{

a†
aa†

bajai

}]
|Φ0〉

=
1
16

∑

pqr
sijab

〈pq||rs〉tab
ij 〈Φ0|

({
a†

pa†
qasar a

†
aa†

bajai

}
+

{
a†

pa†
qasar a

†
aa†

bajai

}

{
a†

pa†
qasar a

†
aa†

bajai

}
+

{
a†

pa†
qasar a

†
aa†

bajai

})
|Φ0〉

=
1
4

∑

ijab

〈ij||ab〉tab
ij
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The CCSD energy equation revisited

〈Φ0|
[
V̂N , T̂2

]
|Φ0〉 =

〈Φ0|


1

4

∑

pqrs

〈pq||rs〉
{

a†
pa†
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}
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1
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ijab

tab
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a†
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1
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pqr
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〈pq||rs〉tab
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pa†
qasar
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a†
aa†

bajai

}]
|Φ0〉

=
1
16

∑

pqr
sijab

〈pq||rs〉tab
ij 〈Φ0|
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a†

pa†
qasar a

†
aa†

bajai

}
+

{
a†

pa†
qasar a

†
aa†

bajai

}

{
a†

pa†
qasar a

†
aa†

bajai

}
+

{
a†

pa†
qasar a

†
aa†

bajai

})
|Φ0〉

=
1
4

∑

ijab

〈ij||ab〉tab
ij
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The CCSD energy equation revisited

〈Φ0|
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
1

4

∑
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∑

ijab

tab
ij

{
a†

aa†

bajai

}

 |Φ0〉

=
1
16

∑

pqr
sijab

〈pq||rs〉tab
ij 〈Φ0|

[{
a†

pa†
qasar

}
,
{

a†
aa†

bajai

}]
|Φ0〉
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pqr
sijab

〈pq||rs〉tab
ij 〈Φ0|
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pa†
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pa†
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aa†
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The CCSD energy equation revisited

The CCSD energy get two contributions from
(

ĤN T̂
)

c

ECC ⇐ 〈Φ0|
[
ĤN , T̂

]
|Φ0〉

=
∑

ia

f i
ata

i +
1
4

∑

ijab

〈ij ||ab〉tab
ij
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The CCSD energy equation revisited

ECC ⇐ 〈Φ0|
1
2

(
ĤNT̂ 2

)
c
|Φ0〉

〈Φ0|
1
2

(
V̂N T̂ 2

1

)
c
|Φ0〉 =

1
8

∑

pqrs

∑

ijab

〈pq||rs〉ta
i tb

j 〈Φ0|
({

a†
pa†

qasar

}{
a†

aai

}{
a†

baj

})
c
|Φ0〉

=
1
8

∑

pqrs

∑

ijab

〈pq||rs〉ta
i tb

j 〈Φ0|

({
a†

pa†
qasar a

†
aai a

†

baj

}
+

{
a†

pa†
qasar a

†
aaia

†

baj

}
+

{
a†

pa†
qasar a

†
aaia

†

baj

}

+

{
a†

pa†
qasar a

†
aai a

†
baj

})
|Φ0〉

=
1
2

∑

ijab

〈ij||ab〉ta
i tb

j
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The CCSD energy equation revisited
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The CCSD energy equation revisited
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The CCSD energy equation revisited

◮ No contractions possible between cluster operators.
◮ Cluster operators need to contract with free indices to the

left.
◮ Disconnected parts automatically cancel in the

commutator.
◮ Onebody operators can connect to maximum two cluster

operators.
◮ Twobody operators can connect to maximum four cluster

operators.
◮ Different terms in the expansion contributes to different

equations.

389 / 402



The CCSD energy equation revisited

◮ No contractions possible between cluster operators.
◮ Cluster operators need to contract with free indices to the

left.
◮ Disconnected parts automatically cancel in the

commutator.
◮ Onebody operators can connect to maximum two cluster

operators.
◮ Twobody operators can connect to maximum four cluster

operators.
◮ Different terms in the expansion contributes to different

equations.

390 / 402



The CCSD energy equation revisited

◮ No contractions possible between cluster operators.
◮ Cluster operators need to contract with free indices to the

left.
◮ Disconnected parts automatically cancel in the

commutator.
◮ Onebody operators can connect to maximum two cluster

operators.
◮ Twobody operators can connect to maximum four cluster

operators.
◮ Different terms in the expansion contributes to different

equations.

391 / 402



The CCSD energy equation revisited

◮ No contractions possible between cluster operators.
◮ Cluster operators need to contract with free indices to the

left.
◮ Disconnected parts automatically cancel in the

commutator.
◮ Onebody operators can connect to maximum two cluster

operators.
◮ Twobody operators can connect to maximum four cluster

operators.
◮ Different terms in the expansion contributes to different

equations.

392 / 402



The CCSD energy equation revisited

◮ No contractions possible between cluster operators.
◮ Cluster operators need to contract with free indices to the

left.
◮ Disconnected parts automatically cancel in the

commutator.
◮ Onebody operators can connect to maximum two cluster

operators.
◮ Twobody operators can connect to maximum four cluster

operators.
◮ Different terms in the expansion contributes to different

equations.

393 / 402



The CCSD energy equation revisited
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Topics for Week 48

Density Functional Theory

◮ Monday:
◮ Repetion from last week
◮ Basics of Density functional theory
◮ Wednesday:
◮ Summary of course, syllabus and discussion of exam.
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Litterature I

◮ R. van Leeuwen: Density functional approach to the many-body problem: key
concepts and exact functionals, Adv. Quant. Chem. 43, 25 (2003).
(Mathematical foundations of DFT)

◮ R. M. Dreizler and E. K. U. Gross: Density functional theory: An approach to the
quantum many-body problem. (Introductory book)

◮ W. Koch and M. C. Holthausen: A chemist’s guide to density functional theory.
(Introductory book, less formal than Dreizler/Gross)

◮ E. H. Lieb: Density functionals for Coulomb systems, Int. J. Quant. Chem. 24,
243-277 (1983). (Mathematical analysis of DFT)
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Litterature II

◮ J. P. Perdew and S. Kurth: In A Primer in Density Functional Theory: Density
Functionals for Non-relativistic Coulomb Systems in the New Century, ed. C.
Fiolhais et al. (Introductory course, partly difficult, but interesting points of view)

◮ E. Engel: In A Primer in Density Functional Theory: Orbital-Dependent
Functionals for the Exchange-Correlation Energy, ed. C. Fiolhais et al.
(Introductory lectures, only about orbital-dependent functionals)
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Density Functional Theory (DFT)

Hohenberg and Kohn proved that the total energy of a system including that of the
many-body effects of electrons (exchange and correlation) in the presence of static
external potential (for example, the atomic nuclei) is a unique functional of the charge
density. The minimum value of the total energy functional is the ground state energy of
the system. The electronic charge density which yields this minimum is then the exact
single particle ground state energy.
In Hartree-Fock theory one works with large basis sets. This poses a problem for large
systems. An alternative to the HF methods is DFT. DFT takes into account electron
correlations but is less demanding computationally than full scale diagonalization,
Coupled Cluster theory or say Monte Carlo methods.
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Density Functional Theory

The electronic energy E is said to be a functional of the electronic density, E[ρ], in the
sense that for a given function ρ(r), there is a single corresponding energy. The
Hohenberg-Kohn theorem confirms that such a functional exists, but does not tell us
the form of the functional. As shown by Kohn and Sham, the exact ground-state energy
E of an N-electron system can be written as

E[ρ] = −1

2

N∑

i=1

∫
Ψ∗

i (r1)∇2
1Ψi(r1)dr1−

∫
Z

r1
ρ(r1)dr1+

1

2

∫
ρ(r1)ρ(r2)

r12
dr1dr2+EEXC [ρ]

with Ψi the Kohn-Sham (KS) orbitals. Note that we have limited ourselves to atomic

physics here.
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Density Functional Theory

The ground-state charge density is given by

ρ(r) =
N∑

i=1

|Ψi(r)|2,

where the sum is over the occupied Kohn-Sham orbitals. The last term, EEXC [ρ], is the

exchange-correlation energy which in theory takes into account all non-classical

electron-electron interaction. However, we do not know how to obtain this term exactly,

and are forced to approximate it. The KS orbitals are found by solving the Kohn-Sham

equations, which can be found by applying a variational principle to the electronic

energy E[ρ]. This approach is similar to the one used for obtaining the HF equation.
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Density Functional Theory

The KS equations reads
{
−1

2
∇2

1 − Z

r1
+

∫
ρ(r2)

r12
dr2 + VEXC(r1)

}
Ψi (r1) = ǫiΨi (r1)

where ǫi are the KS orbital energies, and where the exchange-correlation potential is
given by

VEXC [ρ] =
δEEXC [ρ]

δρ
.
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Density Functional Theory

The KS equations are solved in a self-consistent fashion. A variety of basis set
functions can be used, and the experience gained in HF calculations are often useful.
The computational time needed for a DFT calculation formally scales as the third
power of the number of basis functions.
The main source of error in DFT usually arises from the approximate nature of EEXC . In
the local density approximation (LDA) it is approximated as

EEXC =

∫
ρ(r)ǫEXC [ρ(r)]dr,

where ǫEXC [ρ(r)] is the exchange-correlation energy per electron in a homogeneous

electron gas of constant density. The LDA approach is clearly an approximation as the

charge is not continuously distributed. To account for the inhomogeneity of the electron

density, a nonlocal correction involving the gradient of ρ is often added to the

exchange-correlation energy.
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