
Exercises FYS-KJM4480

Exercise 1

Consider the Slater determinant

ΦAS
λ (x1x2 . . . xN ;α1α2 . . . αN ) =

1√
N !

∑

p

(−)pP
N
∏

i=1

ψαi
(xi).

where P is an operator which permutes the coordinates of two particles. We have assumed here that the number of
particles is the same as the number of available single-particle states, represented by the greek letters α1α2 . . . αN .

a) Write out ΦAS for N = 3.

b) Show that

∫

dx1dx2 . . . dxN
∣

∣ΦAS
λ (x1x2 . . . xN ;α1α2 . . . αN )

∣

∣

2
= 1.

c) Define a general onebody operator F̂ =
∑N

i f̂(xi) and a general twobody operator Ĝ =
∑N

i>j ĝ(xi, xj) with g
being invariant under the interchange of the coordinates of particles i and j. Calculate the matrix elements for
a two-particle Slater determinant

〈

ΦAS
α1α2

∣

∣ F̂
∣

∣ΦAS
α1α2

〉

,

and

〈

ΦAS
α1α2

∣

∣ Ĝ
∣

∣ΦAS
α1α2

〉

.

Explain the short-hand notation for the Slater determinant. Which properties do you expect these operators to
have in addition to an eventual permutation symmetry?

d) Compute the corresponding matrix elements for N particles which can occupy N single particle states.

Exercise 2

We will now consider a simple three-level problem, depicted in the figure below. The single-particle states are
labelled by the quantum number p and can accomodate up to two single particles, viz., every single-particle state is
doubly degenerate (you could think of this as one state having spin up and the other spin down). We let the spacing
between the doubly degenerate single-particle states be constant, with value d. The first state has energy d. There
are only three available single-particle states, p = 1, p = 2 and p = 3, as illustrated in the figure.

a) How many two-particle Slater determinants can we construct in this space?

b) We limit ourselves to a system with only the two lowest single-particle orbits and two particles, p = 1 and p = 2.
We assume that we can write the Hamiltonian as

Ĥ = Ĥ0 + ĤI ,

and that the onebody part of the Hamiltonian with single-particle operator ĥ0 has the property

ĥ0ψpσ = p× dψpσ,

where we have added a spin quantum number σ. We assume also that the only two-particle states that can exist
are those where two particles are in the same state p, as shown by the two possibilities to the left in the figure.
The two-particle matrix elements of ĤI have all a constant value, −g. Show then that the Hamiltonian matrix



2

p = 1

p = 2

p = 3

FIG. 1: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle
states. The spacing between each level p is constant in this picture. We show some possible two-particle states.

can be written as
(

2d− g −g
−g 4d− g

)

,

and find the eigenvalues and eigenvectors. What is mixing of the state with two particles in p = 2 to the wave
function with two-particles in p = 1? Discuss your results in terms of a linear combination of Slater determinants.

c) Add the possibility that the two particles can be in the state with p = 3 as well and find the Hamiltonian
matrix, the eigenvalues and the eigenvectors. We still insist that we only have two-particle states composed of
two particles being in the same level p. You can diagonalize numerically your 3× 3 matrix.

This simple model catches several birds with a stone. It demonstrates how we can build linear combi-
nations of Slater determinants and interpret these as different admixtures to a given state. It represents
also the way we are going to interpret these contributions. The two-particle states above p = 1 will be
interpreted as excitations from the ground state configuration, p = 1 here. The reliability of this ansatz for the
ground state, with two particles in p = 1, depends on the strength of the interaction g and the single-particle
spacing d. Finally, this model is a simple schematic ansatz for studies of pairing correlations and thereby
superfluidity/superconductivity in fermionic systems.

Exercise 3

Calculate the matrix elements

〈α1α2| F̂ |α1α2〉

and

〈α1α2| Ĝ |α1α2〉

with

|α1α2〉 = a†α1
a†α2

|0〉 ,

F̂ =
∑

αβ

〈α| f |β〉 a†αaβ,

〈α| f |β〉 =
∫

ψ∗
α(x)f(x)ψβ(x)dx,
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Ĝ =
1

2

∑

αβγδ

〈αβ| g |γδ〉 a†αa†βaδaγ ,

and

〈αβ| g |γδ〉 =
∫ ∫

ψ∗
α(x1)ψ

∗
β(x2)g(x1, x2)ψγ(x1)ψδ(x2)dx1dx2

Compare these results with those from exercise 1c).

Exercise 4

We define the one-particle operator

T̂ =
∑

αβ

〈α| t |β〉 a†αaβ,

and the two-particle operator

V̂ =
1

2

∑

αβγδ

〈αβ| v |γδ〉 a†αa†βaδaγ .

We have defined a single-particle basis with quantum numbers given by the set of greek letters α, β, γ, . . . Show that
the form of these operators remain unchanged under a transformation of the single-particle basis given by

|i〉 =
∑

λ

|λ〉 〈λ|i〉 ,

with λ ∈ {α, β, γ, . . . }. Show also that a†iai is the number operator for the orbital |i〉.
Find also the expressions for the operators T and V when T is diagonal in the representation i.
Show also that the operator

N̂p =
1

2

∑

α6=β

a†αa
†
βaβaα,

is an operator that represents the number of pairs. Can you rewrite the operators for T̂ and V̂ in terms of the above
number operator?

Exercise 5

Consider the Hamilton operator for a harmonic oscillator (c = ~ = 1)

Ĥ =
1

2m
p2 +

1

2
kx2, k = mω2

a) Define the operators

a† =
1√
2mω

(p+ imωx), a =
1√
2mω

(p− imωx)

and find the commutation relations for these operators by using the corresponding relations for p and x.

b) Show that

H = ω(a†a+
1

2
)
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c) Show that if for a state |0〉 which satisfies Ĥ |0〉 = 1
2ω |0〉, then we have

Ĥ |n〉 = Ĥ(a†)n |0〉 = (n+
1

2
)ω |n〉

d) Show that the state |0〉 from c), with the property a |0〉 = 0, must exist.

e) Find the coordinate-space representation of |0〉 and explain how you would construct the wave functions for
excited states based on this state.

Exercise 6

Starting with the Slater determinant

Φ0 =

n
∏

i=1

a†αi
|0〉 ,

use Wick’s theorem to compute the normalization integral < Φ0|Φ0 >.

Exercise 7

Compute the matrix element

〈α1α2α3|G |α′
1α

′
2α

′
3〉

using Wick’s theorem and express the two-body operator G (from exercise 1) in the occupation number (second
quantization) representation.

Exercise 8

Write the two-particle operator

G =
1

4

∑

αβγδ

〈αβ| g |γδ〉 a†αa†βaδaγ

in the quasi-particle representation for particles and holes

b†α =

{

a†α
aα

bα =

{

aα α > αF

a†α α ≤ αF

The two-body matrix elements are antisymmetric.

Exercise 9

Use the results from exercise 8 and Wick’s theorem to calculate

〈

β1γ
−1
1

∣

∣G
∣

∣β2γ
−1
2

〉

You need to consider that case that β1 be equal β2 and that γ1 be equal γ2.
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Exercise 10

Show that the onebody part of the Hamiltonian

Ĥ0 =
∑

pq

〈p| ĥ0 |q〉 a†paq

can be written, using standard annihilation and creation operators, in normal-ordered form as

Ĥ0 =
∑

pq

〈p| ĥ0 |q〉 a†paq

=
∑

pq

〈p| ĥ0 |q〉
{

a†paq
}

+ δpq∈i

∑

pq

〈p| ĥ0 |q〉

=
∑

pq

〈p| ĥ0 |q〉
{

a†paq
}

+
∑

i

〈i| ĥ0 |i〉

Explain the meaning of the various symbols. Which reference vacuum has been used?

Exercise 11

Show that the twobody part of the Hamiltonian

ĤI =
1

4

∑

pqrs

〈pq| v̂ |rs〉 a†pa†qasar

can be written, using standard annihilation and creation operators, in normal-ordered form as

ĤI =
1

4

∑

pqrs

〈pq| v̂ |rs〉 a†pa†qasar

=
1

4

∑

pqrs

〈pq| v̂ |rs〉
{

a†pa
†
qasar

}

+
∑

pqi

〈pi| v̂ |qi〉
{

a†paq
}

+
1

2

∑

ij

〈ij| v̂ |ij〉

Explain again the meaning of the various symbols.
Derive the normal-ordered form of the threebody part of the Hamiltonian.

Ĥ3 =
1

36

∑

pqr
stu

〈pqr| v̂3 |stu〉 a†pa†qa†rauatas

and specify the contributions to the twobody, onebody and the scalar part.

Exercise 12

a) Place indices and write the algebraic expressions and discuss the physical meaning of the following diagrams:

FIG. 2: Examples of diagrams.

b) Can you find the diagrammatic expression for 〈c| ĤI |c〉 using the normal-ordered form from the previous exer-
cise?
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Exercise 13

In this exercise we will develop two simple models for studying the helium atom (with two electrons) and the
beryllium atom with four electrons.

After having introduced the Born-Oppenheimer approximation which effectively freezes out the nucleonic degrees
of freedom, the Hamiltonian for N electrons takes the following form

Ĥ =

N
∑

i=1

t(xi)−
N
∑

i=1

k
Ze2

ri
+

N
∑

i<j

ke2

rij
,

with k = 1.44 eVnm. We will use atomic units, this means that ~ = c = e = me = 1. The constant k becomes also
equal 1. The resulting energies have to be multiplied by 2× 13.6 eV in order to obtain energies in eletronvolts.

We can rewrite our Hamiltonians as

Ĥ = Ĥ0 + ĤI =

N
∑

i=1

ĥ0(xi) +

N
∑

i<j

1

rij
, (1)

where we have defined rij = |ri − rj | and ĥ0(xi) = t̂(xi) − Z
ri

The variable x contains both the spatial coordinates

and the spin values. The first term of Eq. (1), H0, is the sum of the N one-body Hamiltonians ĥ0. Each individual

Hamiltonian ĥ0 contains the kinetic energy operator of an electron and its potential energy due to the attraction of
the nucleus. The second term, HI , is the sum of the N(N−1)/2 two-body interactions between each pair of electrons.
Note that the double sum carries a restriction i < j.

As basis functions for our calculations we will use hydrogen-like single-particle functions. This means the onebody
operator is diagonal in this basis for states i, j with quantum numbers nlmlsms with energies

〈i|ĥ0|j〉 = −Z2/2n2δi,j .

The quantum number n refers to the number of nodes of the wave function. Observe that this expectation value is
independent of spin.

We will in all calculations here restrict ourselves to only so-called s -waves, that is the orbital momentum l is zero.
We will also limit the quantum number n to n ≤ 3. It means that every ns state can accomodate two electrons due
to the spin degeneracy. This is illustrated in Fig. 3 here.

1s

2s

3s

FIG. 3: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle
states. We show some possible two-particle states which can describe states in the helium atom.

In the calculations you will need the Coulomb interaction with matrix elements involving single-particle wave
functions with l = 0 only, the so-called s-waves. We need only the radial part since the spherical harmonics for the
s-waves are rather simple. We omit single-particle states with l > 0. Our radial wave functions are

Rn0(r) =

(

2Z

n

)3/2
√

(n− 1)!

2n× n!
L1
n−1(

2Zr

n
) exp (−Zr

n
),
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where L1
n−1(r) are the so-called Laguerre polynomials. These wave functions can then be used to compute the direct

part of the Coulomb interaction

〈αβ|V |γδ〉 =
∫

r21dr1

∫

r22dr2R
∗
nα0(r1)R

∗
nβ0

(r2)
1

|r1 − r2|
Rnγ0(r1)Rnδ0(r2)

Observe that this is only the radial integral and that the labels αβγδ refer only to the quantum numbers nlml, with
ml the projection of the orbital momentum l. A similar expression can be found for the exchange part. Since we have
restricted ourselves to only s-waves, these integrals are straightforward but tedious to calculate. As an addendum to
this exercise we list all closed-form expressions for the relevant matrix elements. Note well that these matrix elements
do not include spin. When setting up the final antisymmetrized matrix elements you need to consider the spin degrees
of freedom as well. Please pay in particular special attention to the exchange part and the pertinent spin values of
the single-particle states.

We will also, for both helium and beryllium assume that the many-particle states we construct have always the
same total spin projection MS = 0. This means that if we excite one or two particles from the ground state, the spins
of the various single-particle states should always sum up to zero.

a) We start with the helium atom and define our single-particle Hilbert space to consist of the single-particle orbits
1s, 2s and 3s, with their corresponding spin degeneracies, see Fig. 3.

Set up the ansatz for the ground state |c〉 = |Φ0〉 in second quantization and define a table of single-particle
states. Construct thereafter all possible one-particle-one-hole excitations |Φa

i 〉 where i refer to levels below the
Fermi level (define this level) and a refers to particle states. Define particles and holes. The Slater determinants
have to be written in terms of the respective creation and annihilation operators. The states you construct
should all have total spin projection MS = 0. Construct also all possible two-particle-two-hole states |Φab

ij 〉 in a
second quantization representation.

b) Define the Hamiltonian in a second-quantized form and use this to compute the expectation value of the ground
state (defining the so-called reference energy of the helium atom. Show that it is given by

E[Φ0] = 〈c|Ĥ |c〉 =
∑

i

〈i|ĥ0|i〉+
1

2

∑

ij

[

〈ij|1
r
|ij〉 − 〈ij|1

r
|ji〉
]

.

Define properly the sums keeping in mind that the states ij refer to all quantum numbers nlmlsms. Use the
values for the various matrix elements listed at the end of the exercise to find the value of E as function of
Z = 2. Be careful when you set up the matrix elements. Pay in particular attention to the spin values.

c) Hereafter we will limit ourselves to a system which now contains only one-particle-one-hole excitations beyond
the chosen state |c〉. Using the possible Slater determinants from exercise a) for the helium atom, compute also
the expectation values (without inserting the explicit values for the matrix elements first) of

〈c|Ĥ |Φa
i 〉,

and

〈Φa
i |Ĥ |Φb

j〉.
Represent these expectation values in a diagrammatic form, both for the onebody part and the two-body part
of the Hamiltonian.

Insert then the explicit values for the various matrix elements and set up the final Hamiltonian matrix and
diagonalize it using for example Octave, Matlab, Python, C++ or Fortran as programming tools.

Compare your results from those of exercise b) and comment your results. The exact energy with our Hamiltonian
is −2.9037 atomic units for helium. This value is also close to the experimental energy.

d) We repeat exercises b) and c) but now for the beryllium atom. Define the ansatz for |c〉 and limit yourself again

to one-particle-one-hole excitations. Compute the reference energy 〈c|Ĥ |c〉 for Z = 4. Thereafter you will need
to set up the appropriate Hamiltonian matrix which involves also one-particle-one-hole excitations. Diagonalize
this matrix and compare your eigenvalues with 〈c|Ĥ |c〉 for Z = 4 and comment your results. The exact energy
with our Hamiltonian is −14.6674 atomic units for beryllium. This value is again close to the experimental
energy.

We conclude by listing in Table I the matrix elements for the radial integrals to be used for the direct part and the
exchange part. Note again that these integrals do not include spin.
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TABLE I: Closed form expressions for the Coulomb matrix elements. The nomenclature is 1 = 1s, 2 = 2s and 3 = 3s, with no
spin degrees of freedom.

〈11|V |11〉 = (5Z)/8 〈11|V |12〉 = (4096
√
2Z)/64827

〈11|V |13〉 = (1269
√
3Z)/50000 〈11|V |21〉 = (4096

√
2Z)/64827

〈11|V |22〉 = (16Z)/729 〈11|V |23〉 = (110592
√
6Z)/24137569

〈11|V |31〉 = (1269
√
3Z)/50000 〈11|V |32〉 = (110592

√
6Z)/24137569

〈11|V |33〉 = (189Z)/32768 〈12|V |11〉 = (4096
√
2Z)/64827

〈12|V |12〉 = (17Z)/81 〈12|V |13〉 = (1555918848
√
6Z)/75429903125

〈12|V |21〉 = (16Z)/729 〈12|V |22〉 = (512
√
2Z)/84375

〈12|V |23〉 = (2160
√
3Z)/823543 〈12|V |31〉 = (110592

√
6Z)/24137569

〈12|V |32〉 = (29943
√
3Z)/13176688 〈12|V |33〉 = (1216512

√
2Z)/815730721

〈13|V |11〉 = (1269
√
3Z)/50000 〈13|V |12〉 = (1555918848

√
6Z)/75429903125

〈13|V |13〉 = (815Z)/8192 〈13|V |21〉 = (110592
√
6Z)/24137569

〈13|V |22〉 = (2160
√
3Z)/823543 〈13|V |23〉 = (37826560

√
2Z)/22024729467

〈13|V |31〉 = (189Z)/32768 〈13|V |32〉 = (1216512
√
2Z)/815730721

〈13|V |33〉 = (617Z)/(314928
√
3) 〈21|V |11〉 = (4096

√
2Z)/64827

〈21|V |12〉 = (16Z)/729 〈21|V |13〉 = (110592
√
6Z)/24137569

〈21|V |21〉 = (17Z)/81 〈21|V |22〉 = (512
√
2Z)/84375

〈21|V |23〉 = (29943
√
3Z)/13176688 〈21|V |31〉 = (1555918848

√
6Z)/75429903125

〈21|V |32〉 = (2160
√
3Z)/823543 〈21|V |33〉 = (1216512

√
2Z)/815730721

〈22|V |11〉 = (16Z)/729 〈22|V |12〉 = (512
√
2Z)/84375

〈22|V |13〉 = (2160
√
3Z)/823543 〈22|V |21〉 = (512

√
2Z)/84375

〈22|V |22〉 = (77Z)/512 〈22|V |23〉 = (5870679552
√
6Z)/669871503125

〈22|V |31〉 = (2160
√
3Z)/823543 〈22|V |32〉 = (5870679552

√
6Z)/669871503125

〈22|V |33〉 = (73008Z)/9765625 〈23|V |11〉 = (110592
√
6Z)/24137569

〈23|V |12〉 = (2160
√
3Z)/823543 〈23|V |13〉 = (37826560

√
2Z)/22024729467

〈23|V |21〉 = (29943
√
3Z)/13176688 〈23|V |22〉 = (5870679552

√
6Z)/669871503125

〈23|V |23〉 = (32857Z)/390625 〈23|V |31〉 = (1216512
√
2Z)/815730721

〈23|V |32〉 = (73008Z)/9765625 〈23|V |33〉 = (6890942464
√

2/3Z)/1210689028125

〈31|V |11〉 = (1269
√
3Z)/50000 〈31|V |12〉 = (110592

√
6Z)/24137569

〈31|V |13〉 = (189Z)/32768 〈31|V |21〉 = (1555918848
√
6Z)/75429903125

〈31|V |22〉 = (2160
√
3Z)/823543 〈31|V |23〉 = (1216512

√
2Z)/815730721

〈31|V |31〉 = (815Z)/8192 〈31|V |32〉 = (37826560
√
2Z)/22024729467

〈31|V |33〉 = (617Z)/(314928
√
3) 〈32|V |11〉 = (110592

√
6Z)/24137569

〈32|V |12〉 = (29943
√
3Z)/13176688 〈32|V |13〉 = (1216512

√
2Z)/815730721

〈32|V |21〉 = (2160
√
3Z)/823543 〈32|V |22〉 = (5870679552

√
6Z)/669871503125

〈32|V |23〉 = (73008Z)/9765625 〈32|V |31〉 = (37826560
√
2Z)/22024729467

〈32|V |32〉 = (32857Z)/390625 〈32|V |33〉 = (6890942464
√

2/3Z)/1210689028125

〈33|V |11〉 = (189Z)/32768 〈33|V |12〉 = (1216512
√
2Z)/815730721

〈33|V |13〉 = (617Z)/(314928
√
3) 〈33|V |21〉 = (1216512

√
2Z)/815730721

〈33|V |22〉 = (73008Z)/9765625 〈33|V |23〉 = (6890942464
√

2/3Z)/1210689028125

〈33|V |31〉 = (617Z)/(314928
√
3) 〈33|V |32〉 = (6890942464

√

2/3Z)/1210689028125
〈33|V |33〉 = (17Z)/256

Exercise 14

Consider a Slater determinant built up of single-particle orbitals ψλ, with λ = 1, 2, . . . , N .
The unitary transformation

ψa =
∑

λ

Caλφλ,

brings us into the new basis. The new basis has quantum numbers a = 1, 2, . . . , N . Show that the new basis is
orthonormal. Show that the new Slater determinant constructed from the new single-particle wave functions can be
written as the determinant based on the previous basis and the determinant of the matrix C. Show that the old and
the new Slater determinants are equal up to a complex constant with absolute value unity. (Hint, C is a unitary
matrix).
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Exercise 15

Consider the Slater determinant

Φ0 =
1√
n!

∑

p

(−)pP

n
∏

i=1

ψαi
(xi).

A small variation in this function is given by

δΦ0 =
1√
n!

∑

p

(−)pPψα1
(x1)ψα2

(x2) . . . ψαi−1
(xi−1)(δψαi

(xi))ψαi+1
(xi+1) . . . ψαn

(xn).

Show that

〈δΦ0|
n
∑

i=1

{t(xi) + u(xi)}+
1

2

n
∑

i6=j=1

v(xi, xj) |Φ0〉 =

n
∑

i=1

〈δψαi
| t+ u |φαi

〉+
n
∑

i6=j=1

{〈

δψαi
ψαj

∣

∣ v
∣

∣ψαi
ψαj

〉

−
〈

δψαi
ψαj

∣

∣ v
∣

∣ψαj
ψαi

〉}

Exercise 16

What is the diagrammatic representation of the HF equation?

−〈αk|uHF |αi〉+
n
∑

j=1

[〈αkαj | v |αiαj〉 − 〈αkαj | v |αjαi〉] = 0 ?

(Represent (−uHF ) by the symbol −−−X .)

Exercise 17

Consider the ground state |Φ〉 of a bound many-particle system of fermions. Assume that we remove one particle
from the single-particle state λ and that our system ends in a new state |Φn〉. Define the energy needed to remove
this particle as

Eλ =
∑

n

| 〈Φn| aλ |Φ〉 |2(E0 − En),

where E0 and En are the ground state energies of the states |Φ〉 and |Φn〉, respectively.
a) Show that

Eλ = 〈Φ| a†λ [aλ, H ] |Φ〉 ,
where H is the Hamiltonian of this system.
b) If we assume that Φ is the Hartree-Fock result, find the relation between Eλ and the single-particle energy ελ for
states λ ≤ F and λ > F , with

ελ = 〈λ| (t+ u) |λ〉
and

〈λ|u |λ〉 =
∑

β≤F

〈λβ| v |λβ〉 .

We have assumed an antisymmetrized matrix element here. Discuss the result.
The Hamiltonian operator is defined as

H =
∑

αβ

〈α| t |β〉 a†αaβ +
1

2

∑

αβγδ

〈αβ| v |γδ〉 a†αa†βaδaγ .
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Exercise 18

The electron gas model allows closed form solutions for quantities like the single-particle Hartree-Fock energy. The
latter quantity is given by the following expression

εHF
k =

~
2k2

2m
− e2

V 2

∑

k′≤kF

∫

d~rei(
~k′−~k)~r

∫

d~r′
ei(

~k−~k′)~r′

|~r − ~r′|

a) Show that

εHF
k =

~
2k2

2m
− e2kF

2π

[

2 +
k2F − k2

kkF
ln

∣

∣

∣

∣

k + kF
k − kF

∣

∣

∣

∣

]

(Hint: Introduce the convergence factor e−µ|~r−~r′| in the potential and use
∑

~k → V
(2π)3

∫

d~k )

b) Rewrite the above result as a function of the density

n =
k3F
3π2

=
3

4πr3s
,

where n = N/V , N being the number of particles, and rs is the radius of a sphere which represents the volum per
conducting electron. It can be convenient to use the Bohr radius a0 = ~

2/e2m.
For most metals we have a relation rs/a0 ∼ 2− 6.
Make a plot of the free electron energy and the Hartree-Fock energy and discuss the behavior around the Fermi

surface. Extract also the Hartree-Fock band width ∆εHF defined as

∆εHF = εHF
kF

− εHF
0 .

Compare this results with the corresponding one for a free electron and comment your results. How large is the
contribution due to the exchange term in the Hartree-Fock equation?

c) We will now define a quantity called the effective mass. For |~k| near kF , we can Taylor expand the Hartree-Fock
energy as

εHF
k = εHF

kF
+

(

∂εHF
k

∂k

)

kF

(k − kF ) + . . .

If we compare the latter with the corresponding expressiyon for the non-interacting system

ε
(0)
k =

~
2k2F
2m

+
~
2kF
m

(k − kF ) + . . . ,

we can define the so-called effective Hartree-Fock mass as

m∗
HF ≡ ~

2kF

(

∂εHF
k

∂k

)−1

kF

Compute m∗
HF and comment your results after you have done point d).

d) Show that the level density (the number of single-electron states per unit energy) can be written as

n(ε) =
V k2

2π2

(

∂ε

∂k

)−1

Calculate n(εHF
F ) and comment the results from c) and d).

Exercise 19

We consider a system of electrons in infinite matter, the so-called electron gas. This is a homogeneous system and
the one-particle states are given by plane wave function normalized to a volume Ω for a box with length L (the limit
L→ ∞ is to be taken after we have computed various expectation values)

ψkσ(r) =
1√
Ω

exp (ikr)ξσ
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where k is the wave number and ξσ is a spin function for either spin up or down

ξσ=+1/2 =

(

1
0

)

ξσ=−1/2 =

(

0
1

)

.

We assume that we have periodic boundary conditions which limit the allowed wave numbers to

ki =
2πni

L
i = x, y, z ni = 0,±1,±2, . . .

We assume first that the particles interact via a central, symmetric and translationally invariant interaction V (r12)
with r12 = |r1 − r2|. The interaction is spin independent.

The total Hamiltonian consists then of kinetic and potential energy

Ĥ = T̂ + V̂ .

a) Show that the operator for the kinetic energy can be written as

T̂ =
∑

kσ

~
2k2

2m
a†kσakσ.

Find also the number operator N̂ and find a corresponding expression for the interaction V̂ expressed with
creation and annihilation operators. The expression for the interaction has to be written in k space, even though
V depends only on the relative distance. It means that you ned to set up the Fourier transform 〈kikj |V |kmkn〉.

b) We assume that V (r12) < 0 kand that the integral
∫

|V (x)|d3x <∞.

Use the operator form for Ĥ from the previous exercise and calculate E0 = 〈Φ0|H |Φ0〉 for this system to first
order in perturbation theory and express the result as a function of the density ρ = N/Ω. The state |Φ0〉 is a
Slater determinant determined by filling all states up to Fermi level. Show that the system will collapse (you
wil not be able to find an energy minimum). Comment your results.

c) We will now study the electron gas. The Hamilton operator is given by

Ĥ = Ĥel + Ĥb + Ĥel−b,

with the electronic part

Ĥel =

N
∑

i=1

p2i
2m

+
e2

2

∑

i6=j

e−µ|ri−rj |

|ri − rj |
,

where we have introduced an explicit convergence factor (the limit µ → 0 is performed after having calculated
the various integrals). Correspondingly, we have

Ĥb =
e2

2

∫ ∫

drdr′
n(r)n(r′)e−µ|r−r′|

|r− r′| ,

which is the energy contribution from the positive background charge with density n(r) = N/Ω. Finally,

Ĥel−b = −e
2

2

N
∑

i=1

∫

dr
n(r)e−µ|r−xi|

|r− xi|
,

is the interaction between the electrons and the positive background.

Show that

Ĥb =
e2

2

N2

Ω

4π

µ2
,

and

Ĥel−b = −e2N
2

Ω

4π

µ2
.
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Show thereafter that the final Hamiltonian can be written as

H = H0 +HI ,

with

H0 =
∑

kσ

~
2k2

2m
a†kσakσ,

and

HI =
e2

2Ω

∑

σ1σ2

∑

q 6=0,k,p

4π

q2
a†k+q,σ1

a†p−q,σ2
apσ2

akσ1
.

d) Calculate E0/N = 〈Φ0|H |Φ0〉 /N for for this system to first order in the interaction. Show that, by using

ρ =
k3F
3π2

=
3

4πr30
,

with ρ = N/Ω, r0 being the radius of a sphere representing the volume an electron occupies and the Bohr radius
a0 = ~

2/e2m, that the energy per electron can be written as

E0/N =
e2

2a0

[

2.21

r2s
− 0.916

rs

]

.

Here we have defined rs = r0/a0 to be a dimensionless quantity.

Plot your results and link your discussion to the result in exercise b). Why is this system stable?

e) Calculate thermodynamical quantities like the pressure, given by

P = −
(

∂E

∂Ω

)

N

,

and the bulk modulus

B = −Ω

(

∂P

∂Ω

)

N

,

and comment your results.

f) The single-particle Hartree-Fock energies are given by the expression

εHF
k =

~
2k2

2m
− e2kF

2π

[

2 +
k2F − k2

kkF
ln

∣

∣

∣

∣

k + kF
k − kF

∣

∣

∣

∣

]

.

(You don’t need to calculate this quantity). How can you use the Hartree-Fock energy to find the ground state
energy? Are there differences between the Hartree-Fock results and those you found in exercise d)? Comment
your results.

Exercise 20

Show Thouless’ theorem: An arbitrary Slater determinant |c′〉 which is not orthogonal to a determinant |c〉 =
n
∏

i=1

a†αi
|0〉, can be written as

|c′〉 = exp







∞
∑

p=αn+1

αn
∑

h=α1

Cpha
†
pah







|c〉
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Exercise 21

We have

|c〉 =
∏

k>0

(uk + vka
†
ka

†
−k) |0〉

with u2k + v2k = 1, N̂ =
∑

ν

a†νaν and Ĥ = −|G|
∑

ν,ν′>0

a†νa
†
−νa−ν′aν′ . Show that

a)

〈c|c〉 =
∏

k>0

(u2k + v2k)

b)

〈c| N̂ |c〉 = 2
∑

ν>0

v2ν

c)

〈c| N̂2 |c〉 = 4
∑

ν>0

v2ν + 4
∑

ν 6=ν′>0

v2νv
2
ν′

d)

(∆N)2 = 〈c| N̂2 |c〉 − (〈c| N̂ |c〉)2 = 4
∑

ν>0

u2νv
2
ν

e)

〈c| Ĥ |c〉 = −|G|
[

∑

ν>0

uνvν

]2

− |G|
∑

ν>0

v4ν

Exercise 22

Show that
{

αk, α
†
l

}

= δkl, {αk, αl} = 0,
{

α†
k, α

†
l

}

= 0

is fulfilled

u2k + v2k = 1, uk = u−k, vk = v−k

(Recall that α†
k = uka

†
k + v−ka−k)

Exercise 23

Apply the Bogoliubov transformation on

H ′ =
∑

k>0

εka
†
kak − |G|

∑

k,k′>0

a†ka
†
−ka−k′ak′

and show that in the resulting

H ′ = U +H11 +H20 +H(4operatorer)
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we have

U = 2
∑

k>0

εkv
2
k − |G|

[

∑

k>0

ukvk

]2

− |G|
∑

k>0

v4k

H11 =
∑

k>0

{

(u2k − v2k)(εk − |G|v2k) + 2ukvk|G|
∑

k′>0

uk′vk′

}

(α†
kαk + α†

−kα−k)

H20 =
∑

k>0

{

2ukvk(εk − |G|v2k)− (u2k − v2k)|G|
∑

k′>0

uk′vk′

}

(α†
kα

†
−k + α−kαk)

Exercise 24

Let H = H0 + V and |φn〉 be the eigenstates of H0 and that |ψn〉 are the corresponding ones for H . Assume that
the ground states |φ0〉 and |ψ0〉 are not degenerate. Show that

E0 − ε0 =
〈φ0|V |ψ0〉
〈φ0|ψ0〉

,

with H |ψ0〉 = E |ψ0〉 and H0 |φ0〉 = ε0 |φ0〉.

a) Define the new operators P = |φ0〉 〈φ0| and Q = 1− P . Show that these operators are idempotent.

b) Show that for any z we have

|ψ0〉 = 〈φ0|ψ0〉
∞
∑

n=0

(

Q

z −H0
(z − E0 + V )

)n

|φ0〉 ,

and

E0 = ε0 +
∞
∑

n=0

〈φ0|V
(

Q

z −H0
(z − E0 + V )

)n

|φ0〉 .

c) Discuss these results for z = E0 (Brillouin-Wigner perturbation theory) and z = ε0 (Rayleigh-Schrödinger
perturbation theory). Compare the first few terms in these expansions.

Exercise 25

Consider a system of two fermions in the pair-orbitals |m0〉 and |−m0〉 in a single shell j with 2j + 1 > 2. Assume
that the matrix elements for the interaction between the particles takes the form

〈m,−m| v |m′,−m′〉 = −G.

a) Show that the Brillouin-Wigner expansion from the previous exercise can be used to give

E0 = −(j + 1/2)G.

b) Show thereafter by direct diagonalization of the Hamiltonian matrix that this is the exact energy. Use thereafter
Rayleigh-Schrödinger perturbation theory and discuss the differences.
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Exercise 26

Show that
∫ t

t′
dt1

∫ t1

t′
dt2H1(t1)H1(t2) =

1

2

∫ t

t′
dt1

∫ t

t′
dt2T [H1(t1)H1(t2)]

Hint: Use the definition of T in order to distinguish between t1 > t2 and t1 < t2;
∫ t

t′
dt1

∫ t

t′
dt2T [H1(t1)H1(t2)] =

∫ t

t′
dt1

{
∫ t1

t′
dt2H1(t1)H1(t2) +

∫ t

t1

dt2H1(t2)H1(t1)

}

Show that the last term on the right-hand side equals the first term (change the order of the integrations and thereafter
integration variables). The area of integration for the first term is shown in the figure below.

t2

t

t’
t’ t t1

t1 > t2

t2 > t1

t2=t
t1=t2

t1=t

Exercise 27

In exercise 19 you found an expression for the interaction part of the Hamiltonian for the electron gas given by

HI =
e2

2V

∑

σ1σ2

∑

~q 6=0,~k,~p

4π

q2
a†~k+~q,σ1

a†~p−~q,σ2
a~pσ2

a~kσ1

a) Find all diagrams to second order in perturbation theory. Set up the corresponding expressions and discuss
their behavior.

b) What happens in case you keep the convergence factor µ finite?

Exercise 28

Consider the following diagrams:

a) Set up the expressions for diagrams (a)-(e).

b) Diagram (b) does not give a contribution for a uniform and degenerate electron gas (or any uniform degenerate
infinite system). Explain why. What about diagram (a)?

c) Diagram (c) is a so-called exchange diagram. Can you find the corresponding direct diagram?

d) Can you find the exchange diagram of diagram (e) under the assumption that the exchange takes place at the
middle vertex?
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(e)(d)

(c)(b)(a)

m

n

l

jkilj

qp

nm

ki

j

l

n
m

ki

lj

i

mm

k

j

i

Exercise 29

Explain how the Hartree-Fock approximation can be used to cancel the diagrams of (a) in the figure. Set up their
corresponding expressions. Find thereafter the expression for the diagram in (b).

(a)

(b)

Exercise 23

Compute the contribution to ∆E0 for the diagram shown here. Can the crossing hole lines have the same quantum

numbers?
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Exercise 30

We consider a one-particle system with the following Hamiltonian H = H0 +H1 where

H0 =
∑

i=1,2

εia
†
iai

H1 = λ
∑

i6=j=1,2

a†iaj

a) Find the ground state energy to third order in perturbation theory using both Brillouin-Wigner and Rayleigh-
Schödinger perturbation theory.

b) Write down the corresponding diagrams in the particle picture (using the true vacuum).

c) Find the exact energy and expand the exact results in terms of the parameter λ and compare with the results
obtained with the above two expansions. Discuss the eventual differences.

d) Rewrite the unperturbed ground state in the particle-hole representation

|c〉 = |Φ1〉 = a†1 |0〉 ,

and write down the corresponding diagrams

e) To fourth order in perturbation theory we have unlinked diagrams. Give examples of these and show how they
can be cancelled.

Exercise 31

We present a simplified Hamiltonian consisting of an unperturbed Hamiltonian and a so-called pairing interaction
term. It is a model which to a large extent mimicks some central features of atomic nuclei, certain atoms and systems
which exhibit superfluiditity or superconductivity. To study this system, we will use a mix of many-body perturbation
theory, Hartree-Fock theory and the configuration interaction method. The latter will also provide us with the exact
answer. When setting up the Hamiltonian matrix you will need to solve an eigenvalue problem. This can easily be
done with either octave or Matlab or writing your own program.

We define first the Hamiltonian, with a definition of the model space and the single-particle basis. Thereafter, we
present the various exercises.

The Hamiltonian acting in the complete Hilbert space (usually infinite dimensional) consists of an unperturbed

one-body part, Ĥ0, and a perturbation V̂ .
We limit ourselves to at most two-body interactions, our Hamiltonian is then represented by the following operators

Ĥ =
∑

αβ

〈α|h0|β〉a†αaβ +
1

4

∑

αβγδ

〈αβ|V |γδ〉a†αa†βaδaγ ,

where a†α and aα etc. are standard fermion creation and annihilation operators, respectively, and αβγδ represent
all possible single-particle quantum numbers. The full single-particle space is defined by the completeness relation
1̂ =

∑∞
α=1 |α〉〈α|. In our calculations we will let the single-particle states |α〉 be eigenfunctions of the one-particle

operator ĥ0.
The above Hamiltonian acts in turn on various many-body Slater determinants constructed from the single-basis

defined by the one-body operator ĥ0. As an example, the two-particle model space P is defined by an operator

P̂ =

m
∑

αβ=1

|αβ〉〈αβ|,

where we assume that m = dim(P) and the full space is defined by

P̂ + Q̂ = 1̂,
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with the projection operator

Q̂ =

∞
∑

αβ=m+1

|αβ〉〈αβ|,

being the complement of P̂ .
Our specific model consists of N doubly-degenerate and equally spaced single-particle levels labelled by p = 1, 2, . . .

and spin σ = ±1. These states are schematically portrayed in Fig. 4. The first two single-particle levels define a
possible model space, indicated by the label P . The remaining states span the excluded space Q.

We write the Hamiltonian as

Ĥ = Ĥ0 + V̂ ,

where

Ĥ0 = ξ
∑

pσ

(p− 1)a†pσapσ

and

V̂ = −1

2
g
∑

pq

a†p+a
†
p−aq−aq+.

Here, H0 is the unperturbed Hamiltonian with a spacing between successive single-particle states given by ξ, which
we will set to a constant value ξ = 1 without loss of generality. The two-body operator V̂ has one term only. It
represents the pairing contribution and carries a constant strength g. The indices σ = ± represent the two possible
spin values. The interaction can only couple pairs and excites therefore only two particles at the time, as indicated by
the rightmost four-particle state in Fig. 4. There one of the pairs is excited to the state with p = 9 and the other to
the state p = 7. The two middle possibilities are not possible with the present model. We label single-particle states
within the model space as hole-states. The single-particle states outside the model space are then particle states.

In our model we have kept both the interaction strength and the single-particle level as constants. In a realistic
system like an atom or the atomic nucleus this is not the case.

a) Show that the unperturbed Hamiltonian Ĥ0 and V̂ commute with both the spin projection Ŝz and the total

spin Ŝ2, given by

Ŝz :=
1

2

∑

pσ

σa†pσapσ

and

Ŝ2 := Ŝ2
z +

1

2
(Ŝ+Ŝ− + Ŝ−Ŝ+),

where

Ŝ± :=
∑

p

a†p±ap∓.

This is an important feature of our system that allows us to block-diagonalize the full Hamiltonian. We will
focus on total spin S = 0. In this case, it is convenient to define the so-called pair creation and pair annihilation
operators

P̂+
p = a†p+a

†
p−,

and

P̂−
p = ap−ap+,

respectively.
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p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

p = 8

p = 9

p = 10

p = . . .

Q

P

FIG. 4: Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle
states while the empty circles represent vacant particle(hole) states. The spacing between each level p is constant in this picture.
The first two single-particle levels define our possible model space, indicated by the label P . The remaining states span the
excluded space Q. The first state to the left represents a possible ground state representation for a four-fermion system. In the
second state to the left, one pair is broken. This possibility is however not included in our interaction.

Show that you can rewrite the Hamiltonian (with ξ = 1) as

Ĥ =
∑

pσ

(p− 1)a†pσapσ − 1

2
g
∑

pq

P̂+
p P̂

−
q .

Show also that Hamiltonian commutes with the product of the pair creation and annihilation operators. This
model corresponds to a system with no broken pairs. This means that the Hamiltonian can only link two-particle
states in so-called spin-reversed states.

b) Construct thereafter the Hamiltonian matrix for a system with no broken pairs and spin S = 0 for the case
of the four lowest single-particle levels indicated in the Fig. 4. Our system consists of four particles only. Our
single-particle space consists of only the four lowest levels p = 1, 2, 3, 4. You need to set up all possible Slater
determinants. Find all eigenvalues by diagonalizing the Hamiltonian matrix. Vary your results for values of
g ∈ [−1, 1]. We refer to this as the exact calculation. Comment the behavior of the ground state as function of
g.
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c) Instead of setting up all possible Slater determinants, construct only an approximation to the ground state
(where we assume that the four particles are in the two lowest single-particle orbits only) which includes at most
two-particle-two-hole excitations. Diagonalize this matrix and compare with the exact calculation and comment
your results. Can you set up which diagrams this approximation corresponds to?

d) Hereafter we will define our model space to consist of the single-particle levels p = 1, 2. The remaining levels
p = 3, 4 define our excluded space. This means that our ground state Slater determinant consists of four particles
which can be placed in the doubly degenerate orbits p = 1 and p = 2.

We will now study the system using non-degenerate Rayleigh-Schrödinger perturbation theory to third order in
the interaction. If we exclude the first order contribution, all possible diagrams (Hugenholz diagrams where the
vertices have been opened) are shown in Fig. 5.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

i j
p q

r s

FIG. 5: Diagrams to third order in the interaction. The first order term is excluded.

Based on the form of the interaction, which diagrams contribute to the binding energy of the ground state?
Write down the expressions for the diagrams that contribute and find the contribution to the ground state
energy as function g ∈ [−1, 1]. Comment your results. Compare these results with those you obtained in 2) and
3).

e) The diagrams with only two single particle states as intermediate states (for example diagrams 1 and 4 in Fig. 5)
can be summed to infinite order since they can be expressed as a geometric series. Find this contribution and
compare the final energy with the results from 2) and 3). Comment your results. You can also perform a
resummation of diagrams like diagram 5 with hole lines as intermediate states only between various vertices.
Can you find this result as well? Compare now the final results with the resummed two-particle and two-hole
diagrams with the results from 2) and 3).

f) We will now set up the Hartree-Fock equations by varying the coefficients of the single-particle functions. The
single-particle basis functions are defined as

ψp =
∑

λ

Cpλψλ.

where in our case p = 1, 2, 3, 4 and λ = 1, 2, 3, 4, that is the first four lowest single-particle orbits of Fig. 4.
Set up the Hartree-Fock equations for this system by varying the coefficients Cpλ and solve them for values of
g ∈ [−1, 1]. Comment your results and compare with the exact solution. Discuss also which diagrams in Fig. 5
that can be affected by a Hartree-Fock basis. Compute the total binding energy using a Hartree-Fock basis and
comment your results.

g) To fourth order in perturbation theory we can produce diagrams with so-called four-particle-four-hole excitations.
An example is given in Fig. 6. Find the contribution to the binding energy of the ground state from this type
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FIG. 6: An example of a fourth-order diagram with an intermediate state involving four-particle-four-hole excitations.

of contributions and compare with your previous results with and without a Hartree-Fock basis. Discuss in
particular the connection with the results for the full diagonalization where Slater determinants involving four-
particle-four-hole excitations are involved.

h) When summing over all intermediate states in diagram 1 or 4 of Fig. 5, we have limited the sum over intermediate
particle states to include the states p = 3 and p = 4 only. Compute this sum by taking the limit p = ∞. Comment
your results.

Exercise 32

We will study a schematic model (the Lipkin model, Nucl. Phys. 62 (1965) 188) for the interaction among 4
fermions that can occupy two different energy levels. Each levels has degeneration d = 4. The two levels have
quantum numbers σ = ±1, with the upper level having σ = +1 and energy ε1 = ε/2. The lower level has σ = −1 and
energy ε2 = −ε/2. In addition, the substates of each level are characterized by the quantum numbers p = 1, 2, 3, 4.

We define the single-particle states

|uσ=−1,p〉 = a†−p |0〉 |uσ=1,p〉 = a†+p |0〉 .

The single-particle states span an orthonormal basis. The Hamiltonian of the system is given by

H = H0 +H1 +H2

H0 = 1
2ε
∑

σ,p σa
†
σ,paσ,p

H1 = 1
2V
∑

σ,p,p′ a†σ,pa
†
σ,p′a−σ,p′a−σ,p

H2 = 1
2W

∑

σ,p,p′ a†σ,pa
†
−σ,p′aσ,p′a−σ,p

where V and W are constants. The operator H1 can move pairs of fermions as shown in Fig. (a) while H2 is a
spin-exchange term. As shown in Fig. (b), H2 moves a pair of fermions from a state (pσ, p′−σ) to a state (p−σ, p′σ).

1 2 3 4 1 2 3 4p

(a) (b)

-

+

σ
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a) Introduce the quasispin operators

J+ =
∑

p a
†
p+ap−

J− =
∑

p a
†
p−ap+

Jz = 1
2

∑

pσ σa
†
pσapσ

J2 = J+J− + J2
z − Jz

Show that these operators obey the commutation relations for angular momentum.
b) Express H in terms of the above quasispin operators and the number operator

N =
∑

pσ

a†pσapσ.

c) Show that H commutes with J2, viz., J is a good quantum number.
d) Consider thereafter a state with all four fermions in the lowest level (see the above figure). We can write this state
as

|ΦJz=−2〉 = a†1−a
†
2−a

†
3−a

†
4− |0〉 .

This state has Jz = −2 and belongs to the set of possible projections of J = 2. We introduce the shorthand notation
|J, Jz〉 for states with different values of spin J and its projection Jz.

The other possible values are Jz = −1, Jz = 0, Jz = 1 and Jz = 2. Use the ladder operators J+ and J− to set up the
states with spin Jz = −1 Jz = 0, Jz = 1 and Jz = 2. The action of these operators on a state with given spin J and Jz
is (with ~ = 1) J+ |J, Jz〉 =

√

J(J + 1)− Jz(Jz + 1) |J, Jz + 1〉 and J− |J, Jz〉 =
√

J(J + 1)− Jz(Jz − 1) |J, Jz − 1〉,
respectively.
e) use thereafter the quasispin operators to construct the Hamiltonian matrix H for this five-dimensional space. Find
thereafter the eigenvalues (numerically using for example Octave or Matlab or python) for the following parameter
sets: sett av verdier:

(1) ε = 2, V = −1/3, W = −1/4
(2) ε = 2, V = −4/3, W = −1

Which state is the ground state? Comment your results.
f) The single-particle states for the Lipkin model

|uσ=−1,p〉 = a†−p |0〉 |uσ=1,p〉 = a†+p |0〉
can now be used as basis for a new single-particle state |φα,p〉 via a unitary transformation

|φα,p〉 =
∑

σ=±1

Cασ |uσ,p〉

with α = ±1 og p = 1, 2, 3, 4. Why is p the same in |φ〉 as in |u〉? Show that the new basis is orthonormal.
g) With the new basis we can construct a new Slater determinant given by |Ψ〉

|Ψ〉 =
4
∏

p=1

b†α,p |0〉

with b†α,p |0〉 = |φα,p〉. h) Use the Slater determinanten from the previous exercise to calculate

E = 〈Ψ|H |Ψ〉 ,
as a function of the coefficients Cσα. We assume the coefficients to be real.
i) Show that

ǫ

3
> V +W,

has to be fulfilled in order to find a minimum in the energy.
Hint: calculate the functional derivative of the energy with respect to the coefficients Cσα.



23

Exercise 33, Exam Fall semester 2011

Let Ĥ = Ĥ0 + ĤI and |Φn〉 be the eigenstates of Ĥ0 and that |Ψn〉 are the corresponding ones for Ĥ . Assume that
the ground states |Φ0〉 and |Ψ0〉 are not degenerate. We can then write the energy of the ground state as

E0 − ε0 =
〈Φ0| ĤI |Ψ0〉
〈Φ0|Ψ0〉

,

with Ĥ |Ψ0〉 = E0 |Ψ0〉 and H0 |Φ0〉 = ε0 |Φ0〉. We define also the projection operators P̂ = |Φ0〉 〈Φ0| and Q̂ = 1− P̂ .

These operators satisfy P̂ 2 = P̂ , Q̂2 = Q̂ and P̂ Q̂ = 0.

a) Show that for any ω we have can write the ground state energy as

E0 = ε0 +

∞
∑

n=0

〈Φ0| ĤI

(

Q̂

ω − Ĥ0

(ω − E0 + ĤI)

)n

|Φ0〉 .

b) Discuss these results for ω = E0 (Brillouin-Wigner perturbation theory) and ω = ε0 (Rayleigh-Schrödinger
perturbation theory). Compare the first few terms in these expansions and discuss the differences.

c) Show that the onebody part of the Hamiltonian

Ĥ0 =
∑

pq

〈p| ĥ0 |q〉 a†paq

can be written, using standard annihilation and creation operators, in normal-ordered form as

Ĥ0 =
∑

pq

〈p| ĥ0 |q〉 a†paq =
∑

pq

〈p| ĥ0 |q〉
{

a†paq
}

+
∑

i

〈i| ĥ0 |i〉 ,

and that the two-body Hamiltonian

ĤI =
1

4

∑

pqrs

〈pq| v̂ |rs〉 a†pa†qasar,

can be written

ĤI =
1

4

∑

pqrs

〈pq| v̂ |rs〉
{

a†pa
†
qasar

}

+
∑

pqi

〈pi| v̂ |qi〉
{

a†paq
}

+
1

2

∑

ij

〈ij| v̂ |ij〉

Explain the meaning of the various symbols. Which reference vacuum has been used? Write down the diagram-
matic representation of all these terms.

d) Use the diagrammatic representation of the Hamiltonian operator from the previous exercise to set up all
diagrams (use either anti-symmetrized Goldstone diagrams or Hugenholz diagrams) to second order (including
the reference energy) in Rayleigh Schrödinger perturbation theory that contribute to the expectation value of
E0.

Use the diagram rules to write down their closed-form expressions. If a Hartree-Fock basis is used, which
diagrams remain?

We consider now a one-particle system with the following Hamiltonian Ĥ = Ĥ0 + ĤI where

Ĥ0 =
∑

p

εpa
†
pap,

and

ĤI = g
∑

pq

a†paq.
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The strength parameter g is a real constant. The first part of the Hamiltonian plays the role of the unperturbed part,
with

〈p| ĥ0 |q〉 = δp,qεp.

We have only two one-particle states, with ε1 < ε2, and we will let the first state p = 1 correspond to the model space
and the other, p = 2, correspond to the excluded space. Use labels ijk . . . for hole states (below the Fermi level) and
labels abc . . . for particle (virtual) states (above the Fermi level).

e) Use the results from exercise c) to write down the above Hamiltonian in a normal-ordered form and set up all
diagrams. Use an X to indicate the interaction part HI .

f) Define the ground state (which is our model space) as

|Φ0〉 = a†i |0〉 = a†1 |0〉 ,

and the excited state as

|Φa
i 〉 = a†aai |Φ0〉 ,

where a = 2 and i = 1. Set up the Hamiltonian matrix (a 2× 2 matrix) and find the exact energy and expand
the exact result for the ground state in terms of the parameter g.

g) Find the ground state energy to third order in Rayleigh-Schödinger perturbation theory and compare the results
with the expansion of the exact energy from the previous exercise. Write down all diagrams which contribute
and comment your results.

The final part deals with coupled-cluster theory. Since we have only a one-body problem, coupled-cluster theory
truncated at the level of T1 is exact. The similarity transformed normal-ordered Hamiltonian can then be written out
as

H̄ = ĤN +
(

ĤN T̂
)

c
+

1

2

(

ĤN T̂
2
)

c
+ · · ·+,

where only linked diagrams appear. The expectation value of the ground state energy (beyond the reference energy
is)

ECCS = 〈Φ0| H̄ |Φ0〉 ,

and the amplitudes tai are determined from the equation

0 = 〈Φa
i | H̄ |Φ0〉 .

For the latter we need to take into account diagrams which lead to a final excitation level of +1 only.

h) Set up the definition of the operator T̂ = T̂1. We will use a diagrammatic approach only to find the diagrammatic
contribution to the ground state beyond the reference energy. Show that the only possibility is

ECCS =

Find the closed form expression.

i) Show, using a diagrammatic approach and keeping in mind the final excitation level, that the only diagrams
that lead to

0 = 〈Φa
i | H̄ |Φ0〉 ,

are

0 = + + +

Set up the final closed form expressions and the algorithm for finding the amplitudes tai . Can you solve the
problem?
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