Concepts and definitions - Atomic number number of protons in the nucleus (Z) - Isotopes atoms with same Z but different number of neutrons (N) - Mass number: A = Z+N - Isobars: Atoms with same A, but different Z (and N) - ► e.g. 81Zn,81Ga,81Ge - (Isotones atoms with same N but different Z) - Nuclide: atom type characterized by a specific N and Z - Nucleon, proton or neutron - Isomer, atoms a specifiv nuclide, in a particularly long-lived excited state, different from the ground state Nuclear Chem., Dept.of Chem. University of Oslo ### Isotopes | ¹⁷ F | ¹⁸ F | ¹⁹ F | ²⁰ F | ²¹ F | ²² F | ²³ F | ²⁴ F | |------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|------------------------|------------------------| | 64.5s | 1.82h | stabil | 11.0s | 4.4 s | 4.2 s | 2.3 s | 0.3 s | | β ⁺ | β^{+} | 100% | β- | β- | β- | β- | β- | - Fluorine isotopes exist on the following masses; 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, in total 12. - ▶ ¹⁹F is the only stable F isotope - ► ¹⁸Fand ¹⁷Fare β⁺-active - All the remaining are β-active - ●¹⁶F is unbound, i.e. it does not exist. It is not possible. This position is called the "proton dripline". All lighter F-isotopes are also unbound - ²⁸F is unbound, so is ³⁰F and all heavier F-isotopes. ²⁸F and ³⁰F are just above the "neutron drip-line" Nuclear Chem., Dept.of Chem. University of Oslo ### **Notation** AZN N - A mass number - Z proton number - N neutron number - X chemical element signature #### **Example:** Or just: ³⁶**CI**₁₉ ³⁶C Do not use: Cl-36 or Cl-36 ## **Energies and units** - 1 eV (electron-volt) = 1.6•10⁻¹⁹ J - 1 keV = 10^3 eV - 1 MeV = 10⁶ eV - 1 GeV = 10⁹ eV - ●1 TeV = 10¹² eV - ~eV chemical binding - keV binding energies for inner shell electrons in heavy elements - 511 keV electron rest mass - MeV energies in simple nuclear processes - ~200 MeV fission energies - 0.94 GeV nucleon rest mass (proton or neutron) ## Disintegration and time #### • Assumptions: - 1. We have a number N radioactive atoms of the same nuclide - 2. Their probability of decay is independent of their past history - They decay without interactions with the surroundings What is the disintegration rate as a function of time? ## The decay law Consider a time-interval Δt . During this time a number of atoms - ΔN (positive number) will disintegrate. We consider Δt so small that the condition - ΔN << N is fulfilled. Then we have: $-\Delta N \propto \Delta t$ and $-\Delta N \propto N$ (assumption 3) Hence: $-\Delta N = \lambda N \Delta t$ or: $-dN = \lambda Ndt$ i.e. $-dN/N = \lambda dt$ Integration: assumption 2 $$\int_{0}^{N} -dN/N = \int_{0}^{t} \lambda dt = \lambda \int_{0}^{t} dt$$ No $t=0$ $t=0$ gives -ln $(N/N_0) = \lambda t$ or $$N=N_0 e^{-\lambda t}$$ Like a 1st order chemical reaction Nuclear Chem., Dept.of Chem. University of Oslo # Disintegration and number of atoms The constant λ is the decay constant, characteristic of each nuclide, and expresses the probability per unit time that one atom will decay. Hence the product $$\lambda N = D$$ expresses the number of disintegrations per unit time, or the disintegration-rate of that particular nuclide. As for a 1st order chemical reaction, we have: $$\lambda = \ln(2)/T_{1/2}$$ It is also easily seen that for a single decay, one has: $$D = D_0 e^{-\lambda t}$$ where D_o is the disintegration rate at t=0 ### **Unit** - Unit for disintegration-rate (decayrate): 1 becquerel = 1 Bq - 1 Bq = 1 disintegration per second - 1 kBq = 10^3 Bq - 1 MBq = 10^6 Bq - 1 GBq = 10⁹ Bq - 1 TBq = 10^{12} Bq - \bullet 1 PBq = 10^{15} Bq Disintegration rate should be specified to a particular nuclide, or to total disintegration rate # Disintegration rate and mass The total amount of Pu in the world was in 2009 approximately 2100 tons. Calculate the disintegration rate, assuming that all Pu is ²³⁹Pu, with half-life of 24 000 years. (World production of Pu: ~70 tons per year, a small fraction of it is used in MOX fuel) - 1) Find the number of moles: - $n = 2.1 \cdot 10^9 / 239 = 8.8 \cdot 10^6$ - 2) Number of atoms: $$N = N_A \cdot n = 6.022 \cdot 10^{23} \cdot 8.8 \cdot 10^6$$ = 5.3 \cdot 10^{30} 3) D = $$\lambda$$ N = N(ln2)/T_{1/2} = 5.3•10³⁰ • (ln2)/(24000 (y) • 3.16•10⁷ (s/y)) = 4.8•10¹⁸ Bq Nuclear Chem., Dept.of Chem. University of Oslo ## Environmental aspects The Kara Sea is about 2000 km long, 500 km wide and 200 m deep. Total volume: $V = 200 \cdot 500 \ 000 \cdot 2000 \ 000 = 2 \cdot 10^{14} \ m^3$. Assume: Someone gets holds on all the world's Pu, dissolves it in nitric acid and pours it into the Kara Sea, where it is not sedimented. Activity concentration; $4.8 \cdot 10^{18}$ Bq/ $2 \cdot 10^{14}$ m³ = 24000 Bq/m³ = 24 Bq/I ## Decay law, example - A source of ^{99m}Tc (6.0 h) has a disintegration rate of 1.0•10⁷ Bq. What is the disintegration rate after 3.0 hours? - $\bullet \lambda = (\ln 2)/T_{\frac{1}{2}} = (\ln 2)/6.0(h) = 0.116(h^{-1})$ - \bullet D = D_oe^{- λ t} = 1.0•10⁷e^{-0.116•3.0} =**7.1•10**⁶ Bq - How many atoms ^{99m}Tc are present now? - N = D/ λ = DT_{1/2} /(In2) = 7.1•10⁶ (6.0•3600)/(In2) = **2.2•10**¹¹ - What's the number of moles? - $\bullet 2.2 \cdot 10^{11}/6.022 \cdot 10^{23} = 3.7 \cdot 10^{-13}$