

Concepts and definitions

- Atomic number number of protons in the nucleus (Z)
- Isotopes atoms with same Z but different number of neutrons (N)
- Mass number: A = Z+N
- Isobars: Atoms with same A, but different Z (and N)
 - ► e.g. 81Zn,81Ga,81Ge
- (Isotones atoms with same N but different Z)
- Nuclide: atom type characterized by a specific N and Z
- Nucleon, proton or neutron
- Isomer, atoms a specifiv nuclide, in a particularly long-lived excited state, different from the ground state

Nuclear Chem., Dept.of Chem. University of Oslo

Isotopes

¹⁷ F	¹⁸ F	¹⁹ F	²⁰ F	²¹ F	²² F	²³ F	²⁴ F
64.5s	1.82h	stabil	11.0s	4.4 s	4.2 s	2.3 s	0.3 s
β ⁺	β^{+}	100%	β-	β-	β-	β-	β-

- Fluorine isotopes exist on the following masses; 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, in total 12.
 - ▶ ¹⁹F is the only stable F isotope
 - ► ¹⁸Fand ¹⁷Fare β⁺-active
 - All the remaining are β-active
- ●¹⁶F is unbound, i.e. it does not exist. It is not possible. This position is called the "proton dripline". All lighter F-isotopes are also unbound
- ²⁸F is unbound, so is ³⁰F and all heavier F-isotopes. ²⁸F and ³⁰F are just above the "neutron drip-line"

Nuclear Chem., Dept.of Chem. University of Oslo

Notation

AZN N

- A mass number
- Z proton number
- N neutron number
- X chemical element signature

Example:

Or just:

³⁶**CI**₁₉

³⁶C

Do not use: Cl-36 or Cl-36

Energies and units

- 1 eV (electron-volt) = 1.6•10⁻¹⁹ J
- 1 keV = 10^3 eV
- 1 MeV = 10⁶ eV
- 1 GeV = 10⁹ eV
- ●1 TeV = 10¹² eV
- ~eV chemical binding
- keV binding energies for inner shell electrons in heavy elements
- 511 keV electron rest mass
- MeV energies in simple nuclear processes
- ~200 MeV fission energies
- 0.94 GeV nucleon rest mass (proton or neutron)

Disintegration and time

• Assumptions:

- 1. We have a number N radioactive atoms of the same nuclide
- 2. Their probability of decay is independent of their past history
- They decay without interactions with the surroundings

 What is the disintegration rate as a function of time?

The decay law

Consider a time-interval Δt . During this time a number of atoms - ΔN (positive number) will disintegrate. We consider Δt so small that the condition - ΔN << N is fulfilled. Then we have:

 $-\Delta N \propto \Delta t$ and

 $-\Delta N \propto N$ (assumption 3)

Hence: $-\Delta N = \lambda N \Delta t$

or: $-dN = \lambda Ndt$ i.e. $-dN/N = \lambda dt$

Integration:

assumption 2

$$\int_{0}^{N} -dN/N = \int_{0}^{t} \lambda dt = \lambda \int_{0}^{t} dt$$
No $t=0$ $t=0$
gives -ln $(N/N_0) = \lambda t$ or
$$N=N_0 e^{-\lambda t}$$

Like a 1st order chemical reaction

Nuclear Chem., Dept.of Chem. University of Oslo

Disintegration and number of atoms

The constant λ is the decay constant, characteristic of each nuclide, and expresses the probability per unit time that one atom will decay. Hence the product

$$\lambda N = D$$

expresses the number of disintegrations per unit time, or the disintegration-rate of that particular nuclide. As for a 1st order chemical reaction, we have:

$$\lambda = \ln(2)/T_{1/2}$$

It is also easily seen that for a single decay, one has:

$$D = D_0 e^{-\lambda t}$$

where D_o is the disintegration rate at t=0

Unit

- Unit for disintegration-rate (decayrate): 1 becquerel = 1 Bq
- 1 Bq = 1 disintegration per second
- 1 kBq = 10^3 Bq
- 1 MBq = 10^6 Bq
- 1 GBq = 10⁹ Bq
- 1 TBq = 10^{12} Bq
- \bullet 1 PBq = 10^{15} Bq

 Disintegration rate should be specified to a particular nuclide, or to total disintegration rate

Disintegration rate and mass

The total amount of Pu in the world was in 2009 approximately 2100 tons. Calculate the disintegration rate, assuming that all Pu is ²³⁹Pu, with half-life of 24 000 years. (World production of Pu: ~70 tons per year, a small fraction of it is used in MOX fuel)

- 1) Find the number of moles:
 - $n = 2.1 \cdot 10^9 / 239 = 8.8 \cdot 10^6$
- 2) Number of atoms:

$$N = N_A \cdot n = 6.022 \cdot 10^{23} \cdot 8.8 \cdot 10^6$$

= 5.3 \cdot 10^{30}

3) D =
$$\lambda$$
N = N(ln2)/T_{1/2} = 5.3•10³⁰ • (ln2)/(24000 (y) • 3.16•10⁷ (s/y)) =

4.8•10¹⁸ Bq

Nuclear Chem., Dept.of Chem. University of Oslo

Environmental aspects

The Kara Sea is about 2000 km long, 500 km wide and 200 m deep.

Total volume: $V = 200 \cdot 500 \ 000 \cdot 2000 \ 000 = 2 \cdot 10^{14} \ m^3$.

Assume: Someone gets holds on all the world's Pu, dissolves it in nitric acid and pours it into the Kara Sea, where it is not sedimented.

Activity concentration; $4.8 \cdot 10^{18}$ Bq/ $2 \cdot 10^{14}$ m³ = 24000 Bq/m³ = 24 Bq/I

Decay law, example

- A source of ^{99m}Tc (6.0 h) has a disintegration rate of 1.0•10⁷ Bq. What is the disintegration rate after 3.0 hours?
- $\bullet \lambda = (\ln 2)/T_{\frac{1}{2}} = (\ln 2)/6.0(h) = 0.116(h^{-1})$
- \bullet D = D_oe^{- λ t} = 1.0•10⁷e^{-0.116•3.0} =**7.1•10**⁶ Bq
- How many atoms ^{99m}Tc are present now?
- N = D/ λ = DT_{1/2} /(In2) = 7.1•10⁶ (6.0•3600)/(In2) = **2.2•10**¹¹
- What's the number of moles?
- $\bullet 2.2 \cdot 10^{11}/6.022 \cdot 10^{23} = 3.7 \cdot 10^{-13}$