

The valley of stability

The stable nuclides are found in the indicated region. It is important to notice that the N/Z ration increases weakly towards higher mass numbers

How is the nucleus composed?

Size of a nucleon: approx. 1.6 fm Size of the nucleus $\approx r_o A^{1/3}$

1 fm (femtometer, fermi) = 10⁻¹⁵ m

Binding energy

The binding energy pr. nucleon as a function of the mass number

Increases rapidly at low masses, with a maximum at ⁵⁶Fe Sinks slowly towards high masses

From the chart of nuclides

We have roughly

- Stable nuclides: approx.275 (black)
- Nuclides occuring in nature: approx. 300
- ► Total number of nuclides: approx. 2200

• The radioactive ones are:

- β⁻ neutronrich nuclei
- β⁺ neutrondeficient nuclei
- EC -neutrondeficient nuclei near stability
- α heavy nuclei
- SF very heavy nuclides

Internal γ - everywhere

• Exotic forms:

- Proton-emission
- ▶ ¹⁴C-emission

More observations from the chart of nuclides

Stable nuclides

- ► Even Z, even N 163 60,8 %
- ► Even Z, odd N 55 20,3 %
- Odd Z, even N 49 18,9 %
- Odd Z, odde N 4* 1,5 %
 *) All with A≤ 14

Stable nuclides

- Only one on isobar chains with odd A
- Up to three on isobar chains with even A
- Max two stable isotopes wiith odd Z
- No stable isotopes for Z=43 and Z=61
- May be many stable isotopes for even Z (maxfor Sn, 10 stable)

Other observations

- Many isomers for cerntain elements (e.g. almost every In isotope)
- Magic numbers
- Strong occurrence of α-activity right above
 208Ph

▶ No stable nuclides with A=5 or 8

FYS-KJM-4710

Nuclear Chemistry, Dep. of Chem., University of Oslo

Part of the chart of nuclides

Bi 208 3,68 · 10 ⁵ a		Bi 209 100 σ 0,011 + 0,023		Bi 2 3,0·10 ⁶ a α 4,946; 4,908 γ 266; 305 σ 0,054	
Pb 207 22,1 σ 0,70		Pb 208 52,4 σ 0,00049		Pb 209 3,253 h β ⁻ 0,6 no γ	
3,7 m ly 686; 453; 216; 266; 1021	206 4,20 m β= 1,5 γ (803)	TI 2 1,33 s	207 4,77 m β-1,4 γ (898)	TI 2 3,05 β ⁻ 1,8; γ 2615; 511; 860	3 m 2,4 583;

²⁰⁸Pb - double shell nuclide

FYS-KJM-4710

Po 206 8,8 d ε; α 5,2233 γ 1032; 511; 286; 807	Po 207 2,8 s 5,84 h ε; β ⁺ α 5,116 γ 992; 743;	Po 208 2,898 a α 5,1152 ε γ (292; 571)	
Bi 205 15,31 d ε β+ γ 1764; 703; 988	Bi 206 6,24 d ε β ⁺ γ 803; 881; 516; 1719; 537	Bi 207 31,55 a ε β ⁺ γ 570; 1064; 1770	
Pb 204 67,2 m 1,4 ly 899; 912; 375 σ 0.68	Pb 205 1,5 · 10 ⁷ a ε no γ σ ~ 5	Pb 206 24,1 σ 0,030	