

Radiation and the the cell

Organelles:(1) nucleolus(2) nucleus(3) ribosome(4) vesicle(5) rough endoplasmic reticulum (ER)(6) Golgi apparatus(7) Cytoskeleton(8) smooth endoplasmic reticulum(9) mitochondria(10) vacuole(11) cytoplasm(12) lysosome(13) centrioles within centrosome

DNA in the cell nucleus is the primary target for killing cells with radiation !!

Autumn 2009

Nuclear Chem., Dept.of Chem. University of Oslo

Radiation and the the cell

Doses for inactivation (Gy):	enzymes virus (dry) bacteris human cells	> 2 300 20-
Flowers (Senecio) survive at Trees do not survive at Trees normally survive at	$10 \qquad Gy/d \\> 1 \qquad Gy/d \\\leq 0.02 \qquad Gy/d$	{ du gr (n
LD _{50/30} (Gy) for	amoeba fruit fly (Drosophila) shellfish goldfish	1000 ≥ 60 200 20
	tortoise song sparrow rabbit	15 8 8
	inonkey man doe	6 ~4 3

 $LD_{50/30}$ - the dose at which 50 % of the individuals die within 30 days. Varies a lot.

Autumn 2009

Radiation and the the cell

Radiation sensitivity varies over a large range. The onset of repair mechanisms is clearly seen

Autumn 2009

FYS-KJM-4710

Nuclear Chem., Dept.of Chem. University of Oslo

DNA damage

Autumn 2009

Cell-death by radiation

The double-strand break is the important mechanism of cell-kill !

Autumn 2009

Cell-death by radiation

There are three fundamentally different ways of cell death.

1. Mitotic cell death

The cell is no longer able to divide itself.

2. Apoptotic cell death

Or "programmed" cell death -activation of security mechanism against potentially harmful cells

Different cell damage mechanisms are discussed in later courses. This lecture only gives a superficial survey.

3. Bystander effect

In recent years, it has been shown that cells die more easily if neighbour cells are hit and killed. The details about this mechanism is currently frontline research

FYS-KJM-4710

Nuclear Chem., Dept.of Chem. University of Oslo

Cell survival

Autumn 2009

FYS-KJM-4710 Nuclear Chem., Dept.of Chem. University of Oslo

Survival curves

Typical survival curves for cells in culture with low LET and high LET radiation.

Important: "Curved shape" with low LET absent with high LET

D_o - dose necessary to achieve reduction of surviving fraction to 1/e A "shoulder" tells that a cellular repair mechanism is in action !

Autumn 2009

A primitive model

The linear part is caused by a single shot, while the quadratic part is caused by two consecutive shots

Direct and indirect mechanism

Direct action dominates at high LET radiation (α ,p,n), indirect at low LET (β , γ X-rays)

Autumn 2009

α versus β

cell	Range (µm) dimension 10 - 40	LET (keV/µm)	hits required for inactivation
α	40 - 90	~100	1-5
β	1000 -8000 ^{x)}	~0.2	100-1000

x) in rare cases (e.g. ³H), the range is much shorter

The large difference in LET between elctrons and heavy particles has several important consequences

FYS-KJM-4710

Nuclear Chem., Dept.of Chem. University of Oslo

Dose fractionation

The treatment of cancer is now given in the form of highly fractionated doses given at short intervals (several per day), to spare healthy tissue and avoid damages.

Autumn 2009

Dose fractionation

Fractionation of dose is important for low-LET radiation (due to repair mechanism), but has less or close to no importance for high-LET radiation.

Effect of dose-rate

High dependence on dose-rate at low-LET radiation, due to repair mechanisms

Autumn 2009

Radiation sensitivity

Different types of cells show pronounced differences in radiation sensitivity. Most cancers are more radiation sensitive than healthy cells

Some inherited syndromes cause increased radiation sensitivity,e.g. ataxia telangiectasia (AT), Fanconi's anemia, and several others

Autumn 2009

Radiation sensitivity

Some cancers showing very different radiosensitivity

Autumn 2009

The cell cycle

Autumn 2009

Synchronised cells

Cultured cells can be synchronised, facilitating investigations of sensitivity in different stages of its life.

From DNA to chromosomes

Chromosomes aberations

		2 different pre-replication chromosomes		Pre-replication (G1) chromosome
		1 break in each chરૂomosome		Breaks in both arms of the same chromosome
		Illegitimate union	\bigcirc	Incorrect union
		Dicentric chromosome plus acentric fragment		Replication (S)
A				Overlapping rings
	Post-replica chromosom	tion e	с <u>страна</u> В	
	Break in eac chromatid (isochromati	h d deletion)	Figure 2.6. A: The steps centric by irradiation of chromosomes. A break is separate chromosomes. join incorrectly to form a the two chromosomes. Re the DNA synthetic period two centromeres: a dice acentric fragment, which quent mitosis because, la will not go to either pole	in the formation of a di- prereplication (<i>i.e.</i> , G ₁) produced in each of two The "sticky" ends may n interchange between eplication then occurs in . One chromosome has entric. The other is an will be lost at a subse- acking a centromere, it
	Sister union		steps in the formation of a prereplication (<i>i.e.</i> , G_1) chi curs in each arm of the si sticky ends rejoin incorrect acentric fragment. Replic The steps in the formation by irradiation of a postrep	a ring by irradiation of a romosome. A break oc- ame chromosome. The ly to form a ring and an ation then occurs. C: of an anaphase bridge lication (<i>i.e.</i> , G ₂) chro-

Different aberations. Rings and dicentrics normally cause cell death

mosome. Breaks occur in each chromatid of the

Autumn 2009

Chromosome aberations

Autumn 2009

Stem cells

Stem cells may develop into a number of different cell types

Autumn 2009

High LET radiation

By 100 keV/µm, the average distance between ionising events is similar to the distance between the DNA strands. Hence, there is the maximum RBE (relative biologic effectiveness)

Autumn 2009

High LET radiation and O₂

The importance of oxygen and other radiosensitizers decreases when the direct interaction mechanism takes over. Chemistry loses its importance RBE - Relative biologic effectiveness OER - Oxygen enhancement ratio

Oxygen effect at different LET

Autumn 2009

Oxygen effect at different LET

O₂ + low LET: important effect O₂ + high LET: practically no effect

Autumn 2009

Oxygen effect in a tumor

Hypoxia in a tumor. Close to the blood vessels, the cells receive relevant oxygen, at increasing distance the oxygen supply decreases, and the cells become more radiation resistant.

Oxygen effect in a tumor

Killing of the hypoxic fraction requires higher radiation doses.

Autumn 2009

Reoxygenation

Autumn 2009

Oxygen effect

Clear differences in radiosensitivity for cells in pure oxygen, air or in the absence of oxygen

FYS-KJM-4710 Nuclear Chem., Dept.of Chem. University of Oslo

Auger effect

Iodo-deoxyuridine "fools" the DNA synthesis and incorporates the "pretender compound" into the DNA synthesis.

FYS-KJM-4710 Nuclear Chem., Dept.of Chem. University of Oslo

FYS-KJM-4710

Nuclear Chem., Dept.of Chem. University of Oslo

Auger effect

The decay of ¹²⁵I gives shake-off of a large number of electrons (average: 5.1), creating a quasi-high LET effect, only when incorporated into DNA

Autumn 2009