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Organelles:(1) nucleolus(2) nucleus(3) ribosome(4)
vesicle(5) rough endoplasmic reticulum (ER)(6) Golgi
apparatus(7) Cytoskeleton(8) smooth endoplasmic
reticulum(9) mitochondria(10) vacuole(11) cytoplasm(12)
lysosome(13) centrioles within centrosome

DNA in the cell nucleus is the primary
target for killing cells with radiation !!
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Radiation and the the cell
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TABLE 18.5. Effects of y-rad ation doses on micro organisms,

Doses for inactivation (Gy):  enzymes > 20.000

 virus (dsy) 300-5000

bacteris 20-1000 -

bumas cells | 214
Flowers (Senecio) survive at 10 Gy/d during lhe
Trees do not survive at > 1 Gy/d { growing siy
Trees normally survive at s 0.02 Gy/d (normally
LDy, (Gy) for ~  amoebs 1000 '

fruit fly (Drosophila) =600

shelifish 200

goldfizh 20

tortoise 15

HONg SPAFrOW 8

rabbit 8

inonkey 6

man ~4

dog 3.5

LD,/ - the dose at which 50 % of
the individuals die within 30 days.
Varies a lot.
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Radiation and the the cell
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Radiation sensitivity varies over a
large range. The onset of repair
mechanisms is clearly seen
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DNA damage
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The double-strand break is the
Important mechanism of cell-kill !
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Cell-death by radiation

There are three fundamentally different
ways of cell death.

1. Mitotic cell death
The cell is no longer able to divide itself.

2. Apoptotic cell death

Or “programmed” cell death -activation
of security mechanism against potentially
harmful cells

Different cell damage mechanisms are
discussed in later courses. This lecture
only gives a superficial survey.

3. Bystander effect

In recent years, it has been shown that
cells die more easily if neighbour cells are
hit and killed. The details about this
mechanism is currently frontline research
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Cell survival
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plating efficiency: 0% _

surviving fraction: — 0.2 .04 005
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Survival curves
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Typical survival curves for cells in
culture with low LET and high LET
radiation.

Important: “Curved shape” with low
LET absent with high LET

D, - dose necessary to achieve
reduction of surviving fraction to 1/e

A “shoulder” tells that a cellular repair
mechanism Is in action !
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A primitive model

Linear-Quadratic Relation

Dose

Effect

Quadratic

The linear part is caused by a single
shot, while the quadratic part is
caused by two consecutive shots
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Direct and indirect mechanism
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Direct action dominates at high LET
radiation (a,p,n), indirect at low LET

(B,y X-rays)
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a versus 3
Range (um) LET (keV/pum) hits required for
dimension inactivation
cell 10 - 40
a 40 - 90 ~100 1-5
B 1000 -8000” ~0.2 100-1000

X) in rare cases (e.g. °H), the range is much shorter

The large difference in LET between
elctrons and heavy particles has
several important consequences

|
Autumn 2009 Per Hoff
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Dose fractionation
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The treatment of cancer is now
given in the form of highly
fractionated doses given at short
intervals (several per day), to spare

healthx tissue and avoid damages.
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Dose fractionation
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Fractionation of dose is important
for low-LET radiation (due to repair
mechanism), but has less or close

to no importance for high-LET
radiation.
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Effect of dose-rate
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High dependence on dose-rate at low-

LET radiation, due to repair
mechanisms
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Radiation sensitivity

Increasing D, &

: Sensitive ———— Wiid Type ——— Resistant

Different types of cells show
pronounced differences in radiation
sensitivity. Most cancers are more
radiation sensitive than healthy cells

Some inherited syndromes cause
Increased radiation sensitivity,e.q.
ataxia telangiectasia (AT), Fanconi’s
anemia, and several others

Autumn 2009 Per Hoff
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Radiation sensitivity
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Some cancers showing very different
radiosensitivity
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The cell cycle

M
( Mitosis)

S ( DNA synthetic phase)
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Synchronised cells

Cultured cells can be synchronised,
facilitating investigations of sensitivity
In different stages of its life.

Autumn 2009 Per Hoff
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From DNA to chromosomes

SRS IINAV ONON /N7 NI B

"beads-on-a-string”
form of chromatin
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|
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Chromosomes aberations

[S— —— 2 different
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Figure 2.6. A: The steps in the formation of a dif
centric by irradiation of prereplication (i.e., G;
chromosomes. A break is produced in each of twg
separate chromosomes. The “sticky” ends may
join incorrectly to form an interchange between|
the two chromosomes. Replication then occurs in|
the DNA synthetic period. One chromosome has
two centromeres: a dicentric. The other is an
acentric fragment, which will be lost at a subse-
quent mitosis because, lacking a centromere, it
will not go to either pole at anaphase. B: The
steps in the formation of a ring by irradiation of a
prereplication (i.e., G1) chromosome. A break oc-
curs in each arm of the same chromosome. The
sticky ends rejoin incorrectly to form a ring and an
acentric fragment. Replication then occurs. C:
The steps in the formation of an anaphase bridge
by irradiation of a postreplication (i.e., Gz) chro-

mosome. Breaks occur in each chromatid of the

Different aberations. Rings and di-

centrics normallx cause cell death
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Chromosome aberations

B
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Stem cells

O : “
Lymphccyls
Lympheid

Stem cells may develop into a
number of different cell types
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High LET radiation

X-ray 100 keV/u 200 keV/u

- RBE

LET

By 100 keV/um, the average
distance between ionising events is
similar to the distance between the
DNA strands. Hence, there is the
maximum RBE (relative biologic
effectiveness)
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The importance of oxygen and other
radiosensitizers decreases when the
direct interaction mechanism takes
over. Chemistry loses its importance
RBE - Relative biologic effectiveness
OER - Oxygen enhancement ratio
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Oxygen effect at different LET

Indirect Action
Dominant for X-Rays

O, + low LET: important effect
O, + high LET: practically no effect

Autumn 2009 Per Hoff
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Ce) Hypoxic viable

Q) Anoxic cells

Hypoxia in a tumor. Close to the blood
vessels, the cells receive relevant
oxygen, at increasing distance the
oxygen supply decreases, and the cells
become more radiation resistant.
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Oxygen effect in a tumor
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Killing of the hypoxic fraction requires
higher radiation doses.
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Reoxygenation
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Oxygen effect

1.0
2vs
% Ve
e =3
do 0.
¥ \\
3 . HYPOXIC CURVE
&
= 0-1 [~ 4 “‘ Y
o \
8
i
» 0.01
L Y
\\
AIR CURVE
oxXIC cunvs/" ‘)‘
0-m1 - “\
1 | | | }
0 1000 2000
' B Dose (rads)

Clear differences in radiosensitivity for

cells in pure oxygen, air or in the
absence of oxygen
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Auger effect
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lodo-deoxyuridine “fools” the DNA
synthesis and incorporates the
“pretender compound” into the DNA
synthesis.
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Electron capture sequence

outer shells outer shells
[ ] o ([ ] [
o o O [ oL
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o % J— o % o
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outer shells outer shells
ZN Z-1 N+1

Unstable, K-vacancy

Characteristic X-ray Charactejstic X-ray (L)

from outer shells
outer shells
() o
/\,/\/\/> ‘\/\ T~ ‘,,\\
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@ @
o % o o % o
() ° o °
outer shells outer shells
Z-1,N+1 Z-1,N+1
Vacancy is filled by transition of L-vacancy filled from a higher
an electron from a higher shell. shell. X-rays may be converted

Atom still unstable (L-vacancy) to Auger electrons
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Auger effect
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FIG. 4. Dose-survival curves for 1251, *'1 and °H.

The decay of '*°| gives shake-off of a
large number of electrons (average:

5.1), creating a quasi-high LET effect,
only when incorporated into DNA
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