

X-ray tube and radiation

- Target and filament: often tungsten
- X-rays: photons generated by accelerated electrons
- Maximum photon energy: $hv_{max} = T_0 = eV$
- Power P=V x I; unit kW
- Radiation yield:

```
Energy emitted as X-ray radiation
Total electron kinetic energy \sim 0.1\% - 2\%
```

```
for 10 keV – 200 keV electrons (increasing with kinetic energy) in tungsten
```

```
UiO : Department of Physics
University of Oslo
```

Oslo University Hospit:

X-ray tube

• Electrons are released from the cathode (negative electrode) by thermionic emission – accelerated in an evacuated tube – hit the anode (target, positive electrode) – brehmsstrahlung is generated:

Transition	Designation	Energy (keV)	Relative No. of Photons
K-L _{III}	α1	59.321	100
K-Ln	α22	57.984	57.6
$K - M_{II}$	β	66.950	10.8
$K-M_{III}$	β	67.244	20.8
KMIV	B5/1	67.654	0.233
K-My	B5/2	67.716	0.293
K-Nu	B2/1	69.033	2.45
K-N ₁₁₁	$\beta_{2/2}$	69.101	4.77
$K - N_{IV}$	β _{4/1}	69.269 69.276 ≈ 69.1	0 127 8 4
$K-N_V$	$\beta_{4/2}$	69.283 J 05.270 (= 05.1	0.127 0.1
$K - O_{IJ}$	$\beta_{2/3}$	69.478 60 494	1.07
<i>K-0</i> ¹¹¹	β _{2/4}	69.489 (^{05.404})	1.07)

X-ray quality

UiO : Department of Physics University of Oslo

- X-ray spectra gives most detailed characterization
- But: spectrometry is expensive and time consuming
- Half value layer (HVL) is recommended :

Oslo University Hospital

Other principles: cyclotron

- Acceleration of charged particles which are kept in a circular motion.
- Two-part "D" structure
- Time dependent voltage between the two "D"s
- Two accelerations per cycle (z>0) $\stackrel{\text{for source}}{\stackrel{(z>0)}{\stackrel{(z>0)}{\stackrel{(z$
- Not a good principle for acceleration of electrons and other light particles

UiO Separtment of Physics University of Oslo Oslo University Hospit

 $\odot \vec{B}$

Cyclotron 2

- Particle is kept in circular trajectory with B-field, and accelerated by time depending potential (kV/MHz)
- Potential V gives: $T=zV=\frac{1}{2}mv^2 \Rightarrow v^2=\frac{2zZ}{m}$
- Combined with the Lorentz force: $(\vec{F}=z\vec{v}\times\vec{B})$

 $|\mathbf{F}| = \mathbf{z}\mathbf{v}\mathbf{B} = \mathbf{m}\mathbf{a} = \frac{\mathbf{m}\mathbf{v}^2}{\mathbf{r}} \Rightarrow \mathbf{v}^2 = \left(\frac{\mathbf{z}\mathbf{B}\mathbf{r}}{\mathbf{m}}\right)^2$ $2\mathbf{z}\mathbf{V} = \left(\frac{\mathbf{z}\mathbf{B}\mathbf{r}}{\mathbf{r}}\right)^2 \Rightarrow \mathbf{r}^2 = 2\mathbf{m}\mathbf{V}$

- $\frac{2zV}{m} = \left(\frac{zBr}{m}\right)^2 \Rightarrow r^2 = \frac{2mV}{zB^2}$
- Stronger magnetic field: implicitly higher acceleration

UiO : Department of Physics University of Oslo

6

Oslo University Hospital

Oslo University Hospital

Cyclotron 3

• The period Γ of a charged particle in circular motion is: $\Gamma = \frac{2\pi r}{v} \quad \left(v = \frac{zBr}{m}\right)$

$$\Gamma = \frac{2\pi r}{v} \qquad \left(v = \frac{z}{z} \right)$$
$$\Rightarrow \Gamma = \frac{2\pi m}{\underline{zB}}$$

• m is relativistic mass:

$$m = \gamma m_0$$
, $\gamma = \frac{1}{\sqrt{1-\beta^2}}$, $\beta = v/c$

• When the speed increases, m increases and Γ thus increases

UiO : Department of Physics University of Oslo

Cyclotron 4 • Energy considerations: $T_{a} = T_{b} + zV \quad \left(V = \int \vec{E} \cdot d\vec{l} , T = (\gamma - 1)m_{0}c^{2}\right)$ $\Rightarrow (\gamma_{a} - 1)m_{0}c^{2} = (\gamma_{b} - 1)m_{0}c^{2} + zV$ $\Rightarrow \gamma_{a} = \gamma_{b} + \frac{zV}{m_{0}c^{2}}$ $\Rightarrow \Gamma = \frac{2\pi m}{zB} = \frac{2\pi \gamma_{a}m_{0}}{zB} = \frac{2\pi m_{0}}{zB} \left(\gamma_{b} + \frac{zV}{m_{0}c^{2}}\right)$

Cyclotron 5

- Increase in period: $\sim zV/m_0c^2$
- Example: zV = 100 keV
- Proton: $zV/m_pc^2 \sim 0.01 \%$
- Electron: $zV/m_ec^2 \sim 20 \% \rightarrow close$ to 50 % rise in one round \rightarrow Time dependent E-field will have the wrong direction relative to velocity of electron
- The E-field frequency can be synchronized with the rise in period → synchrocyclotron / synchrotron

UiO : Department of Physics University of Oslo

Oslo University Hospita

Oslo University Hospita'

Betatron

UiO : Department of Physics University of Oslo

• Charged particle (electron) accelerated in doughnut shaped unit:

Microtron

• Acceleration in resonator – circular orbit with magnetic field; combination of linear accelerator and cyclotron

