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Accelerators

and 

radiation spectra

Eirik Malinen

• Electrons are  released from the cathode (negative 
electrode) by thermionic emission – accelerated in an 
evacuated tube – hit the anode (target, positive 
electrode) – brehmsstrahlung is generated:

X-ray tube

• Target and filament: often tungsten

• X-rays: photons generated by accelerated electrons

• Maximum photon energy: hνmax = T0=eV

• Power P=V x I; unit kW

• Radiation yield:

Energy emitted as X-ray radiation

Total electron kinetic energy

for 10 keV – 200 keV electrons (increasing with 
kinetic energy) in tungsten

X-ray tube and radiation

~ 0.1% – 2%

• The direction of brehmsstrahlung photons depend 
strongly on the electron energy

X-rays – directional dependence
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Brehmsstrahlung photons

• Assume cross section prop. 
to dA=2πbdb

• At b=b1→ dA=2πb1db

• At b=2b1→ dA=4πb1db

• Twice as manyγ’s at 2b1

• BUT, photon energy prop. 
to 1/b → hν2=2hν1

→ Ψhν = constant

• Unfiltered (energy fluence-) photon spectrum is 
obtained from Kramer’s rule: 
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• Spectral distribution of bremsstrahlung: dependence 
on atomic number (left) and voltage (right)
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Filter
Attenuation coefficient µ
thickness x

• Filtering modifies spectrum, both in intensity and 
characterization

• Each photon is attenuated with a probability e-µx

• Low energetic (“soft”) X-ray radiation most 
attenuated

• X-ray spectrum becomes more homogenous the 
harder the filtering

Filtered X-rays
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• Measurement of radiation spectra

• Pulse- height analysis by:

• - Scintillation counter, (NaI(Tl)):
Light is emitted by irradiation – intensity (“height”) of 
light pulse proportional with quantum energy – number of 
pulses at each pulse height gives intensity of the given 
energy interval

• - Semiconductor (Ge(Li)):
Short current trough p-n-junction at irradiation – height of 
pulse proportional with quantum energy. Must be cooled 
with liquid N2

Spectrometry X-ray spectrum1

• 100 kV, 2.0 mm Al filter

• Average energy ~ 45 keV

Solid: Fluence
Dashed exposure

X-ray spectrum2

• 100 kV, 4.0 mm Al + 0.5 mm Cu + 2mm Sn filter

• Average energy ~ 90 keV

Fluorescence, Tungsten
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X-ray quality 

• X-ray spectra gives most detailed characterization

• But: spectrometry is expensive and time consuming

• Half value layer (HVL) is recommended :

• HVL: thickness of absorber which reduces the 
exposure (~absorbed dose to air) with 50 %

absorber
(aluminium or copper)

Air filled ionization chamber
with electrometer

At least 50 cm.
Collimated field.

Half value layer 

• Exponential attenuation of monoenergetic photons:

• X-ray quality often given as HVL in Cu or Al
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Attenuation of X-ray spectra Equivalent photon energy 

• : “the quantum energy of a monoenergetic beam 
having the same HVL as the beam being specified”

Cu

Al
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Linear accelerator 1

• Acceleration of charged particles in strong 
microwave field:

Linear accelerator2

• Effective accelerating potential ~ MV

• Electrons have almost light speed after acceleration 
in one “cavity”:

• Electrons can hit a target (ex. Tungsten) – high 
energy bremsstrahlung generated

Acceleration tube
Effective potential: 6 MV

Linear accelerator3

• Electrons “surf” on the electric field waves

• Wave amplitude decides the effective potential 

Linear accelerator4
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Linear accelerator 5

’bunching’:

Side-coupled cavities:

Linear accelerator – photon spectrum

11.3 MeV electrons on 1.5 mm 
tungsten target. 
Lines: model using different 
target thickness

Other principles: cyclotron 

• Acceleration of charged particles 
which are kept in a circular motion.

• Two-part “D” structure

• Time dependent voltage 
between the two “D”s

• Two accelerations per cycle 
- period synchronized with time dependent voltage

• Not a good principle for acceleration of electrons and 
other light particles  

Ion source 
(z>0)
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Cyclotron 2

• Particle is kept in circular trajectory with B-field, and 
accelerated by time depending potential (kV/MHz)

• Potential V gives:

• Combined with the Lorentz force:

– Stronger magnetic field: implicitly higher acceleration
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Cyclotron 3

• The period Γ of a charged particle in circular motion 
is: 

• m is relativistic mass:

• When the speed increases, m increases and Γ thus 
increases
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Cyclotron 4

• Energy considerations: 
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Cyclotron5

• Increase in period: ~zV/m0c2

• Example: zV = 100 keV

• Proton: zV/mpc2 ~ 0.01 %

• Electron: zV/mec2 ~ 20 % → close to 50 % rise in 
one round → Time dependent E-field will have the 
wrong direction relative to velocity of electron

• The E-field frequency can be synchronized with the 
rise in period → synchrocyclotron / synchrotron 

Betatron

• Charged particle (electron) accelerated in doughnut 
shaped unit:

• Time dependent magnetic (and electric) field to 
accelerate electrons in circular trajectory
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Microtron

• Acceleration in resonator – circular orbit with 
magnetic field; combination of linear accelerator and 
cyclotron

• Correspondence between increasing radius and period


