UiO Department of Physics
University of Oslo

Dosimetry for indirectly ionizing radiation

Eirik Malinen

Energy transferred, ε_{tr}

• A photon field with total energy $R_{\text{in,u}}$ enters a volume, while $R_{\text{out,u-rl}}$ is the energy leaving the volume:

• Energy transferred:

$$\varepsilon_{tr} = R_{in,u} - R_{out,u-rl} + \Sigma Q$$

• ϵ_{tr} is the total energy transferred from photons to electrons, and is the sum of all kinetic energy released

UiO : Department of Physics

Indirectly ionizing radiation

- Indirectly ionizing radiation experience few interactions, but releases relatively large amounts of energy in each interaction
- Example: photons, neutrons
- Secondary charged particles (electrons most relevant) will deposit the transferred energy over a short distance
- How large are the energy transfers from e.g. photons to matter for a given volume element?
- The energy-mass budget is important!

UiO : Department of Physic: University of Oslo

Energy transferred, ε_{tr} 2

- u-rl: uncharged minus radiative losses; radiative losses by secondary electrons should not be included
- ϵ_{tr} is a stochastic quantity
- ΣQ: energy from conversion of rest mass or *vice versa*
- Example, pair production $\Sigma Q = -2m_e c^2$

UiO Department of Physics

KERMA

• Kinetic Energy Release per MAss:

$$K = \frac{d\epsilon_{tr}}{dm} \quad \text{unit: [J/kg]}$$

- K is the expectation value of the energy transferred per unit mass in a point of interest
- Consider monoenergetic photons (quantum energy hv) passing a thin layer:

S: cross section of photon field

UiO : Department of Physics University of Oslo

KERMA 3

- KERMA is determined by the energy fluence and the mass energy transfer coeffecient
- For a distribution of photons:

$$K = \int_{0}^{h\nu_{max}} \Psi_{h\nu} \frac{\mu_{tr}}{\rho} d(h\nu)$$

• Remember that μ_{tr}/ρ is dependent on the photon energy and atomic number of the absorber

UiO : Department of Physics

KERMA 2

- Probability per unit lenght for photon interaction multiplied with fraction of energy transferred: μ_{tr}
- Total energy transferred to electrons: $\varepsilon_{tr} = N(hv)\mu_{tr}\Delta x$
- Energy fluence for monoenergetic photons:

$$\Psi = (h\nu)\Phi = \frac{N(h\nu)}{S}$$

• KERMA becomes: $K = \frac{\epsilon_{tr}}{m} = \frac{N(h\nu)\mu_{tr}\Delta x}{\rho V} = \frac{N(h\nu)\mu_{tr}\Delta x}{\rho S\Delta x}$ $= \Psi \frac{\mu_{tr}}{\rho}$

UiO : Department of Physics University of Oslo

Components of KERMA

- Kerma includes all kinetic energy given to secondary electrons, and this energy may be lost by:
 - Collisions
 - Radiative losses
- Kerma may be divided into two components:

$$K=K_c+K_r$$

 K_c: collision Kerma; provides a measure of the energy loss per unit mass from photons resulting in collisional losses for secondary electrons!

UiO : Department of Physics

Net energy transferred ϵ_{tr}^n

• ε_{tr}^{n} is defined as:

- $\epsilon_{tr}^{n} = R_{in,u} R_{out,u} + \Sigma Q$
- R_{out,u} er is all photon energy leaving the volume element (including brehmsstrahlung)
- ε_{tr}^{n} is thus the total kinetic energy of secondary electrons which is not lost as brehmsstrahlung

UiO : Department of Physic

Collision Kerma 2

• K_c is thus:

$$K_c$$
 is thus.
 $K_c = \Psi \frac{\mu_{en}}{\rho}$

- Generally: K_c<K
- Special case: Low energy photons releases low energy electrons in an absorber of low atomic number Z. Radiative losses are insignificant, and $g{\approx}0$ and $K_c{\approx}K$

UiO : Department of Physics

Collision Kerma

• Is defined by:

$$K_c = \frac{d\varepsilon_{tr}^n}{dm}$$

• May take radiative losses into account by defining the quantity g; the fraction of kinetic energi lost as brehmsstrahlung

$$K_c = K(1-g) = \Psi \frac{\mu_{tr}}{\rho} (1-g)$$

- Definition: $\frac{\mu_{en}}{\rho} = \frac{\mu_{tr}}{\rho} (1-g)$
- μ_{en}/ρ : mass energy absorption coeffecient

UiO : Department of Physic

Energy imparted and absorbed dose

• Look at all energy transport (both charged and uncharged particles) through the volume of interest:

$$R_{in,u} + R_{in,c}$$

$$\epsilon = R_{in,u} + R_{in,c} - R_{out,u} - R_{out,v} + \Sigma Q$$

• Absorbed dose is (at last) defined as:

$$\boxed{D = \frac{d\epsilon}{dm}} \quad \text{unit: [Gy] = [J/kg]}$$

UiO: Department of Physics

Absorbed dose

- The absorbed dose is all energy imparted to the volume per mass
- May not be directly related to photon interaction coefficients
- However, in some cases the dose may be approximated by K_c

UiO : Department of Physics University of Oslo

ε_{tr}^{n} , ε_{tr}^{n} , ε : example 2

• Photon 1:

$$\begin{split} & \epsilon_{tr} = R_{in,u} - R_{out,u-r1} = h\nu - (h\nu - T_1) = T_1 \\ & \epsilon_{tr}{}^n = R_{in,u} - R_{out,u} = h\nu - (h\nu - T_1) - h\nu_2 = T_1 - h\nu_2 \\ & \epsilon = R_{in,u} + R_{in,c} - R_{out,u} - R_{out,c} \\ & = h\nu + 0 - (h\nu - T_1) - h\nu_2 - T_1' = T_1 - h\nu_2 - T_1' \end{split}$$

• Photon 2:

$$\begin{split} &\epsilon_{tr}=~h\nu-0=h\nu\\ &\epsilon_{tr}^{~n}=h\nu-0=h\nu\\ &\epsilon=h\nu+0-~T_2-T_3=h\nu-~T_2'-T_3' \end{split}$$

UiO : Department of Physics

$\boldsymbol{\epsilon}_{tr}$, $\boldsymbol{\epsilon}_{tr}^{n}$, $\boldsymbol{\epsilon}$: example

• Two photons interacts in a volume of interest ($\Sigma Q=0$):

Charged particle equilibrium (CPE)

• Photons enter a volume V, which includes a smaller volume v:

- CPE: Number of charged particles of a given type and energy entering v is equal to the number of particles of the same type and energy leaving
- Certain conditions must be fullfilled:
 - V must be homogeneous
 - Photon attenuation must be negligible

UiO : Department of Physics

CPE 2

- If CPE is present, $R_{in,c} = R_{out,c}$
- Energy imparted:

$$\epsilon = R_{in,u} + R_{in,c} - R_{out,u} - R_{out,c} = R_{in,u} - R_{out,u} = \epsilon_{tr}^{n}$$

• In this case, absorbed dose equals collision Kerma:

$$D = \frac{\epsilon}{m} = \frac{\epsilon_{\rm tr}^n}{m} = K_{\rm c} = \Psi \frac{\mu_{\rm en}}{\rho}$$

UiO : Department of Physics University of Oslo

CPE, example

- Two small volumes of water and air is placed in same point in a radiation field (1 MeV photons) where CPE exists. What is the dose ratio?
- Use tabulated values for μ_{en}/ρ (Attix):

$$\mu_{en}/\rho(water) = 0.0309$$

$$\mu_{en}/\rho(air) = 0.0278$$

$$\rightarrow$$
 D(air) / D(water) = 0.90

UiO : Department of Physics

Absorbed doses under CPE

- K_c , and thus dose, is given by $\Psi\mu_{en}/\rho$, and is thus proportional to the interaction probability in a given absorber
- Two different absorbers A og B placed in the same point in a radiation field:

$$\frac{D_{A}}{D_{B}} = \frac{\Psi \left(\frac{\mu_{en}}{\rho}\right)_{A}}{\Psi \left(\frac{\mu_{en}}{\rho}\right)_{B}} = \frac{\left(\frac{\mu_{en}}{\rho}\right)_{A}}{\left(\frac{\mu_{en}}{\rho}\right)_{B}}$$

UiO : Department of Physics University of Oslo

CPE, problems

 When the photon energy increases, the range of the secondary electrons increases more than the photon pathlenght

Photon energy(MeV)	Photon attenuation (%) in water within the range of a secondary electron
0.1	0
1	1
10	7
30	15

UiO : Department of Physics University of Oslo

TCPE

- Transient Charged Particle Equilibrium: electrons originating from upstream contributes to the dose, while the photon contribution (R_{in,u}-R_{out,u}) is given by the collision Kerma
- Assumption: absorbed dose propotional to K_c

CPE, problems 2

e⁻ with long range contributes to the dose at the layer. Photon beam significantly attenuated between the interaction point and the layer – fewer electrons are generated in the layer than what was generated upstream.

- Thus: $R_{in,c} > R_{out,c}$ and: $\Rightarrow \varepsilon = R_{in,u} + R_{in,c} - R_{out,u} - R_{out,c} > \varepsilon_{tr}^{n}$ $\Rightarrow D > K_{o}$
- Most relevant for high photon energies

JiO : Department of Physics

