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Applied dosimetry - ionometry

Eirik Malinen

• Dosimetry: determination of absorbed dose

• Involves e.g. estimation of KERMA, fluence, 
radiation spectrum etc

• Dosimeter: device that provides a reading r ~ D

• Not interested in dose to dosimeter, but dose to 
medium

Dosimetry - recap

• Consider a dosimeter consisting of a wall and a 
sensitive volume:

• Wall: source of secondary electrons; shields V from 
electrons originating outside wall; mechanical 
protection of V; container (if V gas or liquid); may 
filter the beam.

Dosimeter model

d

• With cavity theory, the dosimeter energy response 
may be determined

• If photon irradiation + CPE: 

• If charged particle irradiation:

• Theory of Burlin for intermediate-sized cavities

Dosimetry - recap
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• An absolute dosimeter directly provides a measure 
of absorbed dose without requiring calibration

• Examples: calorimetric dosimeters, ferrous sulfate 
dosimeters, ionization chambers

• A relative dosimeter provides a reading that is 
proportional to absorbed dose, and requires 
calibration

• Examples: thermoluminescence dosimeters, diodes, 
film dosimeters, EPR dosimeters

Dosimetry characteristics

• Precision, or reproducibility, reflects fluctuations in 
in instrument, ambient conditions, stochastic nature 
of radiation fields

• Precision in single measurement can be estimated 
from a series of dosimeter readings {ri}:

• Precision in mean estimate:

Precision
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• Accuracy reflects the proximity of the estimate to the 
true value

• Reflects all systematic error contributions that 
influence the reading

• Example: calibration error

Accuracy

High accuracy
Low precision

Low accuracy
High precision

• A sensitive dosimeter is characterized by a high dr/dD

• A constant sensitivity (dr/dD = const) means a linear 
dose response

• A dosimeter may give a background reading r0

• If r0 is small, the lower detection limit is given by the 
dosimeter readout system

• The upper detection limit depends both on the readout 
system and the dosimeter material 

Dosimeter limitations
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• Example of dose-response characteristics

Dose response Energy response - photons
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• Ionometry: the science of measuring ionizations

• Number of ionizations proportional to dose

Ionometry

• Air filled ionization chamber (”thimble”):

Ionometry

~ 300 V
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• High voltage over inner and outer electrode

• Air is ionized; electrons are liberated

• Electrons collected at the positive electrode

• Induced current

• The number of charges produced is counted by an 
electrometer, which also provides the voltage

• Number of charges proportional to dose to air

Ionometry

• Exposure, X : number of charges Q (either positive 
or negative) prodused in a gass of mass m:

• Number of charges per mass proprtional to dose: 

X ∝ Dair

• The quantity relating X to Dair is the mean energy per  
ion pair,

Exposure

dQ
X  

dm
=

W

• Determination of      :

– Charged particles with kinetic energy T0 is 
completely stopped in the gas:

– Total energy loss:

– Mean energy loss per charge detected

Mean energy per ion pair
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• For air,          is 33.97 J/C

• The dose to air:

• Thus, by measuring the number of charges produced 
per mass unit of air, Dair may be determined –
indepedent of the radiation quality (         is close to 
being constant for all electron- and photon energies)

Dose to air, Dair
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• If CPE is present in the ion chamber, the dose 
following photon irradiation is:

• The exposure is thus:

Dose to air, Dair 2
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(If the primary field is charged particles, Bragg-Gray 
theory may be used:                            ) 

• Electrometer and air filled ion chamber (volume = 
0.65 cm3) is used to measure Q=50 nC over 2 min –
the radiation a 100 keV monoenergetic photons (CPE 
is assumed)

• Exposure:

• Energy fluence:

Exposure, examples
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• Dose to air and dose rate:

• If the ion chamber is placed in water, the dose to 
water is

Exposure, examples 2
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• If the same exposure is resulting from 100 MeV 
protons, what is the corresponding energy fluence?

• For protons, Bragg-Gray theory is used:

• The proton energy is virtually constant over the 
cavity:

Exposure, examples 3
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• Dose til air:

(must be equal to the dose from photons, since the 
exposure was the same)

• Dose to water:

• Same exposure from photons and protons does not 
give the same dose to e.g. water!

Exposure, examples 4
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• Problems with ion chambers is e.g. inacuracies in 
determining air volume

• In practice, the ion chamber is calibrated at a point 
where the dose is known – performed at a primary 
standards laboratory (PSDL)

Practical ion chamber dosimetry

H2O

γ, e- … A given dose gives reading M

electrometer

Ion chamber

• For a given dose to water, Dw, an ion chamber
reading M is obtained. Thus:

• The calibration factor is:

• Thus, the dose may be determined without using
W/e, µen/ρ etc

Practical ion chamber dosimetry 2
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• However, the calibration factor is dependent on the 
radiation type and energy, due to  differences in 
absorption properties between water and air.

• Keep in mind  (µen/ρ)- the (dT/ρdx)-ratios, and that  
M is proportional to Dair!

• Usually, the chamber is calibrated in a well defined 
field, e.g. 60Co γ-rays (average energy 1.25 MeV)

• Corrections of the calibration factor, kQ, is thus 
introduced for other energies (radiation ”qualities”, 
e.g. 15 MV X-rays)

Practical ion chamber dosimetry 3
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• However, the calibration factor is (weakly) 
dependent on the radiation type and energy, due to  
differences in absorption properties between water 
and air.

• Keep in mind  (µen/ρ)- the (dT/ρdx)-ratios, and that  
M is proportional to Dair!

• Usually, the chamber is calibrated in a well defined 
field, e.g. 60Co γ-rays (average energy 1.25 MeV)

• Corrections of the calibration factor, kQ, is thus 
introduced for other energies (radiation ”qualities”, 
e.g. 15 MV X-rays)

Practical ion chamber dosimetry 4

• Absorbed dose to water:
• kQ: beam quality correction factor

Practical ion chamber dosimetry 5

~ Mean photon energy, MeV
1 3.5 6

photons


