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Cavity theory — dosimetry
of small volume
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Cavity theory

* Problem: dose to water (or other substance) is wanted,
but dose measured with a detector ( dosimeter) which
have a different composition (atom-number, density)
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* Transform dose to detector to dose 1n water?

* The dose determination 1s based on both measurements

and calculations; dependent of the knowledge of
radiation interaction

» Cavity theory: dose of small volume, or volume of low
density — useful for charged particles




Cavity theory
g% * Consider a field of charged particles 1n a medium X, with
-= acavity k positioned inside:
o
k
() J =

X

* When the fluence 1s unchanged over the cavity the dose
becomes:
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Cavity theory

* When the cavity 1s absent the dose in the same point in x:

D = dar
x(pdxjcol

* The dose relation becomes:
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—Bragg-Gray relation




Bragg-Gray cavity theory

* The B-G relation give that the dose relation between the
cavity and the medium where the dose are to be
determent 1s given by the stopping power relation
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* Assumption (B-G conditions):
—Deposited dose are only due to charged particles

—The particle fluence does not change over the cavity




Example: B—G theory

* The cavity 1s filled with air. The number of gas

1onizations (measurable value) are proportional with dose
to the air volume. The cavity 1s placed in water and
radiated with 1 MeV electrons and the dose in the air
cavity 1s measured to 1 Gy. What 1s the dose to water?

* Dose relation:

water water
D
= d—T — Dwater - d—T Dair
Dair air P dx col P dx col

air
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* The relation between (water/air) are tabulated or the
theoretical expressions can be used.




Example: B—G theory

* Relation:

M OaT _1.85 MeV cm’/g
. 1.66 MeV cm’/g
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— =1.11
pdx

* Dose to water 1s then:
D= 1.11 D, .= 1.11 Gy

» Cavity theory attach the dose in the sensitive volume (the
measurable value) to the actual volume

* If only the dose to the cavity can be determinate, then it
is just relative dosimetry




Spectrum of charged particles
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» Spectrum can be given as differential fluence, @
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* Have to add together the dose contributions for all kinetic
energies:

o-[o i) oo T om-o{is)
g pdx D - pdx pdx )

* The dose relation 1s then given by the average stopping
power:




Theory of electrons and photons

* What happen when the cavity increase in volume or
density; and the photons also are absorbed?
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e Have two extreme cases:

No photon absorption in Photon absorption in the
the cavity: B-G theory cavity: CPE theory

Dk k de col Dk p k




Burlin cavity theory

* Burlin derived a theory where both electron and photon
absorption 1n the cavity are accounted for:

D":d (d—Tj +(1-d)(“e‘lj 0<d <1
D, pdx ol p

k k
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*d =1 : no photon absorption — B-G theory

* The range of electrons important — 1f kinetic energy high
enough electrons traverse the cavity and d > 0




