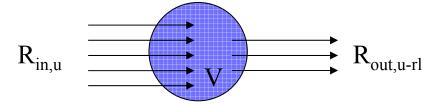
Dosimetry of indirectly ionizing radiation

FYS-KJM 4710

Audun Sanderud


Indirectly ionizing radiation

- Indirectly ionizing radiation has relative few interactions with matter, but loses a relative large amount of the energy in each interaction
- Examples: photons, neutrons
- Secondary charged particles (often electrons) will then depose the energy in a relative small distance
- What is the *energy transferred* from interactions between photons and matter in a given volume?
- Energy accounting important?

Energy transferred, ε_{tr} 1)

• A photon field of total energy $R_{in,u}$ entering a volume and $R_{out,u-rl}$ is the amount of photon energy of *interest* which leaving the volume:

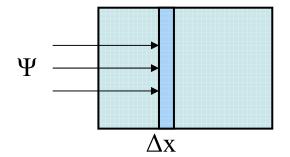
• Energy transferred:

$$\varepsilon_{\rm tr} = R_{\rm in,u} - R_{\rm out,u-rl} + \sum Q$$

 \bullet ϵ_{tr} is the total energy transferred from the photons to the charged particles and the sum of all kinetic energy transferred to charged particles

Energy transferred, ε_{tr} 2)

- u-rl: uncharged minus radiative loses; if the secondary electrons have lost energy by bremsstrahlung shall these photons not be included in the Rout,u-rl
- ε_{tr} is a stochastic value
- ΣQ : energy derived from rest mass in V (m \rightarrow E positive, E \rightarrow m negative)
- Ex: pair-production: $\Sigma Q = -2m_e c^2$ annihilation: $\Sigma Q = +2m_e c^2$



KERMA 1)

• Kinetic Energy Release per Mass:

$$K = \frac{d\varepsilon_{tr}}{dm} \qquad unit [J/kg]$$

- K is the energy transferred to charged particles per mass unit in a point of interest
- Consider a monoenergetic photon field (energy hv) which pass through a thin layer in a object

S: cross-area of photon field

KERMA 2)

- Probability per length unit of a photon interaction with a given fraction transferred to electrons is μ_{tr}
- Transferred energy to electrons: $\epsilon_{tr} = N(h\nu)\mu_{tr}\Delta x$
- Energy fluence of monoenergetic photons:

$$\Psi = (h\nu)\Phi = \frac{N(h\nu)}{S}$$

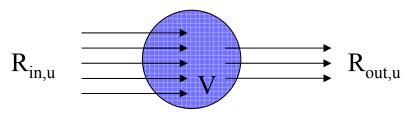
• Kerma then: $K = \frac{\varepsilon_{tr}}{m} = \frac{N(h\nu)\mu_{tr}\Delta x}{\rho V} = \frac{N(h\nu)\mu_{tr}\Delta x}{\rho S\Delta x} = \frac{\mu_{tr}}{\rho}$

KERMA 3)

- Kerma is the dependent of the energy fluence and massenergy transfer coefficient
- For a distribution (a spectrum) of photons are given:

$$K = \int_{0}^{hv_{max}} \Psi \frac{\mu_{tr}}{\rho} d(hv)$$

• Remember that μ_{tr}/ρ dependent of atom number and photon energy


Kerma components

- Kerma includes all kinetic energy given to electrons and the energy will be lost by:
 - Collision
 - Radiation losses
- Kerma can be divided in components: $K = K_c + K_r$
- K_c: *collision kerma*; will give a value of the energy losses per mass unit from photons which results in collision losses of electrons!

Net energy transferred, ε_{tr}^{n}

• ε_{tr}^{n} defined from a volume:

$$\varepsilon_{tr}^{n} = R_{in,u} - R_{out,u} + \Sigma Q$$

- R_{out,u} is all energy emitted out of the volume as photons (also the bremsstrahlung)
- ε_{tr}^{n} is then the total kinetic energy past to electrons which is not lost in bremsstrahlung

Collision kerma 1)

• Defined by:

$$K_{c} = \frac{d\varepsilon_{tr}^{n}}{dm}$$

• Account from the bremsstrahlung by introducing *g*; the fraction of kinetic energy resulting in bremsstrahlung:

$$K_{c} = K(1-g) = \Psi \frac{\mu_{tr}}{\rho} (1-g)$$

• Defines: $\frac{\mu_{en}}{\rho} = \frac{\mu_{tr}}{\rho} (1-g)$

• μ_{en}/ρ : mass energy-absorption coefficient

Collision kerma 2)

• K_c is then given as:

$$K_c = \Psi \frac{\mu_{en}}{\rho}$$

- Generally: K_c< K
- Special case: Low energetic photons give origin to low energetic secondary electrons in a substance of low Z. Bremsstrahlung is then nelectable, g=0 and $K_c=K$

Absorbed energy and dose, ε and D

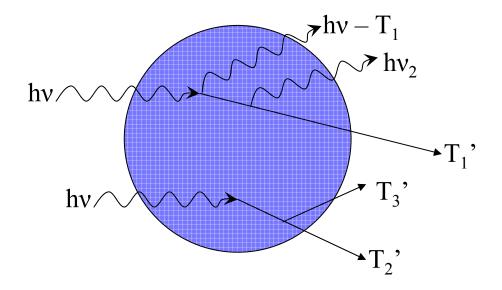
• Consider all transport of energy (both charged and uncharged particles) trough a volume:

$$R_{in,u}+R_{in,c}$$
 $R_{out,u}+R_{out,c}$

$$\varepsilon = R_{\text{in,u}} + R_{\text{in,c}} - R_{\text{out,u}} - R_{\text{out,c}} + \sum Q$$

Absorbed dose is defined (and only defined) as:

$$D = \frac{d\varepsilon}{dm} \qquad \text{unit: [Gy] = [J/kg]}$$


Dose

- The dose is all energy which stays in the volume per mass unit
- Can not be related to photon coefficients as K and K_c
- But: in some special cases can absorbed dose be approximated with K_c

ε_{tr} , ε_{tr}^{n} , ε : example

• Two photons interact in volume V ($\sum Q = 0$):

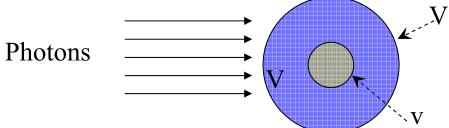
ε_{tr} , ε_{tr}^{n} , ε : example

• Score form photon 1:

$$\begin{split} \epsilon_{tr} &= R_{in,u} - R_{out,u-rl} = h\nu - (h\nu - T_1) = T_1 \\ \epsilon_{tr}^n &= R_{in,u} - R_{out,u} = h\nu - (h\nu - T_1) - h\nu_2 = T_1 - h\nu_2 \\ \epsilon &= R_{in,u} - R_{out,u} + R_{in,c} - R_{out,c} \\ &= h\nu + 0 - (h\nu - T_1) - h\nu_2 - T_1' = T_1 - h\nu_2 - T_1' \end{split}$$

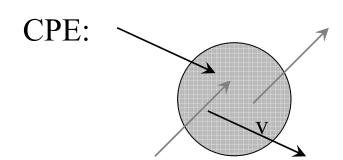
Score form photon 2:

$$\varepsilon_{tr} = hv - 0 = hv$$


$$\varepsilon_{tr}^{n} = hv - 0 = hv$$

$$\varepsilon = hv - 0 - T_2 - T_3 = hv - T_2' - T_3'$$

Charged Particle Equilibrium (CPE) 1)


• Photons entering a volume V, which includes a smaller volume v:

- Charged particle equilibrium: The number of charged particles of given type and energy which entering v is equal the number of particles of same type and energy which leaves the volume v
- Certain conditions must be present to have CPE the substance most be homogenous and *the photon field attenuation most be nelectable*

CPE 2)

• When CPE is present: $R_{in,u} = R_{out,u}$

$$\varepsilon = R_{in,u} - R_{out,u} + R_{in,c} - R_{out,c} = R_{in,u} - R_{out,u} = \varepsilon_{tr}^{n}$$

• And the dose equals collision kerma:

$$D = \frac{\epsilon}{m} = \frac{\epsilon_{tr}^{\text{CPE}}}{m} = K_c = \Psi \frac{\mu_{en}}{\rho}$$

Dose at CPE

- The dose at CPE is $\Psi\mu_{en}/\rho$, and is then proportional with "the interaction probability" of the photons
- Two substances A and B is placed in the same point in a radiation field, will then get doses related to each other by:

$$\frac{D_{A}}{D_{B}} = \frac{\Psi\left(\frac{\mu_{en}}{\rho}\right)_{A}}{\Psi\left(\frac{\mu_{en}}{\rho}\right)_{B}} = \frac{\left(\frac{\mu_{en}}{\rho}\right)_{A}}{\left(\frac{\mu_{en}}{\rho}\right)_{B}}$$

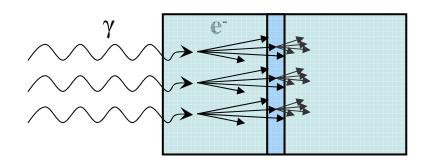
CPE, example

- Two volumes of water and air is positioned in the same point in a radiation field (1 MeV photons) with CPE present. If the dose two the air is 1 Gy what is the dose to water?
- Use the tabulated values of μ_{en}/ρ (Attix) a get:

$$(\mu_{en}/\rho)_{water} = 0.0309$$

$$(\mu_{\rm en}/\rho)_{\rm air} = 0.0278$$

$$\rightarrow D_{\text{water}} = D_{\text{air}} \cdot (\mu_{\text{en}}/\rho)_{\text{water}} / (\mu_{\text{en}}/\rho)_{\text{air}} = 1.11 \text{Gy}$$


CPE, problem 1)

- If the photon energy increase, will the penetration ability of the secondary electrons increase more than that of the photons
- Attenuation of the photon field trough the range of the secondary electrons:

Photon energy (MeV)	Photon attenuation (%) in water trough the range of secondary electron
0.1	0
1	1
10	7
30	15

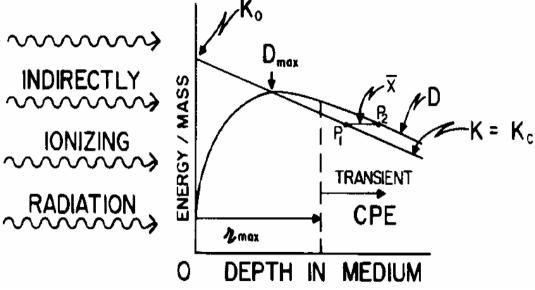
CPE, problem 2)

"upstream" e⁻ entering have higher energy then e⁻ emitted and leaving; due to the photon attenuation

• Then is $R_{in,c} > R_{out,c}$

$$\Rightarrow \varepsilon = R_{in,u} - R_{out,u} + R_{in,c} - R_{out,c} > \varepsilon_{tr}^{n}$$
$$\Rightarrow D > K_{c}$$

SISN 30 FINS 18


The case of high photon energies

TCPE

- Transient Charged Particles Equilibrium: electrons from "upstream" contribute to the dose and the photon contribution $(R_{in.u} R_{out.u})$ is the collision kerma
- Dose proportional with K_c:

$$D = K_c (1 + f_{TCPE})$$

$$f_{TCPE} \ge 0$$

