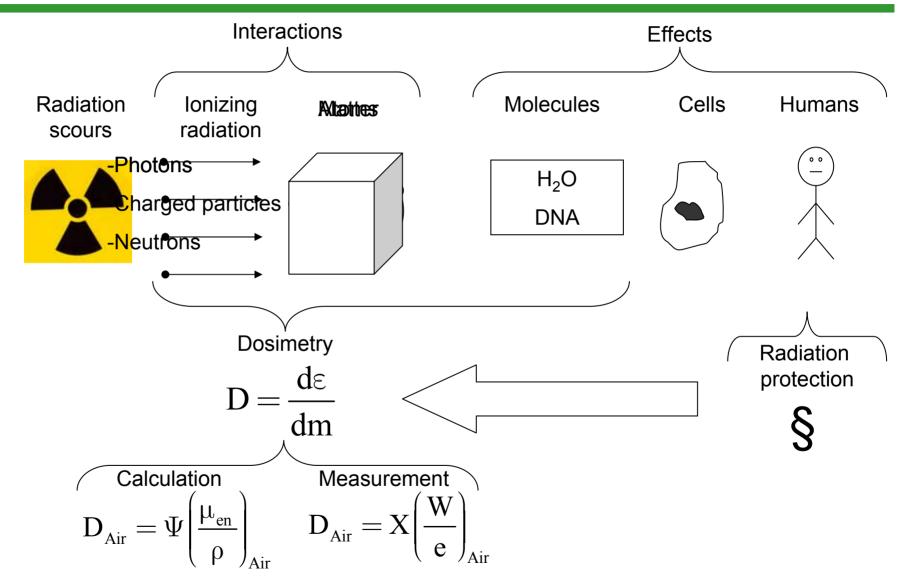
Radiation and radiation dosimetry Spring 2006 Introduction

Audun Sanderud

Contents

- Interaction between ionizing radiation and matter
- Radioactive and non-radioactive radiation sources
- Calculations and measurement of radiation doses (dosimetry)
- The effect of radiation on relevant substances like water and important biological molecules
- The understanding of:
 - > the biological effects of ionizing radiation
 - > measurement principles and methods
 - > the principles of radiation protection



Learning objectives

- To understand primary and secondary effects of ionizing radiation
- How radiation doses are calculated and measured
- The understanding of the principles of radiation protection, their origin and applications
- This will provide a tool for evaluating possible dangers in the use of ionizing radiation

Overview

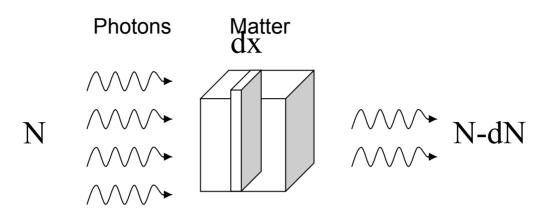
Interaction Between Ionizing Radiation And Matter, Part 1 Photons

Audun Sanderud

Photon Interaction

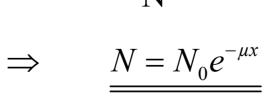
- Five interaction processes between photons and matter:
 - Rayleigh scattering
 - Compton scattering
 - Photoelectric effect
 - Pair- and triplet -production
 - Photon-nuclear reactions
- Probability of interaction described by cross section
- Scattering and energy transfer described kinematics
- Joint gives the possibility to calculate radiation doses

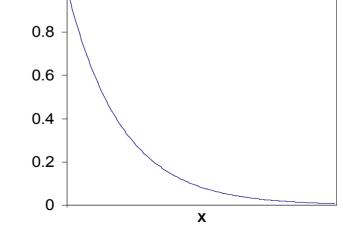
Rayleigh/Coherent scattering


- Scattering of photons without loss of energy
- Photons absorbed by the atom, then emitted with a small angel
- Depend on photon energy, hv, and atomic structure
- The atomic cross section of coherent scattering:

$$\sigma_{\scriptscriptstyle R} \propto \left(rac{Z}{h
u}
ight)^2$$

• Special case $hv \rightarrow 0$: Thomson scattering


Photon attenuation

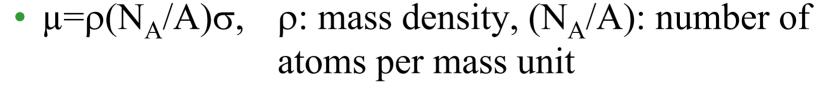


- Probability of a photon interaction: μdx
- Number of photons interacting : $N\mu_{1}$

$$dN=N\mu dx$$
 \Rightarrow $\int \frac{dN}{N} = \int \mu dx$

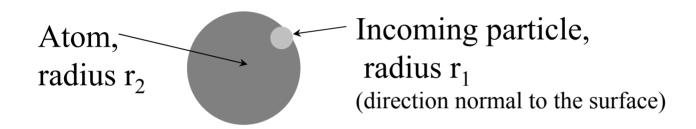
Average pathlength

- The probability of a photon not interacting: $e^{-\mu x}$
- Normalized probability:


$$p_{ni} = Ce^{-\mu x}, \implies \int_{0}^{\infty} Ce^{-\mu x} \equiv 1, \implies p_{ni} = \mu e^{-\mu x}$$

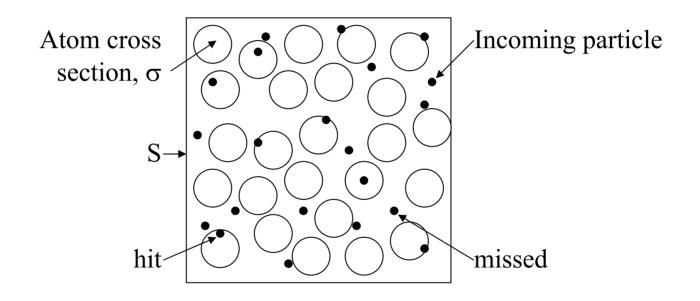
Average pathlength:
$$\langle x \rangle = \int_{0}^{\infty} x \mu e^{-\mu x} = \frac{1}{\mu}$$

Attenuation - Cross section


- μ: Denote the number of photons with a single energy E and direction which interacts per length unit
- $\mu=p/dx$, probability of per length unit; macroscopic
- σ: Cross section target area; surface proportional with the probability of interaction
- $\sigma=p/n_v dx$, σ : cross section, probability per atom density n_v , and length unit; microscopic

Cross section

• Look at two spheres:



• σ equals total area: $\pi(r_1+r_2)^2$

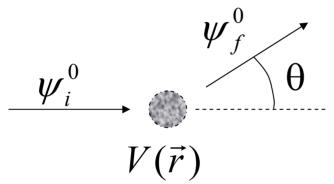
Cross section (2)

• N particles move towards an area S with n atoms

- Probability of interaction: $p=S_{cs}/S = n\sigma/S$
- Number of interacting particles: $Np = Nn\sigma/S$

Cross section (3)

- The cross section of an interaction depend on:
 - Type of target (nucleus, electron, ..)
 - Type of incoming particle
 - Energy of the incoming particle
 - Distance between target and particle
- Cross section calculated with quantum mechanics visualized in a classical window



Calculating Rayleigh Cross section

• A wave beam interacts with a weak potential $V(\vec{r})$

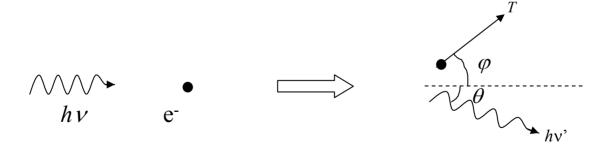
• The Hamiltonian is:
$$H = \frac{1}{2m}p^2 + V(\vec{r}) = H_0 + V(\vec{r})$$

• Free particle wave function: Initial: $\psi_i^0 = \sqrt{V_0} e^{i(\vec{p}_i \vec{r} - E_i t)/\hbar}$

Final: $\psi_f^0 = \sqrt{V_0} e^{i(\vec{p}_f \vec{r} - E_f t)/\hbar}$

What is the probability of elastic scattering by an angel
$$\theta$$
 of a photon of energy hv?

$$\frac{d\sigma}{d\Omega} = \left| \frac{m}{2\pi\hbar^2} \int d^3r V(\vec{r}) e^{i(\vec{p}_i - \vec{p}_f)\vec{r}/\hbar} \right|^2$$


$$\frac{Coulombfield}{V = Ze^2/4\pi\varepsilon_0 r} \rightarrow \left(\frac{Ze^2}{16\pi\varepsilon_0 h \nu}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

Incoherent scattering

- The photon energy loss due to the interaction is significant
- The interaction is a photon-electron scattering, assuming the electron being free (binding energy neglect able)
- Also called Compton scattering

Compton scattering(1)

Kinematics:

$$h\nu = h\nu' + T$$

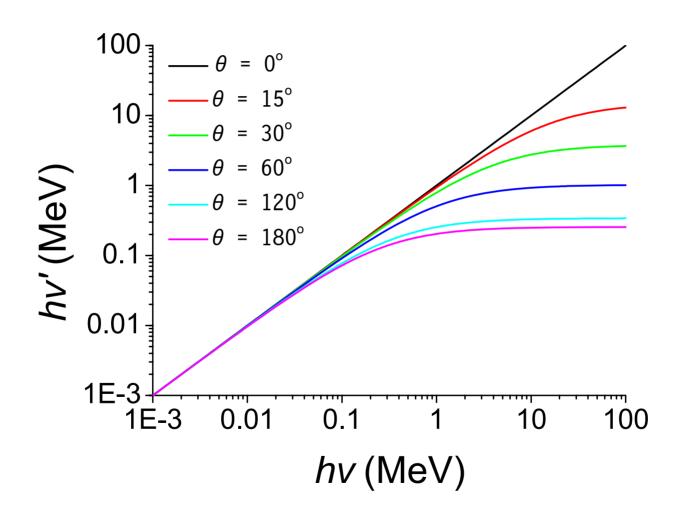
Energy conservation

$$\frac{h\nu}{c} = \frac{h\nu'}{c}\cos\varphi + p\cos\theta$$
$$\frac{h\nu'}{c}\sin\theta = p\sin\varphi$$


Momentum conservation

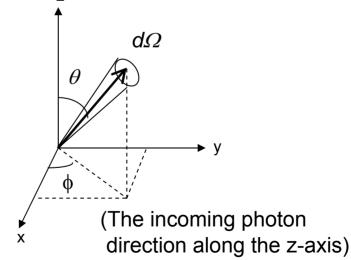
$$\frac{h\nu'}{c}\sin\theta = p\sin\varphi$$

$$(pc)^2 = T^2 + 2Tm_e c^2$$


"Law of invariance"

• Solution:

Compton scattering(2)



Compton scattering-Cross section

- Klein and Nishina derived the cross section of the Compton scattering
- The differential cross section for photon scattering at angel θ , per unit solid angel and per electron, may be written as.

$$\left(\frac{d_e \sigma}{d\Omega_\theta}\right) = \frac{r_0^2}{2} \left(\frac{\nu'}{\nu}\right)^2 \left(\frac{\nu}{\nu'} + \frac{\nu'}{\nu} - \sin^2 \theta\right)$$

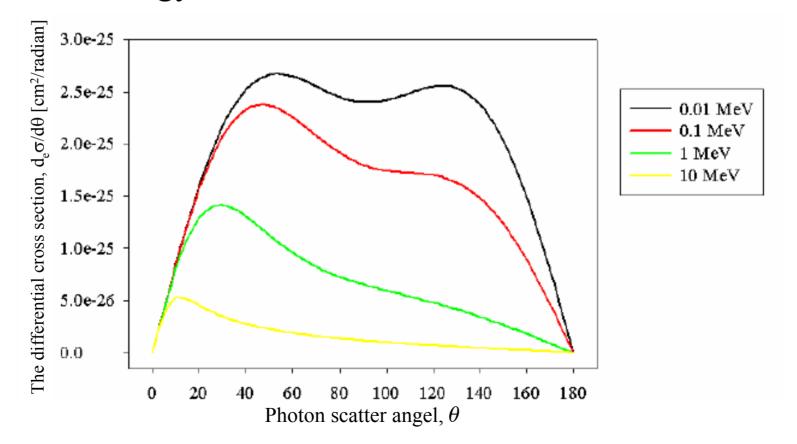
$$d\Omega_{\theta} = \sin\theta d\theta d\phi, \ r_0 = \frac{e^2}{m_e c^2}$$

Compton scattering-Cross section(2)

• The cylinder symmetry gives:

$$\left(\frac{d_e \sigma}{d\theta}\right) = \pi r_0^2 \left(\frac{\nu'}{\nu}\right)^2 \left(\frac{\nu}{\nu'} + \frac{\nu'}{\nu} - \sin^2 \theta\right) \sin \theta$$

- Denotes the probability of finding a scattered photon inside the angel interval $[\theta+d\theta]$ after the interaction with the electron
- The total cross section per electron _eσ is:


$$_{e}\sigma = \int_{0}^{\pi} \pi r_{0}^{2} \left(\frac{\nu'}{\nu}\right)^{2} \left(\frac{\nu}{\nu'} + \frac{\nu'}{\nu} - \sin^{2}\theta\right) \sin\theta d\theta$$

• Atomic C. scat. cross section is then: ${}_{a}\sigma = Z_{e}\sigma$

Compton scattering-Cross section(3)

 Scattered photons are more forward directed as initial energy increase

Compton scattering-Cross section(4)

• The photon spectra of the scattered photons:

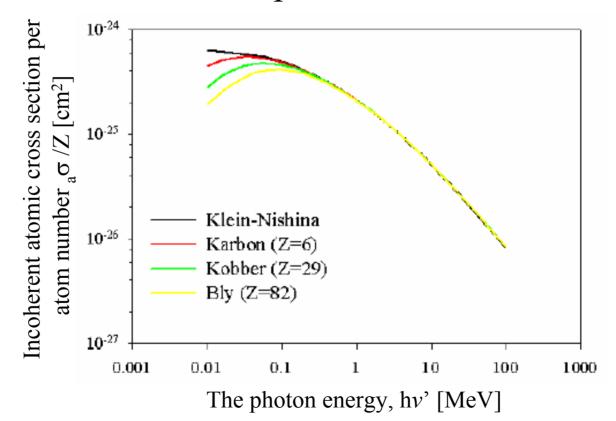
$$\frac{d_{e}\sigma}{d(h\nu')} = \frac{d_{e}\sigma}{d\Omega_{\theta}} \frac{d\Omega_{\theta}}{d(h\nu')} = \frac{d_{e}\sigma}{d\Omega_{\theta}} 2\pi \sin\theta \frac{d\theta}{d(h\nu')}$$

$$h\nu' = \frac{h\nu}{1 + \left(\frac{h\nu}{m_{e}c^{2}}\right)(1 - \cos\theta)}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\frac{d_{e}\sigma}{d(h\nu')} = \frac{\pi r_{0}^{2} m_{e}c^{2}}{(h\nu)^{2}} \left(\frac{h\nu}{h\nu'} + \frac{h\nu'}{h\nu} - 1 + \left(1 - \frac{m_{e}c^{2}}{h\nu'} + \frac{m_{e}c^{2}}{h\nu}\right)^{2}\right)$$

Compton scattering-Cross section(5)


• The cylinder symmetry gives:

Compton scattering-Cross section(6)

• More correct treatment of the cross section gives a small atom number dependence:

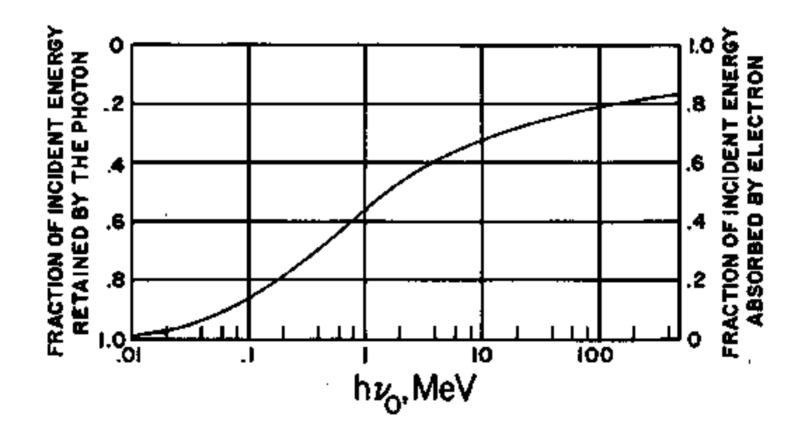
Energy transferred

• The energy transferred to the electron in a Compton process:

$$T = h\nu - h\nu'$$

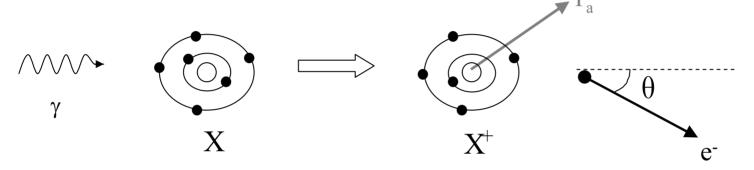
• The energy-transfer cross section:

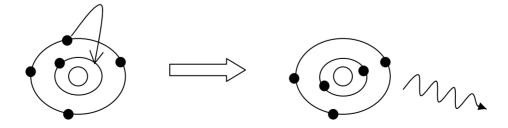
$$\frac{d_{e}\sigma_{tr}}{d\Omega_{\theta}} = \frac{d_{e}\sigma}{d\Omega_{\theta}} \frac{T}{h\nu} = \frac{d_{e}\sigma}{d\Omega_{\theta}} \frac{h\nu - h\nu'}{h\nu}$$


• The average fraction of transferred energy:

$$\overline{T} = h\nu \frac{e^{\sigma_{tr}}}{e^{\sigma_{tr}}}$$

Energy transferred(2)


• Mean fraction of energy transferred to the electron:


Photoelectric effect

• Photon is absorbed by an atom/molecule; resulting in an excitation or ionization

• The vacancy is filled by an electron from an outer orbit and characteristic radiation is emitted

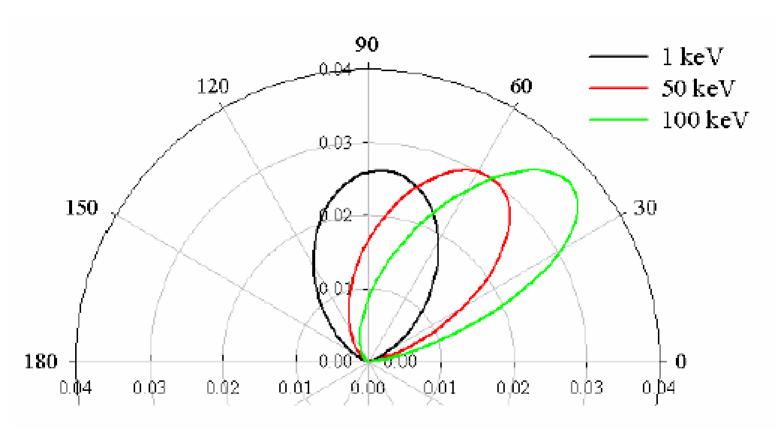
Photoelectric effect (2)

• The binding energy of the electron E_b most be accounted for:

$$T = h\nu - E_b - T_a \simeq h\nu - E_b$$

• The atomic cross section τ is approximately when E_b =0 assumed:

$$\frac{d\tau}{d\Omega} = 2\sqrt{2}r_e^2\alpha^4 Z^5 \left(\frac{m_e c^2}{h\nu}\right)^{7/2} \sin^2\theta \left(1 + 4\sqrt{\frac{2h\nu}{m_e c^2}}\cos\theta\right)$$



α: Fine structure constant

 Ω : Points to the emitted electron

Photoelectron – distribution angle

Photoelectric cross section $(d\tau/d\theta)/\tau$

Characteristic radiation

- The energy of characteristic radiation depend on the electron structure- and transitions
- The K- and L-shell vacancies: photons with energy $h\nu_K$ and $h\nu_L$ are emitted after de-excitation
- Emitted photons are isotropic distributed
- The fraction of events that occur in the K- or L-shell: $P_K[hv>(E_b)_K]$ and $P_L[hv>(E_b)_L]$
- The probability of c.r. being emitted: Y_K and Y_L

• The energy transport away from the atom by c.r.: $P_K Y_K h \nu_K + P_L Y_L h \nu_L$

Auger effect

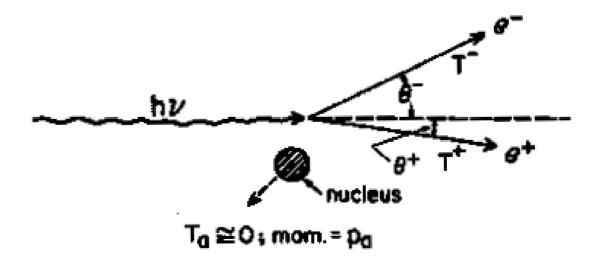
- Alternative path which the ionized atom dispose energy
- Shallow outer-shell vacancies are emitted from the atom with kinetic energy corresponding to its excess energy
- Low Z: most Auger
- High Z: most characteristic radiation
- Auger electrons are low-energetic

Photoelectric cross section

• It is observed:
$$\tau \propto \frac{Z^n}{(h\nu)^m}$$
, $4 < n < 5$, $1 < m < 3$

• The fraction of energy transferred to the photoelectron

$$\frac{T}{h\nu} = \frac{h\nu - E_b}{h\nu}$$


- But: Auger electrons are also given energy
- The energy-transfer cross section of the electron:

$$\tau_{tr} = \tau \frac{\left(h\nu - P_K Y_K h\nu_K - \left(1 - P_K\right) P_L Y_L h\nu_L\right)}{h\nu}$$

Pair production

- Photon absorption when an electron-positron pair iscreated
- Occurs in a Coulomb force field from an atom nucleus or atomic electron (triplet production)

Pair production (2)

• Conservation of energy:

$$h\nu = 2m_e c^2 + T^+ + T^-$$

• Average kinetic energy after absorption:

$$\overline{T} = \frac{h\nu - 2m_e c^2}{2}$$

• Estimate of scatter angle of electron/positron:

$$\overline{ heta} pprox rac{m_e c^2}{\overline{T}}$$

• Total cross section:

$$\kappa \approx \alpha r_0^2 Z^2 \overline{P}$$

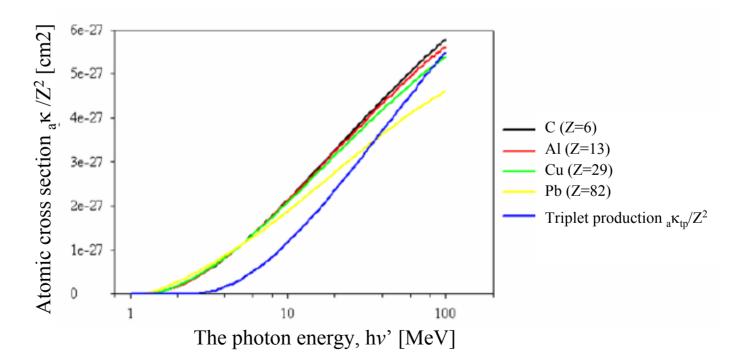
 \overline{P} increases with $h\nu$

Triplet production

• An electron-positron pair is created in a field from an electron – conservation of energy: $h\nu = 2m_{o}c^{2} + T^{+} + T_{1}^{-} + T_{2}^{-}$

• Average kinetic energy after absorption:

$$\overline{T} = \frac{h\nu - 2m_e c^2}{3}$$


• Threshold photon energy: $hv = 4m_0c^2$

Pair- and triplet production

• Pair production most important:

$$\frac{\kappa(triplet)}{\kappa(pair)} \approx \frac{1}{CZ}$$
, $1 < C < 2$, depending only on $h\nu$

Photonuclear interactions

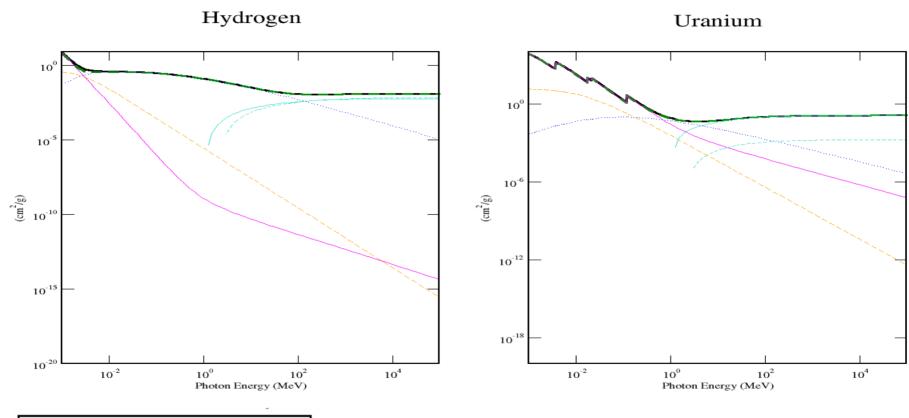
- Photon (energy above a few MeV) excites a nucleus
- Proton or neutron is emitted
- (γ, n) interactions may lead to radiation protection problems
- Example: Tungsten W (γ, n)
- Not important in dosimetry

Attenuation coefficients

• Total coefficient of photon interaction:

$$\frac{\mu}{\rho} = \frac{\tau}{\rho} + \frac{\sigma}{\rho} + \frac{\kappa}{\rho} + \frac{\sigma_R}{\rho}$$

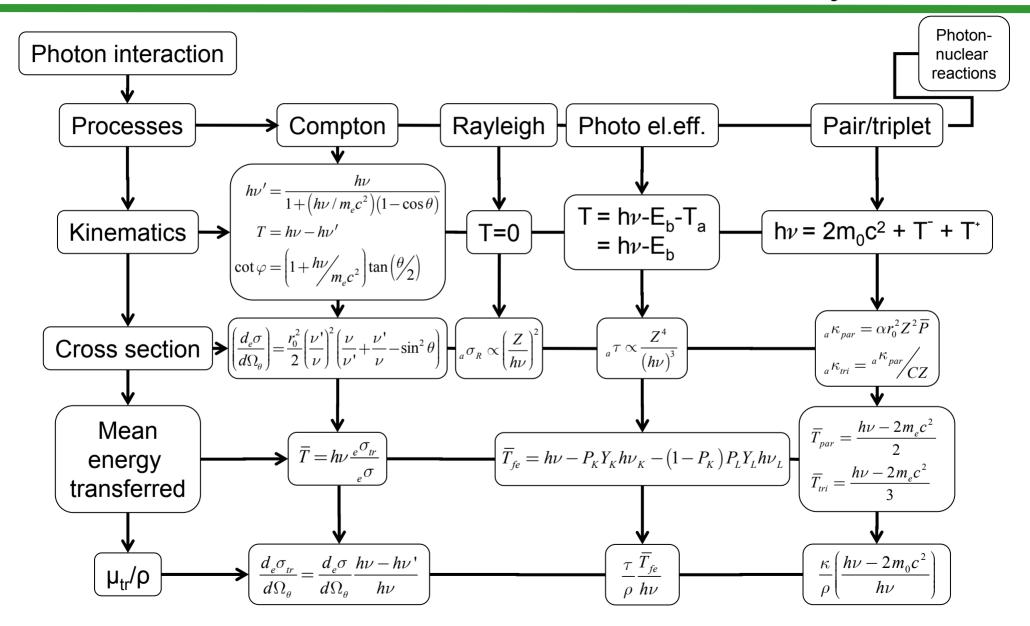
• Coefficient of energy transfer to electrons:

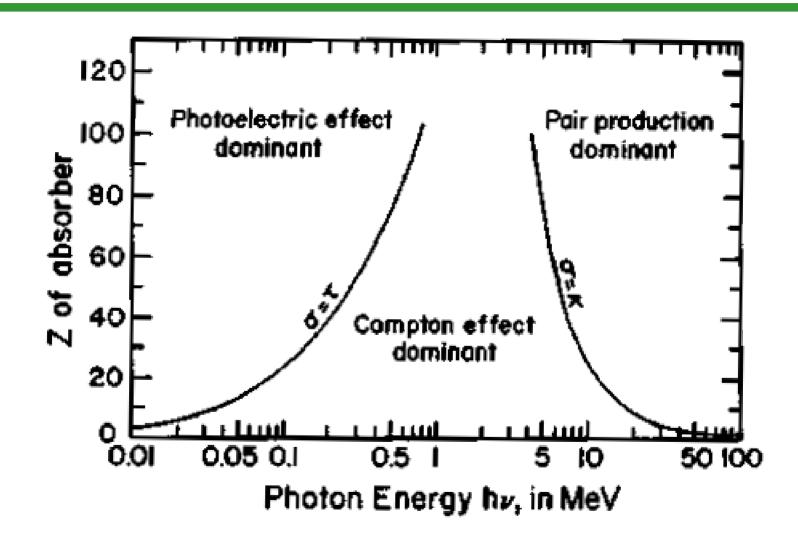

$$\frac{\mu_{tr}}{\rho} = \frac{\mu}{\rho} \frac{\overline{T}}{h\nu}$$

• Braggs rule for mixtures of n-atoms/elements:

$$\left(\frac{\mu}{\rho}\right)_{mix} = \sum_{i=1}^{n} f_i \left(\frac{\mu}{\rho}\right)_i, \qquad f_i = \frac{m_i}{\sum_{i=1}^{n} m_i}$$

Attenuation coefficients (2)




Total Attenuation with Coherent Scattering
Total Attenuation without Coherent Scattering
Coherent Scattering
Incoherent Scattering
Photoelectric Absorption
Pair Production in Nuclear Field
Pair Production in Electron Field

http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

Photon Interaction Summary

Summary

