Biological foundation of radiation protection Summary part 1

Audun Sanderud

Deterministic vs. Stochastic effects

- Deterministic effects:
 - -has a threshold of dose
 - -severity of the effect is dose-related
- Stochastic effects:
 - -probability of an effect increases with dose
 - -no dose threshold
 - -severity of the effect is not dose related

Biological foundation of radiation protection Part 2: Stochastic effects

Audun Sanderud

Stochastic effects

• Radiation is proven to have a carcinogen effect, but is less associated to genetic effects

• Stochastic effects:

A change in cells *can* lead to:

- Cancer
- Genetic effects

Can happen independent of dose, but probability increase with dose

Survivors of Hiroshima and Nagasaki constitute the most important material in the study of this effects

The bombing of H&N

- Population: 330,000 and 250,000
- >100,000 dead immediately from the shock wave of the bombs
- Gamma and neutrons gave the radiation doses to the survivors
- The survivors have amongst other been check for:
 - Cancer and deadliness
 - Genetic effects expressed in the descendants

Cancer

• Complicated diseases which depend on among other things:

- Age
- Sex
- Nutrition
- Genes
- Intake of cancer developing substances
- Large differences between Europe and Asia
- Cancer develop trough several stages (multi-step process)

Cancer 2)

- Department of Physic University of Osl
- Generation of cancer takes long time often 20- 30 years from starting point to detection (Latency time)
- Exception: f. ex. Leukemia (cancer in the Hamatopoietic system) and Thyroid cancer
- Studies of the cause of cancer depend of nice historical data
- Generally difficult to separate single factors responsible for the disease

- Epidemiology most be used in studies of a population
- H & N: f. ex. Cohort studies of cancer frequency

Control population

Exposed population

Ionizing radiation

• By comparing the exposed population of the control population risk estimates is composted

Population studies 2)

Risk = Back ground risk x (1 + Excess Relative Risk) $\mathbf{R} = \mathbf{R}_0 \mathbf{x} (1 + \mathbf{ERR})$ Dependent of Dependent on sex,

sex and age

age and radiation dose

 $ERR = a \times dose, a = constant$ 1 Additional risk is *assumed* to increase linearly with the radiation dose

Department of Physics University of Oslo

Calculations of radiation dose

- Radiation spectra and strength of the bombs

-Radiation transport in air and attenuation in buildings

- Absorption in organs

Cancer in H & N

	H&N (1950-1987)	Japan (comparable population)
Population	80114	80114
Cancer as cause of dead	5859	6343

- The survivors of H&N most be evaluated as a statistical isolated population
- Control is survivors whom was > 2500m from hypocenter during the bomb detonation
- → Excess cancer deaths due to radiation(1950-1990) among the survivors of H&N : 420

20 25 30 35 40 -1 0 Japanese A-bomb ERR 2

3

5

Department of Physics University of Oslo

Cancer risk – error estimates

• The errors in the risk factors can origin from amongst other things:

- Errors: in the radiation estimates, cancer frequency and the models from H&N

- Small verses large doses

10 15

5

-5

- Dose distributed over a period verses acute radiation
- Age and sex
- Joint effects of other factors with radiation

INCIDENCE OF BREAST CANCER/100.000 WY 00 00 000 000 WY

NUMBER OF FLUOROSCOPIES $0.04 \text{ Gy} \le \text{Dose per fluoroskopi} \le 0.2 \text{ Gy}$

Genetic effects in offspring

- Search genetic independent distinctions in offspring which origin from (radiation induced) mutations in egg cells and sperm cells
- Mutations are changes in DNA
- Radiation is assumed to increase the frequency of natural mutations (which is low?) – expect also a low frequency of radiation induced mutations

Mendelian genetic on one page

• Humans have about 50 000 pairs of genes and each of these are located in a defined positions (locus) in a defined chromosome

- Different versions of a gene (at the same locus) is called alleles (f. ex. alleles of blue and brown eyes)
- Dominative alleles: just one is needed to make a distinct feature to occur in the offspring
- Recessive alleles: need two
- Sex related recessive: if the X-chrom. mutated, males gets the feature (f. ex. red-green color blindness), while female only if both X mutated

The mega mouse project

• Millions of mice used to examine genetic effects of radiation

- Example: Mice with 7 pairs of recessive alleles; give
- 7 different features (6 give special colors, 1 short ears)
- Normal mice is radiated and matted with mice's with such recessive alleles:

Department of Physics University of Oslo

The mega mouse project 2)

- Important: *at which period in the generation of sperm or egg cells the exposition occur.*
- Male: continues spermatogenesis; 40/70 days (mice and men) to generate sperm cells
- Female: egg cells ready before birth; only matures
- If mice is radiated and mutations in sperm cells (spermatogenesis) is to be examined, most at leased wait for 40 days

Iniversity of Osl

The mega mouse project 3)

- The number of mutations observed in offspring increase almost linearly with dose, but at high doses the mutation rate decrease
- Reduction of the effect at low dose rate – indicate repair
- Dose Rate Effectiveness
 Factor DREF

The mega mouse project 4)

- Matured sperm cells are more radiation sensitive (concerning mutations) than in spermatogenesis
- Egg cells not ass sensitive to mutations
- Dominant mutations have also been examined:
 - Abnormities in skeleton
 - Cataract (unclear eyes)

• Problem: the number of genes contributing to these effects are not known

partment of Physics University of Oslo

Offspring off H & N

- Offspring (over 30 000) have been examined among other things for:
 - Natal mortality (< 2 weeks) and abnormalities (Untoward Pregnancy Outcome, UPO)
 - Mortality (from 2 weeks and 26 years of age)
 - Protein mutations
 - Cancer
 - XY-aneuploidi (f. ex. XXY)

• Problem: effect depend probably not of mutations in only one gene, but are multifactor effects

Offspring off H & N 2)

• The studies show a doubling dose about 2 Gy:

Feature	Frequency/dose(%/Sv)	Natural frequency
UPO	0.264 (±0.277)	
Mortality	0.076 (±0.154)	0.330-0.530
Protein mutations	0.001 (±0.001)	
Cancer	(-0.008) (±0.028)	0.002-0.005
XY aneuploidi	0.044 (±0.069)	0.030
Total	0.375	0.632-0.835

• Radiation is a weak mutagen