
First project fall  FYS-KJM/
Date given: �ursday October , .
Deadline: Monday November  at pm (noon). It counts % of the �nal mark.

Introduction and background
�is project contains  exercises.
A quantum dot is a system of electrons con�ned in semiconducting heterostructures. Such systems

exhibit, due to their small size, discrete quantum levels. Small con�ned systems such as quantum dots have
become very popular for experimental study. Beyond their possible relevance for nanotechnology, they are
highly tunable in experiments and introduce level quantization and quantum interference in a controlled
way. �e possibility to manufacture systems with a tailored electronic structure may improve electrical or
optical properties of materials, a reason why quantum dots are good candidates as components in such
diverse applications as quantum computers, optimized solar cells, laser technology and medical imaging,
to name a few. On the other hand, strongly con�ned electrons o�er a wide variety of complex and subtle
phenomena which pose severe challenges to existing many-body methods.
We study a model called the parabolic quantum dot: A system of electrons con�ned in two dimensions

by a harmonic oscillator potential. Our Hamiltonian for N electrons takes the following form
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Here, r ≡ ∣r⃗∣, r i ≡ ∣r⃗ i ∣, and r i j ≡ ∣r⃗ i − r⃗ j ∣.
We will consider a system of N =  and N =  electrons. �ese represent so-called closed shell systems

for the paraboic quantum dot. �e next “magic numbers” for the parabolic quantum dot is N = , N = ,
N = , N = , and these electron numbers are analogous to noble gas electron numbers in atoms and
closed-shell structures in atomic nuclei.
As single-particle basis functions for our calculationswewill use spin-orbitalsmade from the harmonic

oscillator eigenfunctions ψnm(r, θ) in polar coordinates,

ĥ(r⃗)ψnm(r, θ) = enmψnm(r, θ) ()
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Here, L∣m∣n are the so-called associated Laguerre polynomials, the �rst few of which are

L∣m∣ (x) = , ()

L∣m∣ (x) = −x +  + ∣m∣. ()





�e quantum number n is the number of nodes in the radial part, while ħm is the orbital angular momen-
tum, the eigenvalue of the operator

l̂z(r⃗) = −iħ
∂
∂θ
. ()

You will not need to use all the details of the form of ψnm in this project.
�e spin-orbitals become

ϕµ(x) = ψnm(r, θ)χα(σ), µ = µ(nmα), ()

where α = ±/ is the quantum number for the z-projection of the electron spin, and χα is the correspond-
ing spinor basis function, ⟨χα ∣χβ⟩ = δαβ .
We write nµ , mµ , and αµ for the quantum numbers belonging to a given index µ.
�e spin-projection operator can be written in terms of its action on the spin-orbital basis,

ŝz ∣ϕµ⟩ = ħαµ ∣ϕµ⟩ . ()

�e orbital angular momentum operator is, on �rst-quantized form,

L̂z =
N

∑

i=
l̂z(i), ()

while the spin-projection operator is

Ŝz =
N

∑

i=
ŝz(i). ()

Note that each eigenvalue enm of the harmonic-oscillator ĥ is now doubly degenerate due to spin. �e
one-particle operator ĥ is now diagonal in the spin-orbital basis

⟨ϕµ ∣ĥ(r⃗)∣ϕν⟩ = ⟨χαµ ∣χαν ⟩(ψnµmµ ∣ĥ∣ψnνmν) = δµνenµmµ . ()

�e matrix elements of the Coulomb interaction Ŵ in the spin-orbital basis can be written in terms of
the integrals

(ψnmψnm ∣ŵ∣ψnmψnm) =
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r
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()

�e explicit values for thesematrix elements for ke =  are found in the appendix of this project. Note well
that these matrix elements do not include spin. When setting up, say, the matrix elements ⟨ϕµϕν ∣ŵ∣ϕγϕδ⟩,
you need to consider the spin degrees of freedom as well.
Our computational Hilbert space will be de�ned by the three lowest harmonic oscillator single-particle

energy levels. In total, when we add spin, we have L =  single-particle states. �us, we have  orbitals
and  spin-orbitals. �ese are illustrated in Fig. .

Exercise  ( points)
a) Let c†µ and cµ be creation and annihilation operators for the spin-orbitals ϕµ .

De�ne the second-quantized forms of L̂z and Ŝz . Using that the spin-orbitals are eigenfunctions,
simplify the expressions as much as possible.
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Figure : Spin-orbitals for an electron in a two-dimensional oscillator well using a so-called Fock–Darwin
representation. Here we show the states and their oscillator energies for three harmonic-oscillator levels.
�e oscillator energies are given by enm = ħω(n + ∣m∣ + ).

b) Show that any Slater determinant ∣µ⋯µN⟩ built from the spin-orbitals ϕµ is an eigenfunction for
L̂z with eigenvalue ħM = ħ∑i m i , where m i = mµ i . Show that the Slater determinant is also an
eigenfunction for Ŝz with eigenvalue ħSz = ħ∑i α i .

c) Show that
[Ŝz , L̂z] = , ()

by computing the action of each commutator on an arbitrary Slater determinant.

From c) and the fact that [Ĥ, L̂z] = [Ĥ, Ŝz] =  (you do not have to show this) we obtain that the
ground-state wavefunction of Ĥ can be chosen to be an eigenfunction of both Ŝz and L̂z . We will in the
rest of the exercise consider only the case M =  and Sz = . From c) we then obtain that the ground-
state wavefunction can be constructed as a linear combination of those Slater determinants that haveM =
Sz =  only: all the m i ’s sum to zero and all the α i ’s sum to zero for these determinants. All other Slater
determinants are eliminated a priori.

Exercise  ( points)
We can transform the Hamiltonian to dimensionless form by introducing a suitable set of units. We will
compute in a set of units where

ħ = me = ke = . ()

leaving ω as the last independent parameter, controlling the strength of the con�nement potential. In the
rest of the project, we use these units for simplicity.
We also limit ourselves to the case

ω = . ()

a) We start with the two-electron system and de�ne our single-particle Hilbert space to consist of the
orbitals (n = ,m = ), (n = ,m = ), (n = ,m = ±) and (n = ,m = ±), with their cor-
responding spin degeneracies, see Fig.  for a schematic picture. Without spin we have thus six
single-particle states. Adding the two spin degeneracies, we end up with  states. In the �gure, the
indices µ = µ(n,m, α) are listed below each spin-orbital.





Set up the M = Sz =  ground-state of the noninteracting problem (Ĥ) as a reference Slater de-
terminant ∣Φ⟩. Use second quantization. De�ne the Fermi level/energy. Draw a diagram of the
reference state, in the same fashion as Fig. . (If you use LATEX, such diagrams can be easily made, see
the source code for this project.)

De�ne quasiparticle creation- and annihilation operators for this problem.

Construct therea�er all possible one-particle-one-hole excitations ∣Φa
i ⟩, where i is an index below

the Fermi level, and a is an index above the Fermi level. Write the Slater determinants in terms of
quasiparticle operators. Ensure that you only write down those states that have M = m + m = 
and Sz = α + α = . Draw diagrams.

Construct therea�er all possible two-particle-two-hole excitations ∣Φab
i j ⟩ in a similar manner. Draw

diagrams.

b) Write down the Hamiltonian Ĥ on second-quantized form. Use Eqns. () and (). Include only
nonzero terms in the sums.

Compute the expectation value
⟨Φ∣Ĥ∣Φ⟩ ()

and obtain a numerical value by using the integral table in the Appendix. Explain why this expecta-
tion value can be considered an approximation to the exact ground-state energy.

c) We now limit ourselves to the con�guration-interaction with singles (CIS) basis, consisting of ∣Φ⟩

and the one-particle-one-hole functions ∣Φa
i ⟩ you found in a).

Compute the matrix elements (without inserting the numerical values of the ŵ matrix elements) of

⟨Φ∣Ĥ∣Φb
j ⟩, ⟨Φa

i ∣Ĥ∣Φ⟩,

and
⟨Φa

i ∣Ĥ∣Φb
j ⟩.

Use Wick’s �eorem for quasiparticles.

Insert then the explicit values for the various matrix elements and set up the �nal CIS Hamiltonian
matrix and diagonalize it using your favorite tool, for example Octave, Matlab, Python, C++ or
Fortran.

Compare your results from those of exercise b) and comment your results. �e exact ground-state
energy with our Hamiltonian is E =  for the two-electron quantum dot. “Exact” means in the limit
of a complete in�nite-dimensional harmonic-oscillator basis.

d) We repeat exercises b) and c) but now for the six electron quantum dot. De�ne the reference wave-
function ∣Φ⟩ and limit yourself again to one-particle-one-hole excitations.

Compute the reference energy ⟨Φ∣Ĥ∣Φ⟩, inserting the numerical values for the ŵ matrix elements.
�erea�er you will need to set up the appropriate Hamiltonian matrix which involves also one-
particle-one-hole excitations, also using numerical values for matrix elements. Diagonalize this ma-
trix and compare your eigenvalues with ⟨Φ∣Ĥ∣Φ⟩ and comment the result. �e best numerical result
for our Hamiltonian is obtained with Di�usion Monte Carlo calculations, and for ω =  the energy
for the ground state is E = . atomic units for the six electron quantum dot, see for example
Lohne Pedersen et al, Physical Review B ,  ().





Exercise  ( points)
Having treated the parabolic quantum dot with con�guration-interaction, we now turn to a restricted
Hartree–Fock (RHF) treatment.
Recall that we have  spin-orbitals, but only  orbitals. De�ne an index p = p(n,m) to count the

orbitals without spin. �us, p = , ,⋯, .

p(, ) = , p(,−) = , p(, ) = , p(,−) = , p(, ) = , p(, ) = .

�is is the numbering used in the Appendix. Note well, that this is for the spatial orbitals only.

a) De�ne the RHF wavefunction ∣ΦRHF⟩ for N =  and N = . Use the notation ψ̃ i(r⃗), i = , ,⋯,N/,
for the unknown spatial orbitals to be found.
Compute, in terms of the spatial matrix elements of ĥ and ŵ,

ERHF = ⟨ΦRHF∣Ĥ∣ΦRHF⟩, ()

In what manner does the RHF wavefunction ansatz and energy expression di�er from the general
Hartree–Fock wavefunction for fermions?

b) In the remainder, wewill expand the RHF spatial orbitals in the harmonic oscillator functionsψp(r⃗),
p = ,⋯, . De�ne therefore an  × matrix U and write

ψ̃q(r⃗) =


∑

p=
ψp(r⃗)Upq . ()

Explain why the matrix U must be a unitary matrix. What part of U corresponds to the occupied
RHF orbitals? What part corresponds to the virtual RHF orbitals?

c) Show that the RHF energy of can be written

ERHF = ⟨ΦRHF∣Ĥ∣ΦRHF⟩ = ∑
pqi
U∗

qi(ψq ∣ĥ∣ψp)Upi +∑
pqi
U∗

qi (∑
rs
Dsr[qr∣ps])Upi . ()

�e sums over i and j goes from  to N/, while the sums over p, q, r, and s go from  to L/, and
we have de�ned

[qr∣ps] ≡ (ψqψr ∣ŵ∣ψpψs) −


(ψqψr ∣ŵ∣ψsψp). ()

We have also de�ned the reduced density matrix,

Dsr = ∑
j
Us jU∗

r j . ()

Split the Ŵ-part of ERHF into a direct and an exchange energy. Explain their origin, and compare
with standard HF theory formulated in an orthonormal spin-orbital basis.

d) �e RHF equations in the given basis can be written

F(D)U = Uє, (Roothan–Hall equation) ()

(you do not have to show this), where F(D) is the Fock matrix,

Fqp(D) = (ψq ∣ĥ∣ψp) +∑
rs
Dsr[qr∣ps], ()

and where є = diag(є ,⋯, єL/) is a diagonal matrix of eigenvalues.
Explain inwhatway theRoothan–Hall equation di�ers froman ordinarymatrix eigenvalue problem.





e) Show that the RHF energy can be written

ERHF = ∑
i
є i −∑

i pq
U∗

qi (∑
sr
Dsr[qr∣ps])Upi . ()

Hint: Multiply �e Roothan–Hall equation with UH from the le�, and compere with Eq. ().

f) We are now going to solve the Roothan–Hall equation numerically. Use your favorite programming
language and environment. Use comments to document your code and make it readable.

You will need to read the integrals (ψpψq ∣ŵ∣ψrψs) from a text �le coulomb.dat downloadable from
the course web page. �is �le is listed in the Appendix. You can then tabulate [pq∣rs].

Write �rst a subroutine/function/module that, given a reduced density matrix D, computes the
corresponding Fock matrix F(D), and then diagonalizes it.

�us, your subroutine should solve the standard eigenvalue problem F(D)U = Uє and return U
and the diagonal elements of є.

Make sure the eigenvalues are sorted in increasing order (the eigenvectors also need to be in corre-
sponding order). Hint: if you use LAPACK library calls, it can be useful to eliminate some numerical
noise that can cause LAPACK to call a non-symmetric eigenvalue solver. For example, you can ex-
plicitly symmetrize the matrix by diagonalizing (F + FH)/.

g) Write a program that performs SCF iterations,

F(U(k−))U(k) = U(k)є(k) , ()

with U() = I, the identity matrix.

You will need approximately  iterations for convergence. Measure the convergence via

δk = max
p

{∣є(k)p − є(k−)p ∣}. ()

Plot δk versus k, with δk on a log-axis.

At each iteration k = , ,⋯, compute ERHF. Discuss the convergence properties.

Compare the converged RHF energy with the results obtained for CIS, and with the numerically
exact values listed elsewhere in this project.

Make sure your program handles both N =  and N = , and that you discuss both cases.

Appendix: Table of matrix elements and expressions for the expecta-
tion value of the two-body matrix elements

Explicit values for the two-body matrix elements
�e expectation values for the two-body matrix elements are computed using the closed-form expression
in the article of E. Anisimovas and A. Matulis, J. Phys.: Condens. Matter ,  ().
Each line in the table below is on the form

p q r s ( psi_p psi_q|w|psi_r psi_s ).





Only the non-zero matrix elements are listed. Note that the integrals below do not include spin. �e
indices p, q, etc, are related to the quantum numbers (n,m) as  = (n = ,m = ),  = (n = ,m = −),
 = (n = ,m = +),  = (n = ,m = −),  = (n = ,m = ), and  = (n = ,m = +) with no spin
degrees of freedom. �is table can also be found in text format at the webpage of the course, see the �le
coulomb.dat available from the course page.

1 1 1 1 1.253314137

1 1 1 5 0.3133285343

1 1 2 3 0.3133285343

1 1 3 2 0.3133285343

1 1 4 6 0.1174982004

1 1 5 1 0.3133285343

1 1 5 5 0.2349964007

1 1 6 4 0.1174982004

1 2 1 2 0.939985603

1 2 2 1 0.3133285343

1 2 2 5 -0.07833213358

1 2 3 4 0.2769459142

1 2 4 3 0.1661675485

1 2 5 2 0.07833213358

1 3 1 3 0.939985603

1 3 2 6 0.2769459142

1 3 3 1 0.3133285343

1 3 3 5 -0.07833213358

1 3 5 3 0.07833213358

1 3 6 2 0.1661675485

1 4 1 4 0.744155269

1 4 2 2 0.2769459142

1 4 4 1 0.1174982004

1 4 4 5 -0.08812365028

1 4 5 4 -0.009791516698

1 5 1 1 0.3133285343

1 5 1 5 0.8616534694

1 5 2 3 -0.07833213358

1 5 3 2 -0.07833213358

1 5 4 6 -0.08812365028

1 5 5 1 0.2349964007

1 5 5 5 0.1370812338

1 5 6 4 -0.08812365028

1 6 1 6 0.744155269

1 6 3 3 0.2769459142

1 6 5 6 -0.009791516698

1 6 6 1 0.1174982004

1 6 6 5 -0.08812365028

2 1 1 2 0.3133285343

2 1 2 1 0.939985603

2 1 2 5 0.07833213358

2 1 3 4 0.1661675485

2 1 4 3 0.2769459142

2 1 5 2 -0.07833213358





2 2 1 4 0.2769459142

2 2 2 2 0.8616534694

2 2 4 1 0.2769459142

2 2 4 5 -0.1523202528

2 2 5 4 -0.1523202528

2 3 1 1 0.3133285343

2 3 1 5 -0.07833213358

2 3 2 3 0.8616534694

2 3 3 2 0.2349964007

2 3 4 6 0.3035370176

2 3 5 1 -0.07833213358

2 3 5 5 0.1370812338

2 3 6 4 0.1468727505

2 4 2 4 0.7539467857

2 4 4 2 0.3035370176

2 5 1 2 -0.07833213358

2 5 2 1 0.07833213358

2 5 2 5 0.7245722356

2 5 3 4 -0.1246256614

2 5 4 3 -0.1523202528

2 5 5 2 0.1370812338

2 6 1 3 0.2769459142

2 6 2 6 0.7539467857

2 6 3 1 0.1661675485

2 6 3 5 -0.1246256614

2 6 5 3 -0.1523202528

2 6 6 2 0.1468727505

3 1 1 3 0.3133285343

3 1 2 6 0.1661675485

3 1 3 1 0.939985603

3 1 3 5 0.07833213358

3 1 5 3 -0.07833213358

3 1 6 2 0.2769459142

3 2 1 1 0.3133285343

3 2 1 5 -0.07833213358

3 2 2 3 0.2349964007

3 2 3 2 0.8616534694

3 2 4 6 0.1468727505

3 2 5 1 -0.07833213358

3 2 5 5 0.1370812338

3 2 6 4 0.3035370176

3 3 1 6 0.2769459142

3 3 3 3 0.8616534694

3 3 5 6 -0.1523202528

3 3 6 1 0.2769459142

3 3 6 5 -0.1523202528

3 4 1 2 0.2769459142

3 4 2 1 0.1661675485

3 4 2 5 -0.1246256614





3 4 3 4 0.7539467857

3 4 4 3 0.1468727505

3 4 5 2 -0.1523202528

3 5 1 3 -0.07833213358

3 5 2 6 -0.1246256614

3 5 3 1 0.07833213358

3 5 3 5 0.7245722356

3 5 5 3 0.1370812338

3 5 6 2 -0.1523202528

3 6 3 6 0.7539467857

3 6 6 3 0.3035370176

4 1 1 4 0.1174982004

4 1 2 2 0.2769459142

4 1 4 1 0.744155269

4 1 4 5 -0.009791516698

4 1 5 4 -0.08812365028

4 2 2 4 0.3035370176

4 2 4 2 0.7539467857

4 3 1 2 0.1661675485

4 3 2 1 0.2769459142

4 3 2 5 -0.1523202528

4 3 3 4 0.1468727505

4 3 4 3 0.7539467857

4 3 5 2 -0.1246256614

4 4 4 4 0.7160046585

4 5 1 4 -0.08812365028

4 5 2 2 -0.1523202528

4 5 4 1 -0.009791516698

4 5 4 5 0.6682710146

4 5 5 4 0.1395291129

4 6 1 1 0.1174982004

4 6 1 5 -0.08812365028

4 6 2 3 0.3035370176

4 6 3 2 0.1468727505

4 6 4 6 0.7160046585

4 6 5 1 -0.08812365028

4 6 5 5 0.1395291129

4 6 6 4 0.1285136567

5 1 1 1 0.3133285343

5 1 1 5 0.2349964007

5 1 2 3 -0.07833213358

5 1 3 2 -0.07833213358

5 1 4 6 -0.08812365028

5 1 5 1 0.8616534694

5 1 5 5 0.1370812338

5 1 6 4 -0.08812365028

5 2 1 2 0.07833213358

5 2 2 1 -0.07833213358

5 2 2 5 0.1370812338





5 2 3 4 -0.1523202528

5 2 4 3 -0.1246256614

5 2 5 2 0.7245722356

5 3 1 3 0.07833213358

5 3 2 6 -0.1523202528

5 3 3 1 -0.07833213358

5 3 3 5 0.1370812338

5 3 5 3 0.7245722356

5 3 6 2 -0.1246256614

5 4 1 4 -0.009791516698

5 4 2 2 -0.1523202528

5 4 4 1 -0.08812365028

5 4 4 5 0.1395291129

5 4 5 4 0.6682710146

5 5 1 1 0.2349964007

5 5 1 5 0.1370812338

5 5 2 3 0.1370812338

5 5 3 2 0.1370812338

5 5 4 6 0.1395291129

5 5 5 1 0.1370812338

5 5 5 5 0.7490510274

5 5 6 4 0.1395291129

5 6 1 6 -0.009791516698

5 6 3 3 -0.1523202528

5 6 5 6 0.6682710146

5 6 6 1 -0.08812365028

5 6 6 5 0.1395291129

6 1 1 6 0.1174982004

6 1 3 3 0.2769459142

6 1 5 6 -0.08812365028

6 1 6 1 0.744155269

6 1 6 5 -0.009791516698

6 2 1 3 0.1661675485

6 2 2 6 0.1468727505

6 2 3 1 0.2769459142

6 2 3 5 -0.1523202528

6 2 5 3 -0.1246256614

6 2 6 2 0.7539467857

6 3 3 6 0.3035370176

6 3 6 3 0.7539467857

6 4 1 1 0.1174982004

6 4 1 5 -0.08812365028

6 4 2 3 0.1468727505

6 4 3 2 0.3035370176

6 4 4 6 0.1285136567

6 4 5 1 -0.08812365028

6 4 5 5 0.1395291129

6 4 6 4 0.7160046585

6 5 1 6 -0.08812365028





6 5 3 3 -0.1523202528

6 5 5 6 0.1395291129

6 5 6 1 -0.009791516698

6 5 6 5 0.6682710146

6 6 6 6 0.7160046585




