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Introduction
We present a simple model consisting of an unperturbed Hamiltonian and a so-called pairing interaction
term. It is a model which to a large extent mimicks some central features of atomic nuclei, certain atoms
and systems which exhibit super
uiditity or superconductivity.
In this project, there are no single-particle functions given— instead, theHamiltonian is given in terms

of its one- and two-body matrix elements and creation and annihilation operators.
We de�ne �rst the Hamiltonian, with a de�nition of the model space and the single-particle basis.

�erea�er, we present the various exercises.
Our model consists of M doubly-degenerate and equally spaced single-particle levels labelled by p =

, , . . . ,M and spin σ = ±. �ese states are schematically portrayed in Fig. , for M = . Each single-
particle state is associated with a creation operator c†pσ .
We write the Hamiltonian as

Ĥ = Ĥ + V̂ ,
where

Ĥ = ∑
pσ
єpc†pσ cpσ , єp = ξ(p − ),

and
V̂ = − 


g∑
pq
c†p+c

†
p−cq−cq+ .

Here, Ĥ is the unperturbed Hamiltonian with a spacing between successive single-particle states given by
ξ.
For even number of particles N , the ground-state wavefunction of Ĥ is the Slater determinant

∣Φ⟩ = c†+c†−⋯c†N/+c†N/− ∣−⟩ .

�is reference wavefunction also de�nes a Fermi level.
�e two-body operator V̂ has a very simple form. It represents a pairing force and carries a constant

strength g. �e interaction can only couple pairs, i.e, it couples two fermions occupying the same level
p, as indicated by the rightmost four-particle state in Fig. . �ere, one of the pairs is excited to the state
with p =  and the other to the state p = . �e two middle possibilities have broken pairs, and will not be
present in our treatment. We label single-particle states below the Fermi level as hole-states with indices
iσ , etc. �e single-particle states above the Fermi level are then particle states with indices aσ , etc.
In our simple model model we have kept both the interaction strength and the single-particle level

spacings as constants, i.e., they are independent of p. In a realistic system like an atom or the atomic
nucleus this is not the case.
It is convenient to de�ne the so-called pair creation and pair annihilation operators

P̂†
p ≡ c†p+c†p− ,

and
P̂p ≡ cp−cp+ ,


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Figure : Schematic plot of the possible single-particle levels with double degeneracy. �e �lled circles
indicate occupied particle states while the empty circles represent vacant particle (hole) states. �e spac-
ing between each level p is constant in this picture. �e �rst two single-particle levels de�ne a reference
state ∣Φ⟩. In the second state to the le�, one pair is broken. �is state does not coupled to ∣Φ⟩ with our
Hamiltonian. �e rightmost state has two pairs excited from the reference, and does couple to ∣Φ⟩.

respectively. We also de�ne the number operator for the level p,

n̂p ≡ ∑
σ
c†pσ cpσ .

�e operator that counts the total number of pairs is

P̂ = ∑
p
P̂†
p P̂p .

Finally, we de�ne the spin-projection operator

Ŝz ∶= 
∑pσ

σc†pσ cpσ .

We are now set for the exercises.

Exercise  ( points)
a) Show that Ĥ and V̂ (and therefore also Ĥ) commute with Ŝz .

b) Show that Ĥ and V̂ (and therefore also Ĥ) commute with P̂.





c) Show that P̂ commutes with Ŝz .

Because of the vanishing commutators above, the Hamiltonian is block diagonal, i.e., we can �nd a
complete set of eigenfunctions ∣Ψk ; Sz , P⟩ of Ĥ such that

Ĥ ∣Ψk ; Sz , P⟩ = Ek ,Sz ,P ∣Ψk ; Sz , P⟩
P̂ ∣Ψk ; Sz , P⟩ = Sz ∣Ψk ; Sz , P⟩
Ŝz ∣Ψk ; Sz , P⟩ = P ∣Ψk ; Sz , P⟩

We henceforth focus on the case N =  and Sz = , P = , and M =  levels. �us, we seek eigenfunc-
tions ∣Ψk⟩ ≡ ∣Ψk ; , ⟩ and eigenvalues Ek ≡ Ek ,Sz ,P . We set ξ =  in the rest of the project.

d) Show that
[P̂p , P̂†

q ] = δpq( − n̂q).

e) Show that P̂ ∣Φ⟩ =  ∣Φ⟩, and that Ŝz ∣Φ⟩ =  ∣Φ⟩.
f ) Explain why the following set of Slater determinants form a basis for the subspace of Hilbert space
with Sz = , P = :

∣pp̄qq̄⟩ ≡ P†
pP

†
q ∣−⟩ ,  ≤ p < q ≤ M .

Here, p̄ indicates the state p−, while p indicates the state p+. In a similar manner as in Fig. , draw
spin-orbital diagrams for M =  and label properly. Draw all the basis states. (See the LATEX source
for this document for the code for Fig. .) What is the dimension of the subspace (for arbitraryM)?

g) In a similar manner as Fig. , draw spin-orbital diagrams of the basis functions for the subspace
Sz =  and P = ,M = . (We will not have use for these functions later.)

h) Show that you can rewrite the Hamiltonian (with ξ = ) as

Ĥ = ∑
p
(p − )n̂p − 


g
⎛
⎝



∑
p=

P̂†
p
⎞
⎠
⎛
⎝



∑
q=

P̂q
⎞
⎠ .

We now attack the exact diagonalization (or, full con�guration-interaction) of our problem. It can be
useful to assign to each basis function ∣pp̄qq̄⟩ an index I = , ,⋯, where I =  corresponds to ∣Φ⟩, and
where the doubly excited determinant(s) come next, then the quadruply excited determinant(s).

Exercise  ( points)
a) Show that ∑s P̂s ∣pp̄qq̄⟩ = ∣pp̄⟩ + ∣qq̄⟩. Next, compute closed-form expressions of all the matrix
elements

⟨p′ p̄′q′q̄′∣Ĥ∣pp̄qq̄⟩.
b) We now set ξ = , and consider g ∈ [−, ]. Using your favorite computing environment, diagonalize
the Hamiltonian matrix numerically. Plot the eigenvalues Ek = Ek(g) as function of g in a single
�gure. Highlight the ground-state energy. Do you observe any degeneracies?

In a second plot, show the probability f (g) = ∣⟨Φ∣Ψ(g)⟩∣/⟨Ψ∣Ψ⟩ of �nding the  particles in the
unperturbed ground state.

Comment the behavior of the ground state energy and also of f (g).





c) We now turn to the CISD approximation, using ∣Φ⟩ as the reference. Explain why the singly excited
determinants will not contribute to the exact eigenfunction, i.e., that CISD is the same as CID.

Show that the doubly excited determinants can be written

∣Φaā
i ī ⟩ ≡ P†

aPi ∣Φ⟩ , i = , , a = , .
What is the dimension of the CID space? How many basis functions from the FCI space du you
miss?

Find the CID Hamiltonian matrix. Diagonalize this matrix numerically for g ∈ [−, ] and plot the
ground-state eigenvalue as function of g. Plot also the ground-state probability. Compare with FCI
and discuss.

(Note that there is no need to introduce Slater–Condon rules, Wick’s �eorem, or the rest of the
usual CI machinery – we can simply extract the relevant matrix from the FCI matrix directly.)

d) Next up is Rayleigh–Schrödinger perturbation theory. Write down the expressions for third-order
perturbation theory for the ground-state energy for this model. Which matrix elements of Ĥ are
needed?

e) Compute the ground-state energy to third order in Rayleigh–Schrödinger perturbation theory, i.e.,
compute the third order expansion in g,

ERSPT(g) = E() + gE() + gE() + gE() .

Exercise  ( points)
�e last task is a coupled-cluster treatment, with doubles only, CCD.We will use a doubles operator on the
form

T̂ = ∑
i a
tai b

†
a+b

†
i+b

†
a−b

†
i− = ∑

i a
tai P

†
aPi .

It is interesting to note that this resembles a singles excitation operator. Note well that the indices i and a
refer to each degenerate level – i.e., they do not depend on spin.

a) Write down the general CCD wavefunction in terms of T̂ and ∣Φ⟩ (but do not introduce the ampli-
tudes). Explain why the exponential truncates a�er second-order terms for our model.

b) In a similarmanner, write down the general CIDwavefunction in intermediate normalization, ⟨Φ∣ΨCID⟩ =
. Compare with the CCD wavefunction.

c) Explain that the CCD energy can be written

ECCD = ⟨Φ∣Ĥ( + T̂)∣Φ⟩.
Compute ECCD as function of the amplitudes tai in our model, and show that it becomes equal to

ECCD = є + є − g − g
∑i a

tai .

You can compute this directly, without using generalizedWick’s�eorem, etc. �eCImatrix element
computations should help you. You can of course also use Wick’s �eorem.





We now evaluate the normal-ordered Hamiltonian, in order to �nd the amplitude equations. �e
Hamiltonian can be written

Ĥ = ⟨Φ∣Ĥ∣Φ⟩ + F̂N + V̂N´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
ĤN

.

�e normal-ordered Fock operator can be written

F̂N = ∑
pσ
fp{c†pσ cpσ}, f i = є i − 


g , fa = єa .

(�e unrevised project lacked a factor 
 in f i .) Here, we use the notation {⋯} for the normal-ordering

operator, instead of N(⋯). �e normal-ordered two-body interaction is

V̂N = − g
∑pq

{c†p+c†p−cq−cq+}.

d) Explain why the Baker–Campbell–Hausdor� expansion truncates a�er two nested commutators in
this case, and explain that the amplitude equations simplify to

⟨Φaā
i ī ∣{F̂N T̂}c ∣Φ⟩ + ⟨Φaā

i ī ∣{V̂N( + T̂ + 
 T̂

)}c ∣Φ⟩ = , ∀i , a.
Explain the {⋯}c notation.

e) Prove (at least) two of the equations (), (), (), or () below. (Your score will not be higher if
you correctly prove more than two equations.) You must use the generalized Wick’s �eorem for
products of normal-ordered strings, and make sure you take care of the {⋯}c restriction on the
contractions. (Eqn. () is revised.)

⟨Φaā
i ī ∣V̂N ∣Φ⟩ = − g


, ()

⟨Φaā
i ī ∣{F̂N T̂}c ∣Φ⟩ = ( fa − f i)tai , ()

⟨Φaā
i ī ∣{V̂N T̂}c ∣Φ⟩ = − g


⎛
⎝∑j

taj +∑
b
tbi
⎞
⎠ , ()



⟨Φaā

i ī ∣{V̂N T̂}c ∣Φ⟩ = − g

⎛
⎝∑j

taj
⎞
⎠(∑

b
tbi ) ()

�e CCD amplitude equations are (revised)

 = Fai (t) ≡ ( fa − f i)tai −
g

⎛
⎝ +∑b

tbi +∑
j
taj +∑

b
tbi ∑

j
taj
⎞
⎠

�at is, the CCD amplitue equations for our model is written as the zeroes of a polynomial function Fai (t),
where t = [tai ] is a  ×  matrix (but note the index ranges). We will solve this equation numerically.

f ) Show that Fai (t) =  is equivalent to (revised)

tai = [( f i − fa)] + σ]−
⎡⎢⎢⎢⎢⎣
σ tai −

g

⎛
⎝ +∑b

tbi +∑
j
taj +∑

b
tbi ∑

j
taj
⎞
⎠
⎤⎥⎥⎥⎥⎦
. ()

Here, σ is a shi� parameter that will help convergence. We write t = [tai ] for the whole matrix of
amplitudes.





g) Let the right-hand side of Eq. () be ≡ Ga
i (t). De�ne the iteration

(t(k+))ai = Ga
i (t(k)).

For g ∈ [−, ], solve the amplitude equations by iterating this, using t() =  as initial guess. Play
around with σ until you get convergence for all g ∈ [−, ]. You will need around – iterations
to reach machine precision.

h) Plot the FCI energy, the CCD energy, and the RSPT energy in one plot and comment your results.




