FYS-MENA3110 Problem set #2

Problem 2.1:

The wave function of an electron in a hydrogen-like atom with nuclear charge Z is $\psi(r) = Ce^{-r/a}$, where $a = a_0/Z$; $a_0 \approx 0.5$ Å is the Bohr radius.

- a) Compute the normalization constant.
- b) What is the probability that the electron is in the region x, y, z > 0?
- c) If the nucleus number is A = 173 and the charge is Z = 70, what is the probability that the electron is in the nucleus region? Assume that the radius of the nucleus is $1.2 \times A^{1/3}$ fm.

Problem 2.2:

- a) Write the Schrödinger equation for a two-dimensional hydrogen atom. Suppose the potential is $V(r) = -e^2/r$, where $r = \sqrt{x^2 + y^2}$.
- b) Using separations of variables, find the radial and angular equations.
- c) Solve the angular equation.
- d) Describe the quantum numbers that characterize the bound state and find the degeneracies of the system.