FYS-MENA3110 Problem set #7

Problem 7.1:

Close to the Brillouin zone boundary an electron in a weak, periodic potential has the following energy

$$E = \left(\frac{E_{\mathbf{k}}^{0} + E_{\mathbf{k}-\mathbf{G}}^{0}}{2}\right) \pm \sqrt{\left(\frac{E_{\mathbf{k}}^{0} - E_{\mathbf{k}-\mathbf{G}}^{0}}{2}\right)^{2} + |V_{\mathbf{G}}|^{2}}$$

where $E_{\mathbf{k}}^0 = \frac{\hbar^2 k^2}{2m}$ is the free-electron energy corresponding to wavevector \mathbf{k} , \mathbf{G} is a reciprocal lattice vector, $V_{\mathbf{G}}$ is the appropriate coefficient from

$$V(\mathbf{r}) = \sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$

and $V(\mathbf{r})$ is the potential. Consider a simple cubic lattice with primitive lattice translation vectors $a\mathbf{e}_1$, $a\mathbf{e}_2$, and $a\mathbf{e}_3$ where \mathbf{e}_i , i=1,2,3 are the Cartesian unit vectors along the x, y, and z axis respectively.

- a) Show that the effective masses for motion parallel to \mathbf{e}_1 with \mathbf{k} close to the point $(\frac{\pi}{a}, 0, 0)$ are smaller than m and directly proportional to $|V_{\mathbf{G}}|$.
- b) Why do you obtain two masses and what does their relative size tell you about the bands close to the zone boundary?
- c) Show that the effective mass for motion parallel to \mathbf{e}_2 with \mathbf{k} close to the $(\frac{\pi}{a}, 0, 0)$ is m.

Problem 7.2:

Find the Fermi surface for a triangular lattice in two dimensions with six noninteracting electrons per lattice site.

- a) Calculate the size of the Fermi sphere.
- b) Draw the reciprocal lattice of the triangular lattice and indicate the first three Brillouin zones. (Remember: $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$, with \mathbf{a}_i a real lattice vector and \mathbf{b}_j a reciprocal lattice vector.)
- c) Draw the Fermi sphere on a separate piece of semi-transparent paper (or plastic slide) at the same scale as used for the Brillouin zone. By moving this slide over the reciprocal lattice, find the Fermi surface.