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17.16. 
5 1

0

0.471 ft
23.5 C

[1.2 10  (C ) ][1671 ft]

L
T

Lα − −

∆
∆ = = =

×
°.

°
 

2
15.5 C 23.5 C 39.0 C.T = + =° ° °  

17.36. (a) Q mc T= ∆  

3 31

2
(1.3 10  kg) 0.65 10  kgm − −= × = ×  

3(0.65 10  kg)(1020 J/kg K)(37 C ( 20 C)) 38 JQ −= × ⋅ ° − − ° =  

(b) 20 breaths/min (60 min/1 h) 1200 breaths/h=  

So 4(1200)(38 J) 4.6 10  J.Q = = ×  

The heat loss rate is / 13 W.Q t =  

17.99. The mass if air in the room is 3 3(1.20 kg/m )(3200 m ) 3840 kg.m Vρ= = =  1 W 1 J/s.=  

(a) 7(3000 s)(90 students)(100 J/s student) 2.70 10  J.Q = ⋅ = ×  

(b) .Q mc T= ∆  
72.70 10  J

6.89 C
(3840 kg)(1020 J/kg K)

Q
T

mc

×
∆ = = =

⋅
°  

(c) 
280 W

(6.89 C ) 19.3 C
100 W

T
 

∆ = = 
 

° °.  

In the absence of a cooling mechanism for the air, the air temperature would rise significantly. 

17.100. dQ nCdT= so for the temperature change 
1 2

,T T→  
2

1

 

 
( ) .

T

T
Q n C T dT= ∫  

dT T=∫ and 
21

2
.TdT T=∫  Express 

1
T and 

2
T in kelvins: 

1
300 K,T =  

2
500 K.T =  

Denoting C by ,C a bT= +  a and b independent of temperature, integration gives 
2 2

2 1 2 1( ) ( ) .
2

b
Q n a T T T T

 
= − + − 

 
 

3 2 2 2(3.00 mol)(29.5 J mol K)(500 K 300 K) (4.10 10  J mol K )((500 K) (300 K) )).Q −= ⋅ − + × ⋅ −  

41.97 10  J.Q = ×  

 

 

18.7.   pV nRT=  and n, R constant implies / constantpV T nR= =  and 
1 1 1 2 2 2

/ /pV T p V T=  

1
(27 273) K 300 KT = + =  

5

1
1.01 10  Pap = ×  

6 5 6

2
2.72 10  Pa 1.01 10  Pa 2.82 10  Pap = × + × = ×  (in the ideal gas equation the pressures must be absolute, not 

gauge, pressures) 
6 3

2 2
2 1 5 3

1 1

2.82 10  Pa 46.2 cm
300 K 776 K

1.01 10  Pa 499 cm

p V
T T

p V

     ×
= = =     

×    
 

2
(776 273) C 503 CT = − ° = °  

18.13. .pV nRT=  

T is constant. 

n, R, T are constant, so  = constant.pV nRT=  
1 1 2 2

.p V p V=  1
2 1

2

6.00 L
(1.00 atm) 1.05 atm.

5.70 L

V
p p

V

   
= = =   

  
 

18.15. (a) .pV nRT=  Find the initial pressure 
1
:p  

61
1 3 3

(11.0 mol)(8.3145 J/mol K)((23.0 273.13)K)
8.737 10  Pa

3.10 10  m

nRT
p

V −

⋅ +
= = = ×

×
 

5 7

2
100 atm(1.013 10  Pa/1 atm) 1.013 10  Pap = × = ×  

/ / constant,p T nR V= =  so 
1 1 2 2
/ /p T p T=  

7

2
2 1

1

1.013 10  Pa
(296.15 K) 343.4 K 70.2 C

8.737 10  Pa

p
T T

p 6

   ×
= = = = °   

×  
 

(b) The coefficient of volume expansion for a gas is much larger than for a solid, so the expansion of the tank is 

negligible. 

18.25. (a) ,pV nRT=  
A

/n N N=  so 
A

( / )pV N N RT=  



A

N R
p T

V N

  
=   
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6 3 23

80 molecules 8.3145 J/mol K
(7500 K) 8.28 10  Pa

1 10  m 6.022 10  molecules/mol
p

−

−

⋅  
= = ×  

× ×  
 

178.2 10  atm.p −= ×  This is much lower 

than the laboratory pressure of 
131 10  atm−×  in Exercise 18.24. 

(b) The Lagoon Nebula is a very rarefied low pressure gas. The gas would exert very little force on an object 

passing through it. 

18.33. tot

A

N m
pV nRT RT RT

N M
= = = . 

We known that  and that .
A B A B

V V T T= >  

(a) /p nRT V= ; we don’t know n for each box, so either pressure could be higher. 

(b) 
A

N
pV RT

N

 
=  
 

so ApVN
N

RT
= , where 

A
N  is Avogadro’s number. We don’t know how the pressures compare, 

so either N could be larger. 

(c) ( )totpV m M RT= . We don’t know the mass of the gas in each box, so they could contain the same gas or 

different gases. 

(d) ( )2 31

2 2av
m v kT= . 

A B
T T>  and the average kinetic energy per molecule depends only on T, so the statement 

must be true. 

(e) 
rms

3v kT m= . We don’t know anything about the masses of the atoms of the gas in each box, so either set of 

molecules could have a larger 
rms

v . 

Only statement (d) must be true. We need more information in order to determine whether the other statements are 

true or false. 

 

19.1.(a) The pressure is constant and the volume increases. 

 

 

  

(b) 
2

1

 
V

V
W p dV= ∫  

Since p is constant, 
2

1
2 1( )

V

V
W p dV p V V= = −∫  

The problem gives T rather than p and V, so use the ideal gas law to rewrite the expression for W. 

pV nRT=  so 
1 1 1

,pV nRT=  
2 2 2

;p V nRT=  subtracting the two equations gives 

2 1 2 1
( ) ( )p V V nR T T− = −  

Thus 
2 1

( )W nR T T= −  is an alternative expression for the work in a constant pressure process for an ideal gas. 

Then 
2 1

( ) (2.00 mol)(8.3145 J/mol K)(107 C 27 C) 1330 JW nR T T= − = ⋅ ° − ° = +  

The gas expands when heated and does positive work. 

 19.2. 
31.75 10  J

35.1 K.
(6 mol) (8.3145 J/mol K)

W
T

nR

×
∆ = = =

⋅
 

K C
T T∆ = ∆  and 

2
27.0 C 35.1 C 62.1 C.T = ° + ° = °  

When 0W >  the gas expands. When p is constant and V increases, T increases. 

19.4.  (a) The pV diagram is given in Figure 19.4. 

(b) Since 0,  0.V W∆ = =  

For any constant volume process the work done is zero. 

 

Figure 19.4 



19.10. The type of process is not specified. We can use U Q W∆ = −  because this applies to all processes. Calculate U∆  

and then from it calculate .T∆ Q is positive since heat goes into the gas; 1200 JQ = +  

W positive since gas expands; 2100 JW = +  

1200 J 2100 J 900 JU∆ = − = −  

We can also use ( )3

2
 U n R T∆ = ∆  since this is true for any process for an ideal gas. 

2 2( 900 J)
14.4C

3 3(5.00 mol)(8.3145 J/mol K)

U
T

nR

∆ −
∆ = = = − °

⋅
 

2 1
127 C 14.4C 113 CT T T= + ∆ = ° − ° = °  

19.12. (a) 
2

1
2 1 ( )

V

V
W p dV p V V= = −∫  for this constant pressure process. 

5 3 3 5(2.3 10  Pa)(1.20 m 1.70 m ) 1.15 10  JW = × − = − ×  (The volume decreases in the process, so W is negative.) 

(b) U Q W∆ = −  

5 5 51.40 10  J ( 1.15 10  J) 2.55 10  JQ U W= ∆ + = − × + − × = − ×  

Q negative means heat flows out of the gas. 

(c) 
2

1
2 1 ( )

V

V
W p dV p V V= = −∫  (constant pressure) and U Q W∆ = −  apply to any system, not just to an ideal gas. 

We did not use the ideal gas equation, either directly or indirectly, in any of the calculations, so the results are the 

same whether the gas is ideal or not. 

19.16. Apply .U Q W∆ = −  W is the area under the path in the pV-plane. 

0W > when V increases. 

(a) The greatest work is done along the path that bounds the largest area above the V-axis in the p-V plane, which 

is path 1. The least work is done along path 3. 

(b) 0W >  in all three cases; ,  so 0Q U W Q= ∆ + >  for all three, with the greatest Q for the greatest work, that 

along path 1. When 0,Q > heat is absorbed. 

U∆ is path independent and depends only on the initial and final states. W and Q are path independent and can 

have different values for different paths between the same initial and final states. 

19.29. (a) 
2

1

 
V

V
W p dV= ∫  

pV nRT=  so /p nRT V=  

2 2

1 1
2 1( / ) / ln( / )

V V

V V
W nRT V dV nRT dV V nRT V V= = =∫ ∫  (work done during an isothermal process). 

1 1
(0.150 mol)(8.3145 J/mol K)(350 K)ln(0.25 / ) (436.5 J) ln(0.25) 605 J.W V V= ⋅ = = −  

W for the gas is negative, since the volume decreases. 

(b) 
V

U nC T∆ = ∆  for any ideal gas process. 

0T∆ =  (isothermal) so 0.U∆ =  

0U∆ =  for any ideal gas process in which T doesn’t change. 

(c) U Q W∆ = −  

0U∆ =  so 605 J.Q W= = −  (Q is negative; the gas liberates 605 J of heat to the surroundings.) 

V
Q nC T= ∆  is only for a constant volume process so doesn’t apply here. 

pQ nC T= ∆  is only for a constant pressure process so doesn’t apply here. 

 

20.1.  For a heat engine, H C .W Q Q= −  
H

.
W

e
Q

=  
H

0,Q >  
C

0.Q <  

2200 J.W =  C 4300 J.Q =  

(a) H C 6500 J.Q W Q= + =  

(b) 
2200 J

0.34 34%.
6500 J

e = = =  

Since the engine operates on a cycle, the net Q equal the net W. But to calculate the efficiency we use the heat 

energy input, 
H
.Q  

 20.3. (a) 
H

work output 3700 J
0.23 23%.

heat energy input 16,100 J

W
e

Q
= = = = =  



(b) H CW Q Q Q= = −  

Heat discarded is C H 16,100 J 3700 J 12,400 J.Q Q W= − = − =  

(c) 
H

Q  is supplied by burning fuel; 
H c

Q mL=  where 
c

L  is the heat of combustion. 

H

4

c

16,100 J
0.350 g.

4.60 10  J/g

Q
m

L
= = =

×
 

(d) 3700 JW =  per cycle 

In 1.00 st =  the engine goes through 60.0 cycles. 

/ 60.0(3700 J)/1.00 s 222 kWP W t= = =  

5(2.22 10  W)(1 hp/746 W) 298 hpP = × =  

C
12,400 J.Q = −  In one cycle 

tot C H
3700 J.Q Q Q= + =  This equals 

tot
W  for one cycle. 

 20.9. (a) Performance coefficient C /K Q W=  (Eq.20.9) 

4 4

C / 3.40 10  J/2.10 1.62 10  JW Q K= = × = ×  

(b) The operation of the device is illustrated in Figure 20.9 

 

C H
W Q Q= +  

H C
Q W Q= −  

4 4 4

H
1.62 10  J 3.40 10  J 5.02 10  JQ = − × − × = − ×  

(negative because heat goes out of the system) 

Figure 20.9  

H C .Q W Q= +  The heat HQ  delivered to the high temperature reservoir is greater than the heat taken in from 

the low temperature reservoir. 

20.16. (a) The operation of the device is sketched in Figure 20.16. 

 

H
24.0 C 297 KT = ° =  

C
0.0 C 273 KT = ° =  

Figure 20.16  

The amount of heat taken out of the water to make the liquid solid→  phase change is 

3 7

f
(85.0 kg)(334 10  J/kg) 2.84 10  J.Q mL= − = − × = − ×  This amount of heat must go into the working substance of 

the refrigerator, so 7

C
2.84 10  J.Q = + ×  For Carnot cycle C H C H/ /Q Q T T=  

7 7

H C H C( / ) 2.84 10  J(297 K/273 K) 3.09 10  JQ Q T T= = × = ×  

(b) 7 7 6

C H
2.84 10  J 3.09 10  J 2.5 10  JW Q Q= + = + × − × = − ×  

W is negative because this much energy must be supplied to the refrigerator rather than obtained from it. Note that 

in Eq.(20.13) we must use Kelvin temperatures. 

20.25. (a) The heat flow into the ice is 5 5

f
(0.350 kg)(3.34 10  J/kg) 1.17 10  J.Q mL= = × = ×  The heat flow occurs at 

273 K,T =  so 
51.17 10  J

429 J/K.
273 K

Q
S

T

×
∆ = = =  Q is positive and S∆  is positive. 

(b) 51.17 10  JQ = − ×  flows out of the heat source, at 298 K.T =  
51.17 10  J

393 J/K.
298 K

Q
S

T

− ×
∆ = = = −  Q is 

negative and S∆  is negative. 

(c) 
tot

429 J/K ( 393 J/K) 36 J/K.S∆ = + − = +  

For the total isolated system, 0S∆ >  and the process is irreversible. 

 

  

  

 

 


