33.7. (a) The reflected ray makes an angle of 47.5° with the surface of the glass.
(b) The refracted ray makes an angle of 66.0° with the surface of the glass.
33.12. (a) $\theta_{\text {water }}=25.5^{\circ}$
(b) This calculation has no dependence on the glass.
33.19. (a) $\theta_{b}=58.1^{\circ}$
(b) $\theta_{b}=22.8^{\circ}$
33.23. $\theta_{a}=24.4^{\circ}$.
33.47. $n=1.84$
33.52. $n_{b}=1.40$
34.2. $h_{\text {tree }}=3.24 \mathrm{~m}$
34.24. (a) $f=-48.0 \mathrm{~cm}, f<0$ and the lens is diverging.
(b) The image is $6.38 \mathrm{~mm} . m>0$ and the image is erect.
(c) The principal-ray diagram is sketched in Figure 34.24.

Figure 34.24
34.28.
(a) $s^{\prime}=5.93 \mathrm{~m}$.
(b) The image is inverted since both the image and object are real $\left(s^{\prime}>0, s>0\right)$.
(c) $f=0.0732 \mathrm{~m}$, and the lens is converging.
34.96. (a) $\frac{1}{s_{1}}+\frac{1}{s_{1}^{\prime}}=\frac{1}{f_{1}} \Rightarrow \frac{1}{s_{1}^{\prime}}=\frac{1}{f_{1}}-\frac{1}{s_{1}}$ and $\frac{1}{s_{2}}+\frac{1}{s_{2}^{\prime}}=\frac{1}{-s_{1}^{\prime}}+\frac{1}{s_{2}^{\prime}}=\left(\frac{1}{s_{1}}-\frac{1}{f_{1}}\right)+\frac{1}{s_{2}^{\prime}}=\frac{1}{f_{2}}$. But overall for the lens system, $\frac{1}{s_{1}}+\frac{1}{s_{2}^{\prime}}=\frac{1}{f} \Rightarrow \frac{1}{f}=\frac{1}{f_{2}}+\frac{1}{f_{1}}$.
(b) $f=8.93 \mathrm{~cm}$.
34.99. $\mathrm{f}=-26.7 \mathrm{~cm}$.

