- 33.7. (a) The reflected ray makes an angle of 47.5° with the surface of the glass.(b) The refracted ray makes an angle of 66.0° with the surface of the glass.
- **33.12.** (a) $\theta_{water} = 25.5^{\circ}$ (b) This calculation has no dependence on the glass.
- **33.19.** (a) $\theta_b = 58.1^\circ$ (b) $\theta_b = 22.8^\circ$
- **33.23.** $\theta_a = 24.4^\circ$.
- **33.47.** n = 1.84
- **33.52.** *n*_{*b*}=1.40
- **34.2.** *h*_{tree}=3.24 m
- **34.24.** (a) f = -48.0 cm, f < 0 and the lens is diverging.
 - (b) The image is 6.38 mm. m > 0 and the image is erect.
 - (c) The principal-ray diagram is sketched in Figure 34.24.

34.28.

- (a) $s' = 5.93 \,\mathrm{m}$.
- (b) The image is inverted since both the image and object are real (s' > 0, s > 0). (c) f = 0.0732 m, and the lens is converging.
- **34.96.** (a) $\frac{1}{s_1} + \frac{1}{s_1'} = \frac{1}{f_1} \Rightarrow \frac{1}{s_1'} = \frac{1}{f_1} \frac{1}{s_1}$ and $\frac{1}{s_2} + \frac{1}{s_2'} = \frac{1}{-s_1'} + \frac{1}{s_2'} = \left(\frac{1}{s_1} \frac{1}{f_1}\right) + \frac{1}{s_2'} = \frac{1}{f_2}$. But overall for the lens system, $\frac{1}{s_1} + \frac{1}{s_2'} = \frac{1}{f} \Rightarrow \frac{1}{f} = \frac{1}{f_2} + \frac{1}{f_1}$. (b) f = 8.93 cm.
- **34.99.** f =-26.7 cm.