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There are close parallels between the mathematical expressions for the thermodynamic entropy, usually 
denoted by S, of a physical system in the statistical thermodynamics established by Ludwig Boltzmann 
and J. Willard Gibbs in the 1870s; and the information-theoretic entropy, usually expressed as H, of 
Claude Shannon and Ralph Hartley developed in the 1940s. Shannon, although not initially aware of this 
similarity, commented in it upon publicizing information theory in A Mathematical Theory of 
Communication. 

This article explores what links there are between the two concepts, and how far they can be regarded as 
connected. 

Equivalence of form of the defining expressions 

Discrete case 

The defining expression for entropy in the theory of statistical 
mechanics established by Ludwig Boltzmann and J. Willard Gibbs in 
the 1870s, is of the form: 

 

 

where pi is the probability of the microstate i taken from an equilibrium 
ensemble. 

The defining expression for entropy in the theory of information 
established by Claude E. Shannon in 1948 is of the form: 
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where pi is the probability of the message mi taken from the message 
space M. 

If all the microstates are equiprobable (a microcanonical ensemble), the statistical thermodynamic 
entropy reduces to the form on Boltzmann's tombstone, 

 
 

where W is the number of microstates. 

If all the messages are equiprobable, the information entropy reduces to the Hartley entropy 

 
 

where | M | is the cardinality of the message space M. 

The logarithm in the thermodynamic definition is the natural logarithm. It can be shown that the Gibbs 
entropy formula, with the natural logarithm, reproduces all of the properties of the macroscopic classical 
thermodynamics of Clausius. (See article: Entropy (statistical views)). 

The logarithm can also be taken to the natural base in the case of information entropy. This is equivalent 
to choosing to measure information in nats instead of the usual bits. In practice, information entropy is 
almost always calculated using base 2 logarithms, but this distinction amounts to nothing other than a 
change in units. One nat is about 1.44 bits. 

The presence of Boltzmann's constant k in the thermodynamic definitions is a historical accident, 
reflecting the conventional units of temperature. It is there to make sure that the statistical definition of 
thermodynamic entropy matches the classical entropy of Clausius, thermodynamically conjugate to 
temperature. For a simple compressible system that can only perform volume work, the first law of 
thermodynamics becomes 

 
 

But one can equally well write this equation in terms of what physicists and chemists sometimes call the 
'reduced' or dimensionless entropy, σ = S/k, so that 

 
 

Just as S is conjugate to T, so σ is conjugate to kT (the energy that is characteristic of T on a molecular 
scale). 

Continuous case 

The most obvious extension of the Shannon entropy is the differential entropy, 

 

 

But it turns out that this is not in general a good measure of uncertainty or information. For example, the 

Boltzmann's tombstone, 
featuring his equation S = k 

log W 



differential entropy can be negative; also it is not invariant under continuous co-ordinate transformations. 

More useful for the continuous case is the relative entropy of a distribution, defined as the Kullback-
Leibler divergence from the distribution to a reference measure m(x), 

 

 

(or sometimes the negative of this). 

The relative entropy carries over directly from discrete to continuous distributions, and is invariant under 
co-ordinate reparamatrisations. For an application of relative entropy in a quantum information theory 
setting, see eg [1] (http://arxiv.org/abs/math-ph/0007010/). 

Theoretical relationship 
Despite all that, there is an important difference between the two quantities. The information entropy H 
can be calculated for any probability distribution (if the "message" is taken to be that the event i which 
had probability pi occurred, out of the space of the events possible). But the thermodynamic entropy S 
refers to thermodynamic probabilities pi specifically. 

Furthermore, the thermodynamic entropy S is dominated by different arrangements of the system, and in 
particular its energy, that are possible on a molecular scale. In comparison, information entropy of any 
macroscopic event is so small as to be completely irrelevant. 

However, a connection can be made between the two, if the probabilities in question are the 
thermodynamic probabilities pi: the (reduced) Gibbs entropy σ can then be seen as simply the amount of 
Shannon information needed to define the detailed microscopic state of the system, given its macroscopic 
description. Or, in the words of G. N. Lewis writing about chemical entropy in 1930, "Gain in entropy 
always means loss of information, and nothing more". To be more concrete, in the discrete case using 
base two logarithms, the reduced Gibbs entropy is equal to the minimum number of yes/no questions that 
need to be answered in order to fully specify the microstate, given that we know the macrostate. 

Furthermore, the prescription to find the equilibrium distributions of statistical mechanics, such as the 
Boltzmann distribution, by maximising the Gibbs entropy subject to appropriate constraints (the Gibbs 
algorithm), can now be seen as something not unique to thermodynamics, but as a principle of general 
relevance in all sorts of statistical inference, if it desired to find a maximally uninformative probability 
distribution, subject to certain constraints on the behaviour of its averages. (These perspectives are 
explored further in the article Maximum entropy thermodynamics). 

Information is physical: (1) Szilard's engine 
A neat physical thought-experiment demonstrating how just the possession of information might in 
principle have thermodynamic consequences was established in 1929 by Szilard, in a refinement of the 
famous Maxwell's demon scenario. 

Consider Maxwell's set-up, but with only a single gas particle in a box. If the supernatural demon knows 
which half of the box the particle is in (equivalent to a single bit of information), it can close a shutter 
between the two halves of the box, close a piston unopposed into the empty half of the box, and then 
extract kBTln2 joules of useful work if the shutter is opened again. The particle can then be left to 
isothermally expand back to its original equilibrium occupied volume. In just the right circumstances 
therefore, the possession of a single bit of Shannon information (a single bit of negentropy in Brillouin's 



term) really does correspond to a reduction in physical entropy, which theoretically can indeed be 
parlayed into useful physical work. 

Information is physical: (2) Landauer's principle 
In fact one can generalise: any information that has a physical representation must somehow be 
embedded in the statistical mechanical degrees of freedom of a physical system. 

Thus, Rolf Landauer argued in 1961, if one were to imagine starting with those degrees of freedom in a 
thermalised state, there would be a real reduction in thermodynamic entropy if they were then re-set to a 
known state. This can only be achieved under information-preserving microscopically deterministic 
dynamics if the uncertainty is somehow dumped somewhere else — ie if the entropy of the environment 
(or the non information-bearing degrees of freedom) is increased by at least an equivalent amount, as 
required by the Second Law, by gaining an appropriate quantity of heat: specifically kT ln 2 of heat for 
every 1 bit of randomness erased. 

On the other hand, Landauer argued, there is no thermodynamic objection to a logically reversible 
operation potentially being achieved in a physically reversible way in the system. It is only logically 
irreversible operations — for example, the erasing of a bit to a known state, or the merging of two 
computation paths — which must be accompanied by a corresponding entropy increase. 

Applied to the Maxwell's demon/Szilard engine scenario, this suggests that it might be possible to "read" 
the state of the particle into a computing apparatus with no entropy cost; but only if the apparatus has 
already been SET into a known state, rather than being in a thermalised state of uncertainty. To SET (or 
RESET) the apparatus into this state will cost all the entropy that can be saved by knowing the state of 
Szilard's particle. 

Negentropy 
Shannon entropy has been related by physicist Léon Brillouin to a concept sometimes called negentropy. 
In his 1962 book Science and Information Theory, Brillouin described the Negentropy Principle of 
Information or NPI, the gist of which is that acquiring information about a system’s microstates is 
associated with a decrease in entropy (work is needed to extract information, erasure leads to increase in 
thermodynamic entropy).[1] There is no violation of the second law of thermodynamics, according to 
Brillouin, since a reduction in any local system’s thermodynamic entropy results in an increase in 
thermodynamic entropy elsewhere. 

Black holes 
Stephen Hawking often speaks of the thermodynamic entropy of black holes in terms of their information 
content. Do black holes destroy information? See Black hole entropy and Black hole information 
paradox.  

Quantum theory 
Hirschman showed in 1957, however, that Heisenberg's uncertainty principle can be expressed as a 
particular lower bound on the sum of the entropies of the observable probability distributions of a 
particle's position and momentum, when they are expressed in Planck units. (One could speak of the 
"joint entropy" of these distributions by considering them independent, but since they are not jointly 
observable, they cannot be considered as a joint distribution.) 



The fluctuation theorem 
The fluctuation theorem provides a mathematical justification of the second law of thermodynamics 
under these principles, and precisely defines the limitations of the applicability of that law to the 
microscopic realm of individual particle movements. 

Topics of recent research 

Is information quantized? 

In 1995, Tim Palmer signalled two unwritten assumptions about Shannon's definition of information that 
may make it inapplicable as such to quantum mechanics: 

The supposition that there is such a thing as an observable state (for instance the upper face a die or 
a coin) before the observation begins  

The fact that knowing this state does not depend on the order in which observations are made 
(commutativity)  

The article Conceptual inadequacy of the Shannon information in quantum measurement [2] 
(http://scitation.aip.org/getabs/servlet/GetabsServlet?
prog=normal&id=PLRAAN000063000002022113000001&idtype=cvips&gifs=yes), published in 2001 
by Anton Zeilinger [3] (http://www.quantum.univie.ac.at/zeilinger/) and Caslav Brukner, synthesized and 
developed these remarks. The so-called Zeilinger's principle suggests that the quantization observed in 
QM could be bound to information quantization (one cannot observe less than one bit, and what is not 
observed is by definition "random"). 

But these claims remain highly controversial. For a detailed discussion of the applicability of the Shannon 
information in quantum mechanics and an argument that Zeilinger's principle cannot explain quantization, 
see Timpson [4] (http://www.philosophy.leeds.ac.uk/Staff/CT/Index.htm) 2003 [5] 
(http://arxiv.org/abs/quant-ph/0112178) and also Hall 2000 [6] (http://arxiv.org/abs/quant-ph/0007116) 
and Mana 2004 [7] (http://arxiv.org/abs/quant-ph/0302049) 

For a tutorial on quantum information see [8] (http://members.aol.com/jmtsgibbs/infothry.htm). 
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External links 
Entropy is Simple...If You Avoid the Briar Patches (http://www.entropysimple.com/content.htm). 
Very dismissive of wrong links between information-theoretic and thermodynamic entropy. 
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