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Entropy is a concept in thermodynamics (see entropy), statistical 
mechanics and information theory. Both concepts of entropy have 
deep links with one another, although it took many years for the 
development of the theories of statistical mechanics and information 
theory to make this connection apparent. This article is about 
information entropy, the information-theoretic formulation of 
entropy. Information entropy is occasionally called Shannon's 
entropy in honor of Claude E. Shannon, who formulated many of 
the key ideas of information theory. 

Introduction 
The concept of entropy in information theory describes how much information there is in a signal or 
event. Shannon introduced the idea of information entropy in his 1948 paper "A Mathematical Theory of 
Communication". 

An intuitive understanding of information entropy relates to the amount of uncertainty about an event 
associated with a given probability distribution. As an example, consider a box containing many coloured 
balls. If the balls are all of different colours and no colour predominates, then our uncertainty about the 
colour of a randomly drawn ball is maximal. On the other hand, if the box contains more red balls than 
any other colour, then there is slightly less uncertainty about the result: the ball drawn from the box has 
more chances of being red (if we were forced to place a bet, we would bet on a red ball). Telling someone 
the colour of every new drawn ball provides them with more information in the first case than it does in 
the second case, because there is more uncertainty about what might happen in the first case than there is 
in the second. Intuitively, if we know the number of balls remaining, and they are all of one color, then 
there is no uncertainty about what the next ball drawn will be, and therefore there is no information 
content from drawing the ball. As a result, the entropy of the "signal" (the sequence of balls drawn, as 
calculated from the probability distribution) is higher in the first case than in the second. 
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Shannon, in fact, defined entropy as a measure of the average information content associated with a 
random outcome. 

Shannon's definition of information entropy makes this intuitive distinction mathematically precise. His 
definition satisfies these desiderata: 

The measure should be continuous — i.e., changing the value of one of the probabilities by a very 
small amount should only change the entropy by a small amount.  
If all the outcomes (ball colours in the example above) are equally likely, then entropy should be 
maximal. In this case, the entropy increases with the number of outcomes.  
If the outcome is a certainty, then the entropy should be zero.  
The amount of entropy should be the same independently of how the process is regarded as being 
divided into parts.  

(Note: The Shannon/Weaver book makes reference to Tolman (1938) who in turn credits Pauli (1933) 
with the definition of entropy Shannon used. Elsewhere in statistical mechanics, the literature includes 
references to von Neumann having derived the same form of entropy in 1927, which may explain why 
von Neumann favoured the use of the existing term 'entropy'.) 

Formal definitions 
Shannon defines entropy in terms of a discrete random variable X, with possible states (or outcomes) 
x1...xn as: 

 

 

where 

 is the probability of the ith outcome of X. 
 

That is, the entropy of the variable X is the sum, over all possible outcomes xi of X, of the product of the 
probability of outcome xi times the log of the inverse of the probability of xi (which is also called xi's 
surprisal - the entropy of X is the expected value of its outcome's surprisal). We can also apply this to a 
general probability distribution, rather than a discrete-valued event. 

Shannon shows that any definition of entropy satisfying his assumptions will be of the form: 

 

 

where K is a constant (and is really just a choice of measurement units). 

Shannon's definition of entropy, when applied to an information source, can determine the minimum 
channel capacity required to reliably transmit the source as encoded binary digits. The formula can be 
derived by calculating the mathematical expectation of the amount of information contained in a digit 
from the information source. See also Shannon-Hartley theorem. 

Shannon's entropy measure came to be taken as a measure of the uncertainty about the realization of a 
random variable. It thus served as a proxy capturing the concept of information contained in a message as 
opposed to the portion of the message that is strictly determined (hence predictable) by inherent 



structures. For example, redundancy in language structure or statistical properties relating to the 
occurrence frequencies of letter or word pairs, triplets etc. See Markov chain. 

Relationship to thermodynamic entropy 

Shannon's definition of entropy is closely related to thermodynamic entropy as defined in physics and 
chemistry. Boltzmann and Gibbs did considerable work on statistical thermodynamics, which became the 
inspiration for adopting the word entropy in information theory. There are relationships between 
thermodynamic and informational entropy. In fact, in the view of Jaynes (1957), thermodynamics should 
be seen as an application of Shannon's information theory: the thermodynamic entropy is interpreted as 
being an estimate of the amount of further Shannon information (needed to define the detailed 
microscopic state of the system) that remains uncommunicated by a description solely in terms of the 
macroscopic variables of classical thermodynamics. For example, adding heat to a system increases its 
thermodynamic entropy because it increases the number of possible microscopic states that it could be in, 
thus making any complete state description longer. (See article: maximum entropy thermodynamics). 
Maxwell's demon (hypothetically) reduces the thermodynamic entropy of a system using information 
about the states of individual molecules; however, the demon himself increases his own entropy in the 
process, and so the total entropy does not decrease (which resolves the paradox). 

Entropy as information content 

It is important to remember that entropy is a quantity defined in the context of a probabilistic model for a 
data source. Independent fair coin flips have an entropy of 1 bit per flip. A source that always generates a 
long string of A's has an entropy of 0, since the next character will always be an 'A'. 

The entropy rate of a data source means the average number of bits per symbol needed to encode it. 
Empirically, it seems that entropy of English text is between .6 and 1.3 bits per character, though clearly 
that will vary from one source of text to another. Shannon's experiments with human predictors show an 
information rate of between .6 and 1.3 bits per character (http://marknelson.us/2006/08/24/the-hutter-
prize/#comment-293), depending on the experimental setup; the PPM compression algorithm can achieve
a compression ratio of 1.5 bits per character. 

From the preceding example, note the following points: 

1. The amount of entropy is not always an integer number of bits.  
2. Many data bits may not convey information. For example, data structures often store information 

redundantly, or have identical sections regardless of the information in the data structure.  

Data compression 

Entropy effectively bounds the performance of the strongest lossless (or nearly lossless) compression 
possible, which can be realized in theory by using the typical set or in practice using Huffman, Lempel-
Ziv or arithmetic coding. The performance of existing data compression algorithms is often used as a 
rough estimate of the entropy of a block of data. 

Limitations of entropy as information content 

Although entropy is often used as a characterization of the information content of a data source, this 
information content is not absolute: it depends crucially on the probabilistic model. A source that always 
generates the same symbol has an entropy of 0, but the definition of what a symbol is depends on the 
alphabet. Consider a source that produces the string ABABABABAB... in which A is always followed by 
B and vice versa. If the probabilistic model considers individual letters as independent, the entropy rate of 
the sequence is 1 bit per character. But if the sequence is considered as "AB AB AB AB AB..." with 



symbols as two-character blocks, then the entropy rate is 0 bits per character. 

However, if we use very large blocks, then the estimate of per-character entropy rate may become 
artificially low. This is because in reality, the probability distribution of the sequence is not knowable 
exactly; it is only an estimate. For example, suppose one considers the text of every book ever published 
as a sequence, with each symbol being the text of a complete book. If there are N published books, and 
each book is only published once, the estimate of the probability of each book is 1/N, and the entropy (in 
bits) is -log2 N. As a practical code, this corresponds to assigning each book a unique identifier and using 
it in place of the text of the book whenever one wants to refer to the book. This is enormously useful for 
talking about books, but it is not so useful for characterizing the information content of an individual 
book, or of language in general: it is not possible to reconstruct the book from its identifier without 
knowing the probability distribution, that is, the complete text of all the books. The key idea is that the 
complexity of the probabilistic model must be considered. Kolmogorov complexity is a theoretical 
generalization of this idea that allows the consideration of the information content of a sequence 
independent of any particular probability model; it considers the shortest program for a universal 
computer that outputs the sequence. A code that achieves the entropy rate of a sequence for a given 
model, plus the codebook (i.e. the probabilistic model), is one such program, but it may not be the 
shortest. 

Data as a Markov process 

A common way to define entropy for text is based on the Markov model of text. For an order-0 source 
(each character is selected independent of the last characters), the binary entropy is: 

 

 

where pi is the probability of i. For a first-order Markov source (one in which the probability of selecting 
a character is dependent only on the immediately preceding character), the entropy rate is: 

 

 

where i is a state (certain preceding characters) and pi(j) is the probability of j given i as the previous 
character (s). 

For a second order Markov source, the entropy rate is 

 

 

In general the b-ary entropy of a source  = (S,P) with source alphabet S = {a1, …, an} and discrete 
probability distribution P = {p1, …, pn} where pi is the probability of ai (say pi = p(ai)) is defined by: 

 

 

Note: the b in "b-ary entropy" is the number of different symbols of the "ideal alphabet" which is being 
used as the standard yardstick to measure source alphabets. In information theory, two symbols are 
necessary and sufficient for an alphabet to be able to encode information, therefore the default is to let b = 
2 ("binary entropy"). Thus, the entropy of the source alphabet, with its given empiric probability 



distribution, is a number equal to the number (possibly fractional) of symbols of the "ideal alphabet", with 
an optimal probability distribution, necessary to encode for each symbol of the source alphabet. Also note 
that "optimal probability distribution" here means a uniform distribution: a source alphabet with n 
symbols has the highest possible entropy (for an alphabet with n symbols) when the probability 
distribution of the alphabet is uniform. This optimal entropy turns out to be . 

Alternative definition 

Another way to define the entropy function H (not using the Markov model) is by proving that H is 
uniquely defined (as earlier mentioned) if and only if H satisfies the following conditions: 

1. H(p1, …, pn) is defined and continuous for all p1, …, pn where pi [0,1] for all i = 1, …, n and p1 + 
… + pn = 1. (Remark that the function solely depends on the probability distribution, not the alphabet.) 

2. For all positive integers n, H satisfies 

 

 

3. For positive integers bi where b1 + … + bk = n, H satisfies
 

 

 

This last functional relationship characterizes the entropy of a system with sub-systems and is in a sense 
the most important of the three. It demands that the entropy of a system can be calculated from the 
entropy of its sub-systems if we know how the sub-systems interract with each other. 

Assume that we have an ensemble of n elements with a uniform distribution on them. If we mentally 
divide this ensemble into k boxes (sub-systems) with bi elements in each, the entropy can be calculated as 
a sum of individual entropies of the boxes weighed by the probability of finding oneself in that particular 
box PLUS the entropy of the system of boxes. 

Efficiency 
A source alphabet encountered in practice should be found to have a probability distribution which is less 
than optimal. If the source alphabet has n symbols, then it can be compared to an "optimized alphabet" 
with n symbols, whose probability distribution is uniform. The ratio of the entropy of the source alphabet 
with the entropy of its optimized version is the efficiency of the source alphabet, which can be expressed 
as a percentage. 

This implies that the efficiency of a source alphabet with n symbols can be defined simply as being equal 
to its n-ary entropy. See also Redundancy (information theory). 

Derivation of Shannon's entropy 
Since the entropy was given as a definition, it does not need to be derived. On the other hand, a 
"derivation" can be given which gives a sense of the motivation for the definition as well as the link to 
thermodynamic entropy. 



Q. Given a roulette with n pockets which are all equally likely to be landed on by the ball, what is the 
probability of obtaining a distribution (A1, A2, …, An) where Ai is the number of times pocket i was 
landed on and 

 

 

is the total number of ball-landing events? 

A. The probability is a multinomial distribution, viz. 

 

 

where 

 

 

is the number of possible combinations of outcomes (for the events) which fit the given distribution, and 

 
 

is the number of all possible combinations of outcomes for the set of P events. 

Q. And what is the entropy? 

A. The entropy of the distribution is obtained from the logarithm of Ω: 

 

 

 
 

 

 

The summations can be approximated closely by being replaced with integrals: 

 

 

The integral of the logarithm is 

 

 

So the entropy is 



 
 

By letting px = Ax/P and doing some simple algebra we obtain:
 

 

 

and the term (1 − n) can be dropped since it is a constant, independent of the px distribution. The result is
 

. 

 

Thus, the Shannon entropy is a consequence of the equation 

 
 

which relates to Boltzmann's definition, 

, 
 

of thermodynamic entropy, where k is the Boltzmann constant. 

Properties of Shannon's information entropy 
We write H(X) as Hn(p1,...,pn). The Shannon entropy satisfies the following properties:

 

For any n, Hn(p1,...,pn) is a continuous and symmetric function on variables p1, p2,...,pn. 
 

Event of probability zero does not contribute to the entropy, i.e. for any n,  

. 
 

Entropy is maximized when the probability distribution is uniform. For all n,  

. 

 

Following from the Jensen inequality, 

. 

 

If  are non-negative real numbers summing up to one, and 

, then 
 



. 
 

If we partition the mn outcomes of the random experiment into m groups with each group containing n 
elements, we can do the experiment in two steps: first, determine the group to which the actual outcome 
belongs; then, find the outcome in that group. The probability that you will observe group i is qi. The 
conditional probability distribution function for group i is pi1/qi,...,pin/qi). The entropy 

 

 

is the entropy of the probability distribution conditioned on group i. This property means that the total 
information is the sum of the information gained in the first step, Hm(q1,..., qn), and a weighted sum of 
the entropies conditioned on each group. 

Khinchin in 1957 showed that the only function satisfying the above assumptions is of the form 

, 

 

where k is a positive constant representing the desired unit of measurement. 

Extending discrete entropy to the continuous case: differential 
entropy 
The Shannon entropy is restricted to finite sets. It seems that the formula 

 

 

where f denotes a probability density function on the real line, is analogous to the Shannon entropy and 
could thus be viewed as an extension of the Shannon entropy to the domain of real numbers. Formula (*) 
is usually referred to as the continuous entropy, or differential entropy. Although the analogy between 
both functions is suggestive, the following question must be set: is the Boltzmann entropy a valid 
extension of the Shannon entropy? To answer this question, we must establish a connection between the 
two functions: 

We wish to obtain a generally finite measure as the bin size goes to zero. In the discrete case, the bin size 
is the (implicit) width of each of the n (finite or infinite) bins whose probabilities are denoted by pn. As 
we generalize to the continuous domain, we must make this width explicit. 

To do this, start with a continuous function f discretized as shown in the figure. As the figure indicates, by 
the mean-value theorem there exists a value xi in each bin such that 

 

 

and thus the integral of the function f can be approximated (in the Riemannian sense) by 



 
 

where this limit and bin size goes to zero are equivalent. 

We will denote 

 

 

and expanding the logarithm, we have 

 

 

 

 

As , we have
 

 

 

and so 

 

 

But note that  as , therefore we need a special definition of the differential or 
continuous entropy: 

 

 

which is, as said before, referred to as the differential entropy. This means that the differential entropy is 
not a limit of the Shannon entropy for n → ∞ 

It turns out as a result that, unlike the Shannon entropy, the differential entropy is not in general a good 
measure of uncertainty or information. For example, the differential entropy can be negative; also it is not 
invariant under continuous co-ordinate transformations. 

More useful for the continuous case is the relative entropy of a distribution, defined as the Kullback-
Leibler divergence from the distribution to a reference measure m(x), 

 

 

The relative entropy carries over directly from discrete to continuous distributions, and is invariant under 
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co-ordinate reparametrisations. 
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