FYS3520 - Problem set 8

Spring term 2017

Corrections: Problem 2: $E_n = 170$ corrected to 1700 keV

Problem 1 – in class

- a) Figure 1 shows the electron spectra meassured on β -particles from decay of ²¹⁰Bi. What does this spectra tell about the nature of β -decay?
- b) Comment on the three decays in Figure 2. What can you say about the half-life of the three different decays?
- c) Show in a (semi-)classical calculation that the angular momentum transfer *l* (in units of \hbar) to a electron in β -decay is much smaller then 1. Assume a typical *Q*-value of 3 MeV and *R*= 6 fm for the nuclear radius. What do we learn about possible and forbidden β -decays?
- d) Frank presents some cool things about his research

Figure 1: Electron spectra from β -decay of ²¹⁰Bi.

Figure 2: β -decays

Problem 2 β -delayed neutron emission

After β -decay of a excited state it is not only possible to emit γ -rays. Depending on the excitation energy of the daughter nucleus it can also emit particles. The β -delayed neutron emission is essential for the control of nuclear reactors. However, in this example we analyze the β -delayed neutron emission of ¹⁷O, which leads to the gs. of ¹⁶O. Here ¹⁷O has before been populated by β^- -decay of ¹⁷N. The decay scheme is given in Figure 3

As given in the figure three neutrons are emitted with energies 383, 1171 and 1700 keV, which populate the ground state of 16 O.

- a) Calculate the *Q*-value for the β -decay of ¹⁷N.
- b) Derive a formula that allows you to calculate the excitation energy of ¹⁷O as a function of the kinetic energy of the neutron and exicitation energy of ¹⁶O. Calculate the excitation energy of ¹⁷O.

Hint: You get the correct formula if you take into account energy *and* momentum conservation. You may regard only the ¹⁷O-¹⁶O system and neglect ¹⁷N.

c) Why can the β -delayed neutron emission not populate the first excited state of ¹⁶O at 6.05 MeV?

Figure 3: β -delayed neutron emission from ¹⁷O