FYS 3610

EXERCISES WEEK 35

EXERCISE 1

a) Derive the barometric equation for an isothermal atmosphere and define the scale height.
b) Calculate the scale height for normal air ($\sim 21.5 \% \mathrm{O}_{2}$ and $78.5 \% \mathrm{~N}_{2}$)at $\mathrm{T}=293 \mathrm{~K}$ and for $\mathrm{T}=243 \mathrm{~K}$. Calculate the scale height for atomic oxygen at $\mathrm{T}=2500 \mathrm{~K}$.
c) What is the meaning of $\omega_{B}=0$.
d) Show that equation 3.22 can be written as

$$
\omega_{B}^{2}=\frac{g}{T}\left[\frac{\partial T}{\partial z}-\frac{\partial T}{\partial z_{\mid a d}}\right]
$$

EXERCISE 2

Visit NASA's home page for the CGM model of the Earth's magnetic field: http://omniweb.gsfc. nasa.gov/vitmo/cgm_vitmo.htmI
i) Where is the north CGM pole located?
ii) Calculate CGMLat, CGMLon, magnetic conjugate point, L- value, H, D, Z component for the magnetic field, magnetic field strength, Inclination for the following geographic co-ordinates:
University of Oslo: (59.91, 10.73)
University of Tromsø: $(69.7,18.9)$
Andøya Rocket Range: $(69.28,16.01)$
Longyearbyen: (78.2, 15.7)

EXERCISE 3

Figure 1: An illustration showing the geometry of the magnetic field line to assist in deriving a geometric formula for B.

Assume a dipole magnetic field. Introducing the magnetic latitude λ_{m} of which unit vector relates to the co-latitude unit vector defined in the lecture in the following way:

$$
\hat{\lambda}_{m}=-\hat{\theta}
$$

Then the magnetic field can be written as:

$$
\vec{B}=B_{r} \widehat{r}+B_{\lambda_{m}}=H_{0}\left(-2 \sin \lambda_{m} \hat{r}+\cos \lambda_{m} \hat{\lambda}_{m}\right)
$$

i) Show that $L=\frac{r_{0}}{R_{E}}=\frac{1}{\cos ^{2} \lambda_{m}}$

Hint: $\tan \alpha=\frac{r \cdot d \lambda_{m}}{d r}=\frac{B_{\lambda}}{B_{r}}$
ii) Estimate B-field strength, inclination and L-value based on the dipole model, and compare with corresponding values calculated in Exercise 2.

EXERCISE 4

Estimate the magnetopause standoff distance in the case when the solar wind speed is $600 \mathrm{~km} / \mathrm{s}$ and the solar wind density is $10 \mathrm{~cm}^{-3}$.

