

Solar wind driven ionospheric convection

IMF controlled convection patterns

Up to the 1980s the main information about flow patterns was from lowaltitude polar orbiting satellites –

Resulted in 10-15 min averages of the polar cap flow potential

Reiff and Burch, JGR, 1985

Excitation and decay of solar winddriven flows in the magnetosphereionosphere system

by

Cowley and Lockwood, Ann. Geophys., 1992.

Cowley-Lockwood time dependent model of excitation of large scale flows

The two component flow model:

- The flow is driven by dayside reconnection and by nightside reconnection
- Unbalanced dayside reconnection expands the polar cap.
- Unbalanced nightside reconnection contracts the polar cap.

Wiversity Magnetopause reconnection

Polar Cap Boundary or (PCB)

Open-Closed-Boundary (OCB):

Dashed line = reconnection boundary – plasma flow across this boundary during episodes of reconnection

Full line = adiaroic boundary – this boundary is frozen into the plasma movement

nysicsFrom Cowley and Lockwood, 1992

UNIVERSITY

of OSLO Flux Transfer Events – Pulsed reconnection

5-10 min recurrence time

Auroral and magnetic signatures of tail reconnection

Tail reconnection

Polar Cap Boundary or (PCB)

Open-Closed-Boundary (OCB):

Dashed line = reconnection boundary – plasma flow across this boundary during episodes of reconnection

Full line = adiaroic boundary – this boundary is frozen into the plasma movement

© Research Section for Plasma and Space Physics^{From Cowley} and Lockwood, 1992

Magmetosphere response to a 1 hourstnerval of southward IMF

From Cowley and Lockwood, 1992

F

a

24

The ionospheric
response to an impulse
of magnetopause© Research Section for Plasma and Space Physics

The ionospheric response to an impulse of tail reconnection

From Cowley and Lockwood, 1992

$$\frac{\Delta F}{\Delta t} = \text{Voltage}$$
$$[F] = [AB] = Tm^2 = \text{kgs}^{-1}C^{-1}m^2$$
$$\left[\frac{\Delta F}{\Delta t}\right] = \frac{\text{kgm}^2}{\text{s}^2\text{C}} = \frac{\text{J}}{\text{C}} = \text{V}$$

© Research Section for Plasma and Space Physics Moen

Moen et al., Ann. Geophys, 2004

Evidence of Polar Cap Contraction during Bz south conditions – controlled by nightside tail reconnection

Consistent with the Cowley & Lockwood 1992 flow model

© Research Section for Plasma and Space Physics

Moen et al, Ann Geophysicae, 2004

IMF By asymmetry on movement

A network of HF radars that monitors the high-latitude ionosphere. © Research Section for Plasma and Space Physics