UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

MID-TERM EXAMINATION

Course: Fys 3610 Space Physics
Date: October 8, 2012
Duration: 3 hours

Permitted aid(s): Calculator (with emptied memory/ off-line).
The set of examination consists of 4 Pages and 4 Problems.
Please make sure that you have a complete exam set.

PROBLEM 1 : Earth's atmosphere and the Sun's

a) Draw a sketch of the height variation of temperature in the Earth's atmosphere from sea level to 300 km . Explain in general terms what are the physical mechanisms responsible for this structure. Annotate the different regions of the atmosphere by name.
b) Discuss barosperic density distribution. Derive the aerostatic equation. Derive the barometric law and the define the scale height.
c) Why is the atmosphere well mixed up to $\sim 100 \mathrm{~km}$. Describe the diffusion processes below and above the homopause.
d) Name the different regions 1-6 in Figure 1 on page 2. Give a brief characterization of each region.

Figure 1

PROBLEM 2 : The earth's magnetic field

a) Draw a sketch of the undisturbed Earth magnetic field using the Earth's rotational axis as a reference. Indicate direction of the magnetic field. What is the strength of the magnetic field near the equator and near the poles?
b) The Earth magnetic field are normally referred to the local coordinate systems (X,Y,Z) or (H, D, Z). Draw a figure that illustrates the Earth magnetic field vector decomposed in the two coordinate systems. Indicate geographic north in your figure.
c) Describe what happens when the solar wind, consisting of electrons and protons, hits the Earth magnetic field on the dayside. Explain the direction of the magnetopause current.
d) What is a typical value for the solar wind stand-off distance? What are the controlling parameters for this distance; i.e. to push it inwards and outwards?
e) What is the magnetic disturbance on ground due to the ring current?

PROBLEM 3 : MHD equations and waves

From Maxwell's equations we have

$$
\begin{aligned}
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{B}=\mu_{0} \vec{j}
\end{aligned}
$$

And the generalized Ohm's law is given by

$$
\vec{j}=\sigma(\vec{E}+\vec{u} \times \vec{B})
$$

a) Show that the time varying magnetic field can be expressed as:

$$
\frac{\partial \vec{B}}{\partial t}=\frac{1}{\mu_{0} \sigma} \nabla^{2} \vec{B}+\nabla \times(\vec{u} \times \vec{B})
$$

$\left\{\right.$ Vector relations: $\left.\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}) ; \nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})+\nabla^{2} \vec{A}\right\}$
b) Derive the Reynolds number given by $\mathrm{R}_{\mathrm{m}}=\mu_{0} \sigma \mathrm{vL}$.
c) Discuss the usage of the Reynolds number as an indicator of whether the use of the frozen-in-flux concept is safe.
d) Start out with the following equations:

$$
\begin{aligned}
& \frac{\partial n_{e}}{\partial t}+\nabla \cdot\left(n_{e} \vec{u}_{e}\right)=0 \\
& m_{e} n_{e}\left[\frac{\partial \vec{u}_{e}}{\partial t}+(u \cdot \nabla) \vec{u}_{e}\right]=-e n_{e} \vec{E} \\
& \nabla \cdot \vec{E}=\frac{e\left(n_{0}-n_{e}\right)}{\varepsilon_{0}}
\end{aligned}
$$

Linearize the above equations by introducing perturbations in the particle density, velocity and the electric field:

$$
\begin{aligned}
& n_{e}=n_{0}+n_{1} \\
& \vec{u}_{e}=\vec{u}_{1} \\
& \vec{E}=\vec{E}_{1}
\end{aligned}
$$

Then introduce

$$
\begin{aligned}
& \vec{u}_{1}=\vec{u}_{1} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \\
& n_{1}=n_{1} e^{i(\vec{k} \cdot \vec{r}-\omega t)} \\
& \vec{E}_{1}=\vec{E}_{1} e^{i(\vec{k} \cdot \vec{r}-\omega t)}
\end{aligned}
$$

and solve the equations for ω and show that it becomes $\omega_{p}=\left(\frac{n_{0} e^{2}}{\varepsilon_{0}}\right)^{1 / 2}$
e) Describe the basic properties of Plasma accoustic, Alfvén, and Magnetosonic waves.

PROBLEM 4 : Single particle motion

For each of the following fields, sketch the particle trajectories separately for electrons and protons. Define a coordinate system. Illustrate clearly the direction of the magnetic and electric fields and your coordinate axes. Sketch trajectories in the planes that best illustrate the motions of the charged particles. Describe the form of motion normal to the plane.
a) Assume static uniform magnetic field oriented along the x-axis., with no electric field. The particles have an initial velocity $v_{x}=0$ and $v_{z}=v_{0}$.
b) Assume a static uniform magnetic field oriented along the z-axis, with no electric field. Charged particles are initially moving with non-vanishing v_{x} and v_{z}.
c) Assume a static uniform magnetic field oriented along the y-axis, with a static electric field along the z-axis. Charged particles are initially at rest.
d) Assume a magnetic field along the y-direction increasing in strength with increasing z. Charged particles initially have velocities v_{x} and v_{z}, with $v_{x} \ll v_{z}$.

FYS 3610-MIDTERM
EXAM 2012
PROBLEMI
a)
 abs EUU, X 'partich prec. `, not Fonk-heating, "rquiter
als. of a_{3} UN, x访 $\left\{\begin{array}{l}\text { NiR }\end{array}\right.$

Most important energy sources
sun: - solar radiation
by

$$
\begin{aligned}
& F_{p}(z)=A \rho(z) \\
& F_{g}(z)=A \int_{z}^{\infty} g\left(z^{\prime}\right) g\left(z^{\prime}\right) d z^{\prime} \\
& F_{p}=F_{g} \\
& p(z)=\int_{z}^{\infty} f\left(z^{\prime}\right) g\left(z^{\prime}\right) \cdot d z^{\prime}
\end{aligned}
$$

Aerostaic equation: $\frac{d p(z)}{d z}=-f(z) g(z) \quad \frac{d p}{d z}=s y$

Barometric lane:

$$
\rho=\bar{m} n \quad p=n k T \Rightarrow n=\frac{p}{n T}
$$

$$
s=\bar{m} \frac{p}{k T}
$$

$$
\frac{d p}{d z}=-\rho g=\frac{\bar{m} g}{k T} p=-\frac{p}{H} \quad H=\frac{h T}{k g}
$$

$$
\int_{p\left(h_{0}\right)}^{p(h)} \frac{d p}{p}=-\int_{h_{0}}^{h} \frac{d z}{H(z)}
$$

$$
\ln \frac{p(h)}{p\left(h_{0}\right)}=-\int_{h_{0}}^{h} \frac{d z}{H(z)}
$$

$$
p(h)=p\left(h_{0}\right) \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H(z)}\right.
$$

assern $H=$ unst $=\frac{h T}{n g}$
Banomatri $\quad P=p_{0} e^{-\frac{h}{H}}$ lan

$$
\begin{gathered}
p(h)=n(h) h T(h) \\
T=k \text { mast } \\
p(h)=n(h) \\
n(h) T(h)=n\left(h_{0}\right) T\left(h_{0}\right) \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H_{z}}\right\} \\
n(h)=n\left(h_{0}\right) \frac{T\left(h_{0}\right)}{T(h)} \exp \left\{-\int_{h_{0}}^{h} \frac{d z}{H(z)}\right\}
\end{gathered}
$$

C) Well mixed due to Eddy diffurm, inyyular cehithing mitorn. - turbdence.

Alsiture pritules clepends on

Mulemer diftumsun

$$
H=\frac{h T}{m g}
$$

- diffoment seale herights the to differment mass
Eddy diffurm

$$
Q_{i}^{\varepsilon}=-k n \frac{d\left(n_{i} / n\right)}{d z}
$$

gradiunt in the mixing outho

$$
\begin{aligned}
Q^{D}=n, u_{x} & =-D \frac{\operatorname{lni}}{d x} \\
D & =\frac{k T}{m r i n}
\end{aligned}
$$

d)

1. Core $T=1.5 \times 10^{7} \mathrm{~K}$

Fussm renetor
protin - protor chas racturus.
2. Racilicture Fune

Opaque - Scattorng prousses.
delay the mergs tromspont to the surfance by 10 mill . yeers.
3. Conrestars zone. Tholalent zone due to rapid temperature decrease.
4. Photophere. Emits most of the Sun's light.

Deande spots - shnspots.
chill doren den to strong nagusti: fided
5. (hromoshere T incrases trom 4200-10000K
6. Gona 104k Dymumi CME, hroad stremers etc.
a)

$$
\begin{aligned}
& B_{\text {fol }}=60.000 \mathrm{nT} \\
& B_{\text {eq }}=30.000 \mathrm{nT}
\end{aligned}
$$

4

c)

$$
\vec{F}=q \vec{v} \times \vec{B}
$$

d)

$$
r=8-10 R_{E}
$$

Depends in derssits (n) and velorits (v) in the sular uind.
e)

Δx - megative

PROBLEM 3
a)

$$
\begin{aligned}
& \nabla \times \vec{B}=\mu_{0 j}=\mu v(\vec{E}+\vec{u} \times \vec{B}) \\
& \mathbb{S}_{i} \nabla \times(B \times \vec{B})=\mu \circ G(D \times \vec{E}+D \times(\vec{u} \times \vec{B})) \\
& D(D \cdot \vec{B})-\nabla^{2} \vec{B}=\mu \cdot \sigma\left(-\frac{\partial \vec{B}}{\partial t}+D \times(\vec{u} \times \vec{B})\right) \\
& \frac{\partial \vec{B}}{\partial t}=\lambda_{\lambda}^{\lambda} \times(\vec{u} \times \vec{B})+\frac{1}{\mu \cdot \sigma} \nabla^{2} \vec{B} \\
& \text { cmrecturn turm } \\
& \uparrow \text { Diftusim } \\
& \text { term }
\end{aligned}
$$

$\operatorname{lo} \quad \square-\frac{1}{L}$

$$
R_{m}=\frac{|\nabla \times(n \times \vec{B})|}{\left|\frac{1}{\mu 0 \sigma} D^{2} \vec{B}\right|}=\frac{\frac{1}{L} v B}{\frac{1}{\mu \nu \sigma} \frac{1}{L^{2}} B}=L \mu_{0} \sigma u
$$

c) $R_{m} \gg 1$ the diffussm twom can be heglected.
d) ∂n_{1}

$$
\begin{aligned}
& \frac{n_{1}}{\partial t}+n_{0} D \cdot \vec{u}_{1}=0 \\
& m n_{0} \frac{\partial \vec{u}_{1}}{\partial t}=-e_{0} \vec{E}_{1} \\
& \nabla \cdot \vec{E}_{1}=-\frac{e n_{1}}{\epsilon_{0}}
\end{aligned}
$$

(1) $\left.-i \omega n_{1}+n_{0} \hat{\rightharpoonup} \vec{k} \cdot \vec{u}_{1}\right)=0$
(ii) $-i w m n_{0} \overrightarrow{u_{1}}+e n_{0} \overrightarrow{\vec{E}}=0$
$i i \quad-i \vec{k} \cdot \vec{E}_{1}+e \frac{n_{1}}{\epsilon_{i}}=0$

$$
\begin{aligned}
\vec{k} \cdot(i i) & -i \omega m n \cdot \vec{k} \\
\omega^{*} & =\sqrt{\frac{n_{0} e^{2}}{m_{e} \varepsilon_{0}}}
\end{aligned}
$$

e) Plasma accoustic:

Pressme gradimet kariations ahas the mogretic toed Sound wave along the magnctic fiude

$$
\left(V_{P_{S}}=\sqrt{\frac{\gamma P}{P}}=\sqrt{\frac{\gamma k\left(T_{i}+T_{e}\right)}{m i}}\right)
$$

Alfuen usere:
Fhectratorss in electomagestio quantivties, \wedge density and pressure variations $i<$ abount.

$$
\left(V_{A}=\sqrt{\frac{B^{2}}{\mu \circ J}}\right)
$$

Magentosenic.
Pertitubations in plisma state parameturs (s, p, \vec{u}) as wed as electomagnti: (B, z, Q_{1}, j, j)

PROBLEM 4 : Single particle motion
a)

G

9

d)

