FYS 3610

Exercise Week 34 due 28. August 2015

Exercises

In a static magnetic field \vec{B}_{0} the equation of motion of a single charged particle is given by:

$$
m \frac{d \vec{v}}{d t}=q\left(\vec{v} \times \vec{B}_{0}\right) .
$$

The position vector \vec{r} is then found from

$$
\frac{d \vec{r}}{d t}=\stackrel{\rightharpoonup}{v}
$$

To study the motion of the particle in the plane perpendicular to the magnetic field, we will assume that is oriented along the z-axis, i.e., $\vec{B}_{0}=\left(0,0, B_{0}\right)$. The equation of motion then simplifies to

$$
\begin{aligned}
\frac{d v_{x}}{d t} & =\frac{q}{m} v_{y} B_{0} \\
\frac{d v_{y}}{d t} & =-\frac{q}{m} v_{x} B_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{d r_{x}}{d t}=v_{x} \\
& \frac{d r_{y}}{d t}=v_{y}
\end{aligned}
$$

To solve these equations numerically we use Euler's method to approximate the time derivative as the difference of the function value between time t and the next time step $t+h$, where h is the step size:

$$
\frac{d f(t)}{d t} \approx \frac{f(t+h)-f(t)}{h}
$$

Applying this to the equations of motion gives

$$
\begin{aligned}
\frac{v_{x}(t+h)-v_{x}(t)}{h} & =\frac{q}{m} v_{y}(t) B_{0} \\
\frac{v_{y}(t+h)-v_{y}(t)}{h} & =-\frac{q}{m} v_{x}(t) B_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{r_{x}(t+h)-r_{x}(t)}{h}=v_{x} \\
& \frac{r_{y}(t+h)-r_{y}(t)}{h}=v_{y} .
\end{aligned}
$$

We can rearrange these equations such that we find an expression for v_{x}, v_{y}, r_{x}, and r_{y} at the next time step, i.e., at $t+h$, depending on the function values from the previous time step t :

$$
\begin{gathered}
v_{x}(t+h)=v_{x}(t)+h\left(\frac{q}{m} v_{y}(t) B_{0}\right) \\
v_{y}(t+h)=v_{y}(t)-h\left(\frac{q}{m} v_{x}(t) B_{0}\right) \\
r_{x}(t+h)=r_{x}(t)+h v_{x}(t) \\
r_{y}(t+h)=r_{y}(t)+h v_{y}(t) .
\end{gathered}
$$

Exercise 1: Write a computer program in the language of your choice (preferably python) that numerically solves the equation of motion for an electron and an oxygen ion (O^{+}) in a static magnetic field of $50,000 \mathrm{nT}$. Let the initial position vector be $\vec{r}=(0,0,0)$ and the initial velocity vector $\vec{v}=(500,0,0) \mathrm{m} / \mathrm{s}$, for both particles. Choose your time step h such that the gyro motion is properly resolved!

Exercise 2: Plot the particle's trajectories and check the theoretical predictions of the gyro radius and gyro frequency!

