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3 Aspects of MHD
Remember the MHD equations, now introducing the mass density as ρ, assuming the pressure
is a scalar p, and dropping the index b from the bulk velocity:

∂ρ

∂t
+∇ · (ρ~v) = 0 (3.1)

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p+~j × ~B (3.2)

∇× ~E = −∂
~B

∂t
(3.3)

∇× ~B = µ0~j (3.4)
~j = σ( ~E + ~v × ~B) (3.5)

We are now going to explore some of the important consequences that can be derived from
these equations.

3.1 Magnetic diffusion and frozen
flux

Combine Ohm’s Law with Faraday’s Law and
Ampére’s Law assuming that the condutivity
σ is constant:

∇× ~E = ∇×
(
~j/σ − ~v × ~B

)
=

1
µ0σ
∇×∇× ~B −∇× (~v × ~B) = −∂

~B

∂t
.

(3.6)

After some manipulation we arrive at the in-
duction equation

∂ ~B

∂t
= ∇× (~v × ~B) + 1

µ0σ
∇2 ~B, (3.7)

where the first term on teh right hand side
is called the convection term and the sec-
ond term is the diffusion term. The ratio of
the two terms lets us estimate which process
dominates and defines the magnetic Reynolds
number Rm. In the estimation, we use ∇ ∼
1/L where L is a typical scale length of the
system under consideration

Rm ≈
vB/L
1
µ0σ

B/L2
= µ0σvL (3.8)

Two extreme cases are possible

If Rm � 1, then convection dominates
(σ →∞)

If Rm � 1, then diffusion dominates
(σ → 0)

3.2 Frozen-in flux

Consider a parcel of plasma moving through
a magnetic field:

Figure 1: A patch of plasma moving through a mag-
netic field.
The magnetic flux through the surface S is
given by

Ψ =
∫

S

~B · d~s (3.9)

Ψ can change due to (1) a change in the mag-
netic field through S and (2) due to a change
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of B along the path of S:(
∂Ψ
∂t

)
1

=
∫

S

∂ ~B

∂t
· d~s (3.10)(

∂Ψ
∂t

)
2

=
∮

C

~B · ~v × d~l (3.11)

=
∮

C

~B × ~v · d~l (3.12)

=
∫

S
∇× ( ~B × ~v) · d~s. (3.13)

Therefore

dΨ
dt

=
∫

S

[
∂ ~B

∂t
−∇× (~v × ~B)

]
· d~s (3.14)

which is the induction equation with the dif-
fusion term neglected. The change in mag-
netic flux through the surface S is only in such
conditions constant, where there is no mag-
netic diffusion, i.e., the magnetic field can-
not change without moving the plasma and
the plasma cannot move without changing
the magnetic field. The plasma and the field
are frozen-in. This condition occurs for high
magnetic Reynolds numbers, in other words
dΨ/dt = 0 if Rm � 1 or σ →∞.
If, on the other hand, Rm � 1 or σ → 0
then the motion of the plasma and the change
in magnetic field are decoupled, allowing the
magnetic field to diffuse out of a region of
plasma making dΨ/dt 6= 0.

3.3 Magnetic pressure and tension

Explore the ~j × ~B term in the MHD EoM:

~j × ~B =
( 1
µ0
∇× ~B

)
× ~B (3.15)

= 1
µ0

( ~B · ∇) ~B −∇
(
B2

2µ0

)
. (3.16)

Substitute into EoM

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p−∇

(
B2

2µ0

)

+ 1
µ0

( ~B · ∇) ~B. (3.17)

The last term on the right hand side describes
forces acting on the plasma due to changes of
~B along the direction of ~B. In simple terms,
magnetic fields lines want to be as straight
as possible and when they are kinked, there
acts a force trying to straighten the field line.
After realizing that B2/2µ0 has units of pres-
sure, we can combine the first the gradient
of the thermal pressure p and the magnetic
pressure pB to that of the total pressure pT .

3.4 Plasma beta

The ratio of thermal to magnetic pressure is
called the plasma beta:

β = 2µ0p

B2 (3.18)

The plasma beta characterizes the plasma; if
β � 1 then the magnetic pressure dominates
and the magnetic field determines the motion
of the plasma. If β ≈ 1 then the thermal pres-
sure dominates and the plasma takes the mag-
netic field with it as it moves. Note that typ-
ically β is considered "large" whenever β ≈ 1.

3.5 Magnetic reconnection

The frozen-in theorem states that plasma el-
ements connected to any one field line at any
point in time always stay connected to that
very field line. However, there is evidence that
this principle is sometimes broken. The agent
that facilitates the reorganization of plasma
and magnetic field is called magnetic recon-
nection.

Figure 2: Schematic overview of magnetic reconnec-
tion.
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Consider a situation where magnetic field is
(because it is frozen into the plasma) con-
vected toward a boundary from two sides with
a plasma flow, as indicated in Figure 2A. If
the magnetic fields on the right and on the
left are anti-parallel, there has to exist a cur-
rent sheet between the magnetic field shear
(Ampére Law). As more and more magnetic
field is brought to the boundary, the currents
increase up until a point where the plasma
cannot support the current necessary to up-
hold the magnetic shear. Locally, due to a
plasma instability, the current breaks down,
or, equivilantly, a counter current is created.
The is indicated in gray in Figure 2B. The su-
perposition of the original (sheet) current and
the locally created counter current gives rise
to a new magnetic field topology where now
field lines from the left region are now con-
nected to the right region. Because locally the
frozen-in theorem has to be violated and the
current breaks down, one sometimes speaks
of anomalous resistivity at the reconnection
region.

3.6 Sweet-Parker model

The Sweet-Parker model tries to explain the
phycics of reconnection; it is a model that
is steady-state (∂/∂t = 0), two dimensional
(∂/∂z = 0). It also assumes incompressible
flows, i.e., ρ = ρi = ρo.

Figure 3: Schematic of the Sweet-Parker model.
Consider the situation in Figure 3 where the
magnetic field is brought to the reconnection
region (gray shaded area) over a large length
L by a plasma flow vi. The mass flow into
the reconnection region is hence ρviL and

this mass flow has to be conserved, i.e., the
mass outflow from the reconnection region
across the much smaller scale δ is ρvoδ and
ρviL = ρvoδ, or

vi

vo
= δ

L
� 1. (3.19)

Energy is of course also conserved such that
the kinetic and electromagnetic energy flow
into the reconnection region has to be bal-
anced by the kinetic and electromagnetic en-
ergy flow out of the reconnection region, such
that (remember from ideal MHD Ohm’s Law
~E = −~v × ~B)(1

2ρv
2
i vi + 1

µ0
viB

2
i

)
L

=
(1

2ρv
2
ovo + 1

µ0
voB

2
o

)
δ. (3.20)

Using the results from mass conservation we
obtain

ρv2
i

2 + B2
i

µ0
= ρv2

o

2 + B2
o

µ0
. (3.21)

We have already seen that vi � vo; it is
also intuitively clear that in the inflow region
the magnetic field is piling up and therefore
Bi � Bo and hence

B2
i

µ0
≈ ρv2

o

2 , (3.22)

or in terms of magnetic and kinetic pressure

2pB,i ≈ pk,o. (3.23)

This then means that the magnetic pressure,
or magnetic energy density, from the inflow
region is converted through reconnection into
kinetic energy density (kinetic pressure) of the
plasma in the outflow region. Magnetic re-
connection converts energy stored in magnetic
fields into kinetic energy of the plasma.
Whereas the Sweet-Parker model gives some
pleasing results about the scaling relations be-
tween magnetic and kinetic energy, it fails
to predict the high rates of reconnection ob-
served in real life.
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