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6 The interplanetary magnetic field (IMF)
We have seen that - ignoring electromagnetic effects - the upper solar atmosphere (corona) is
too hot to be in hydrostatic equilibrium. Instead, equilibrium could be reached if it streamed
radially into space. Because of the high temperatures in the corona nearly all constituents
(mostly hydrogen and helium) are fully ionized, making the plasma highly conductive. In
highly conductive plasmas the magnetic field is frozen into the plasma. So if the coronal
plasma is streaming into space, it would need to take the solar magnetic field with it. But it
could also be that the thermal pressure of the hot corona is balanced by the magnetic pressure
which we neglected in our earlier considerations. So what is it?

6.1 Solar wind, revisited

The relative dominance of the thermal and
magnetic pressure is captured in the plasma
beta. In the equatorial corona we find T ∼
106 K, n ∼ 1015 m−3 and hence pT ∼ 10−2

Pa. The magnetic field strength is of the or-
der of B ∼ 10−2 nT such that pB ∼ 10−1 Pa
and β ∼ 0.01 - this is a low β regime such
that in the equatorial solar corona the mag-
netic pressure dominates and there should be
no outflow. But consider the magnetic topol-
ogy assuming that the solar magnetic field is
a dipole - which is certainly true during solar
minimum.

Figure 1: Solar corona plasma escape, looking from
Earth at the Sun.
Plasma can move along magnetic field lines
easily such that toward the polar regions,
where the dipole magnetic field becomes more
and more vertical, the solar wind can escape.
Furthermore, the magnetic field energy den-
sity decreases as r−6 whereas the plasma tem-

perature is roughly constant and the plasma
density decreases as r−2, such that at a dis-
tance of several solar radii the magnetic pres-
sure drops below the thermal pressure, allow-
ing the solar wind to stream into space. In
fact, only in a relatively small area around the
equator is the magnetic field strong enough to
inhbit the coronal plasma to escape.

6.2 Jetlines

As the Sun rotates, the solar wind is contin-
uously blowing into space. The jetline con-
nects all plasma parcels that originated from
the same spot on the Sun. Note that at any
point along the jetline the flow is still radial
and not along the jetlines.

Figure 2: Schematic showing the evolution of a jet-
line.
The distance a parcel of plasma has traveled
from the Sun’s surface as a function of the
time t and the solar wind speed uSW is given
by

r(t) = rS + uSW t (6.1)
but we can also express that in terms of solar
rotation angle (solar longitude) λ if we first
parametrize λ using the Sun’s rotation fre-
quency ΩS

λ(t) = λr + ΩSt (6.2)
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and then substitute:

r(λ) = rS + uSW
ΩS

(λ(t)− λr) . (6.3)

Therefore, the distance traveled of plasma
parcels originating at different solar longi-
tudes is proportional to the longitude, r(λ) ∝
λ, which is the expression for an Archimedean
spiral - assuming that uSW is purely radial
and constant. We can estimate the angle be-
tween the radial direction and the spiral at a
distance r as

tanχ ≈ −rdλ
dr

= − ΩS

uSW
r. (6.4)

To investigate the exact orientation of the
IMF, consider again that the magnetic field
is frozen into the plasma - see Figure 3. At
time t a point 1 on the solar surface ejects a
parcel of solar wind plasma. At a later time,
t+∆t, that parcel will have travelled with the
solar wind speed uSW by a distance of uSW∆t
to point 2; meanwhile, the point on the sur-
face from whence it originated has rotated to
point 1′, by an angle of ΩS∆t. The frozen-in
theorem theorem tells us that those two loca-
tions, 1′ and 2, are connected by a magnetic
field line. Of course, while at point 1′ the Sun
ejects a further parcel of plasma. At a later
time t + 2∆t the plasma parcel from point 2
has moved to point 3, while the parcel ejected
at 1′ has now moved to 2′, while the surface
point has rotated by 2ΩS∆t to 1′′. This pat-
tern continues as the Sun rotates, creating the
Parker spiral.

Figure 3: Schematic showing why the IMF is oriented
along jetlines, looking down onto the Sun.

6.3 Radial component of the IMF

Because the solar magnetic field is frozen into
the solar wind flow, the magnetic flux, i.e.,
the magnetic field integrated over an area A,
is conserved as the corona expands into space.
Close to the Sun, at a radial distance of r0, the
magnetic field is essentially radial such that
B(r0) = Br(r0). Therefore (see Fig. 4)

∫
A

~B · d~a = Br(r0)A(r0) = B(r0)A(r0)

= Br(r)A(r) (6.5)

and since A(r) = πρ(r)2 = π(r tanλ)2 we get

Br(r) = B(r0)
(
r0
r

)2
∝ 1
r2 (6.6)

Figure 4: Schematic showing how the radial compo-
nent of the IMF changes with radial distance, looking
down onto the Sun.

6.4 Azimuthal component of the
IMF

Once the radial component of the IMF is
known we can easily estimate the azimuthal
component by remembering eq. (6.4) and

tanχ = Bλ(r)
Br(r)

≈ − rΩS

uSW
(6.7)

and hence

Bλ(r) = −B(r0)r0ΩS

uSW

(
r0
r

)
∝ 1
r
. (6.8)

At r0 ≈ 1 AU we then find (with ΩS =
2.9 × 10−6 Hz) that Bλ ≈ Br and hence
χ ≈ 45◦.
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6.5 General orientation of the IMF

As the solar wind streams from the Sun, it
takes the solar magnetic field with it. Pre-
viously dipolar field lines are stretched such
that they become more and more radial at
larger distances.

Figure 5: Stretching of the solar dipole field lines un-
der the action of the solar wind, looking from Earth
at the Sun.
The only way such a streched magnetic field
configuration can be sustained is by a current
which is flowing between the sheared mag-
netic field (Ampère’s Law). This current is
called the heliospheric current sheet.

6.6 Heliospheric current sheet

Consider a sheared magnetic field configura-
tion as shown in Fig. 6. To calculated the
magnetitude of the current, employ Ampère’s
Law in the integral form:∮

C

~B ·~l = µ0

∫
S

~j · ~n da. (6.9)

Figure 6: Schematic showing a sheared magnetic field
and the associated current sheet.
The RHS integral gives the total current flow-
ing through the surface S, ~I and the LHS in-

tegration gives

+B0l + 0d−B0(−l) + 0d = 2B0l = µ0I.
(6.10)

In terms of the line current I? we get

I? = I/l = 2B0
µ0

, (6.11)

or more generally, where ~n now is perpendic-
ular to the current sheet

~I? = 2
µ0

~B0 × ~n. (6.12)

We can evaluate this expression for the IMF
components we determined earlier (in spheri-
cal coordinates):

~I? = 2
µ0

BrBλ
Bφ

×
nrnλ
nφ

 = 2
µ0

 Bλ
−Br

0

 .
(6.13)

This shows that there exists a radial compo-
nent of the heliospheric current, such that, de-
pending on the polarity of the solar dipole,
there also exists a net current toward or away
from the Sun. This current is believed to flow
inside the corona close to the Sun and then
away or toward from the polar regions of the
star.
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