

UiO **Department of Physics** University of Oslo

Solution mid-term exam 2014

Problem 1

1pt: correct gradients
1/2pt: Troposphere, stratosphere,
mesosphere, thermosphere with
explanation
1pt: sketch stable
1pt: sketch unstable
1pt: dayside profile, F-layer, E-layer
1pt: nightside profile, only F-layer
1pt: production, loss, transport
1pt: photo-ionization, charge exchange,
charge exchange, recombination, diffusion
1pt: dissociative recombination in E-layer
is fast, radiative recombination in F-layer
is slow.

Problem 2

E Contra de	
	1/2pt: artistic skill
	1/2pt for: bow shock, magnetosheath,
	magnetopause, lobes, plasma sheet
	1pt: supersonic solar wind is shocked at
	bow shock.
	1pt: flows around Earth's magnetic field in
	magnetosheath
	1pt: SW compresses dayside (SW dynamic
	pressure equals magnetic pressure),
	Chapman-Ferraro current
	1pt: solar wind dynamic pressure, Mach
	number
	1pt: bow shock 15 Re, magnetopause 10 Re
	1pt: High temperature corona is not stable,
	plasma streams off into space
	1pt: solar magnetic field is frozen into flow
	1pt: top view (spiral)
	1pt: side view (heliospheric current sheet)

Problem 3	
$m\frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B})$	1pt: write down equation 1pt: naming mass, velocity, charge, magnetic field
$\frac{dv_x}{dt} = \frac{q}{m}v_y B_z \leftrightarrow \frac{d^2v_x}{dt^2} = \frac{qB_z}{m}\frac{dv_y}{dt}$	1pt: working out the vectors 1pt: differentiate and substitute 1pt: solve both velocities

UiO **Department of Physics**

CCCX	University of Oslo	
	$\frac{dv_y}{dt} = -\frac{qB_z}{m}v_x$ $\frac{d^2v_x}{dt^2} = -\left(\frac{qB_z}{m}\right)^2 v_x$ $v_x(t) = v_\perp \sin(\omega_g t + \phi_0)$ $v_y(t) = v_\perp \cos(\omega_g t + \phi_0)$	1pt: write down gyrofrequency
		1pt: positive
		1pt: negative
		1pt: positive
		1pt: negative
		1pt: positive
		1pt: negative
		1pt: geomagnetic tail, in the plasma sheet,
		cross tail current

Problem 4

	$\frac{dp}{dt} = \frac{d(mv)}{dt} = m\frac{dv}{dt} = qvB$	1pt: work out dp/dt 1pt: insert Lorentz-force
	$P = \frac{1}{6\pi\epsilon_0} \frac{q^4 v^2 B^2}{m^2 c^3}$	
	$P = \frac{1}{6\pi\epsilon_0} \frac{q^4 v^2 B^2}{m^2 c^3} = -\frac{dE_{kin}}{dt}$ $= -\frac{1}{2}m\left(2v\frac{dv}{dt}\right)$	1pt: write down kinetic energy 1pt: differentiate kinetic energy 1pt: separate variables 1pt: solve differential equation
	$\frac{dv}{v} = -\frac{1}{6\pi\epsilon_0} \frac{q^4 B^2}{m^3 c^3} dt$	ipt. soive amerendai equation
	$[\ln v]_{v_0}^{v(t)} = \left[-\frac{1}{6\pi\epsilon_0} \frac{q^4 B^2}{m^3 c^3} t' \right]_0^t$	
	$v(t) = v_0 \exp\left\{-\frac{t}{\tau}\right\}, \tau = \frac{6\pi\epsilon_0 m^3 c^3}{q^4 B^2}$	
	$\tau_a \approx 7.7 \times 10^{23} s \text{ or } 2.5 \times 10^{16} a$ $\tau_b \approx 3.1 \times 10^{10} s \text{ or } 990 a$ $\tau_c \approx 3.1 \times 10^{-6} s$	3pts: for each value
	, , , , , , , , , , , , , , , , , , ,	1pt: Once the protons are heated they need a long time to cool down, hence in a fusion reactor you do not need to heat the gas
112	STRAS OSTOCEZ	to the electrons is good, because the loose their energy 2000^3 -times faster