
1 Solution

1.1 Derive 1D induction equation

3D induction equation:

∂ ~B

∂t
= ∇×

(
~v × ~B

)
+ η∇2 ~B (1)

Do the vector products and write out the Laplacian:

∂

∂t

Bx

By

Bz

 =


∂

∂x
∂

∂y
∂
∂z

×
vyBz − vzBy

vzBx − vxBz

vxBy − vyBx

+ η


∂2

∂x2Bx + ∂2

∂y2Bx + ∂2

∂z2Bx

∂2

∂x2By + ∂2

∂y2By + ∂2

∂z2By

∂2

∂x2Bz + ∂2

∂y2Bz + ∂2

∂z2Bz

 (2)

∂

∂t

Bx

By

Bz

 =


∂

∂y (vxBy − vyBx)− ∂
∂z (vzBx − vxBz)

∂
∂z (vyBz − vzBy)− ∂

∂x(vxBy − vyBx)
∂

∂x(vzBx − vxBz)− ∂
∂y (vyBz − vzBy)



+ η


∂2

∂x2Bx + ∂2

∂y2Bx + ∂2

∂z2Bx

∂2

∂x2By + ∂2

∂y2By + ∂2

∂z2By

∂2

∂x2Bz + ∂2

∂y2Bz + ∂2

∂z2Bz

 (3)

Assume ~B = (0, 0, Bz(x, t))T and ~v = (vx(x, t), 0, 0)T , then ∂/∂y =
∂/∂z = 0

∂

∂t

 0
0
Bz

 =

 0
0

∂
∂x(−vxBz)

+ η

 0
0

∂2

∂x2Bz

 (4)

or

∂Bz

∂t
= − ∂

∂x
(vxBz) + η

∂2Bz

∂x2 (5)

1.2 Find time dependent solution

Initial profile

Bz(x, t = 0) = f(x) = A0 exp
(
−x

2

L2

)
(6)

Time dependent solution is given by

Bz(x, t) = 1
2η
√
πt

∞∫
−∞

f(x− λ) exp
(
− λ2

4η2t

)
dλ (7)
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such that we get

Bz(x, t) = 1
2η
√
πt

∞∫
−∞

A0 exp
(
−(x− λ)2

L2

)
exp

(
− λ2

4η2t

)
dλ (8)

Bz(x, t) = 1
2η
√
πt

∞∫
−∞

A0 exp
(
−
[( 1

L2 + 1
4η2t

)
λ2 − 2x

L2λ+ x2

L2

])
dλ (9)

Bz(x, t) = 1
2η
√
πt

∞∫
−∞

A0 exp
(
−
[
r2(λ− s)2 + q

])
dλ (10)

Bz(x, t) = A0

2η
√
πt

exp(−q)
∞∫
−∞

exp
(
−ατ2

)
dλ (11)

with

τ = λ− s (12)

α = r2 = 1
L2 + 1

4η2t
(13)

2r2s = 2x
L2 ↔ s = x

L2r2 (14)

s = x

L2
( 1
L2 + 1

4η2t

) (15)

r2s2 + q = x2

L2 ↔ q = x2

L2 − r
2s2 (16)

q = x2

L2 −
( 1
L2 + 1

4η2t

) x

L2
( 1
L2 + 1

4η2t

)


2

= x2

L2

1− 1

L2
( 1
L2 + 1

4η2t

)


= x2

4η2t+ L2 (17)
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Executing the integration and simplifying yields

Bz(x, t) = A0

2η
√
πt

exp
(
− x2

4η2t+ L2

)√√√√√ π
1
L2 + 1

4η2t

(18)

or

Bz(x, t) = A0L√
4η2t+ L2 exp

(
− x2

4η2t+ L2

)
(19)

It describes a Gaussian distribution centered around x = 0. For t→∞
the amplitude of the distribution slowly decreases while the width increases
(conservation of total B!). This is analog to the dispersion of a wave packet.
Instead of being concentrated at one location, B disperses over the entire x
axis – it diffuses!

Test that total Bz is conserved (χ = 1/
√

4η2t+ L2):

∞∫
−∞

Bz(x, t)dx = A0Lχ

∞∫
−∞

exp
(
−χ2x2

)
dx = A0Lχ

√
π

χ2 = A0L
√
π (20)

The result is independent of t, hence the total Bz is conserved.
The resistivity η is the time constant of the diffusion process. If the

conductivity is very large, the resistivity η becomes very small, such that
the time dependence of Bz(x, t) becomes very weak. Hence the diffusion
process is very slow and the dispersion takes a very long time, the shape of
the B-field distribution is conserved over long times (frozen- in theorem!).

1.3 Find velocity profile such that Bz profile is constant in
time

Initial time independent profile:

Bz(x) = A0 exp
(
−x

2

L2

)
(21)

Then

∂Bz

∂x
= −2x

L2Bz (22)

and

∂2Bz

∂x2 = − 2
L2Bz + 4x2

L4 Bz = 2
L2

(
2x2

L2 − 1
)
Bz (23)

For ∂Bz/∂t = 0:
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−vx
∂Bz

∂x
−Bz

∂vx

∂x
+ η

∂2Bz

∂x2 = 0 (24)

Inserting derivatives:

vx
2x
L2Bz −Bz

∂vx

∂x
+ η

(
2
L2

(
2x2

L2 − 1
)
Bz

)
= 0 (25)

Bz cancels (it can never be 0) and rearranging gives:

∂

∂x
vx −

2x
L2 vx = 2η

L2

(
2x2

L2 − 1
)

(26)

That is a linear first order differential equation, i.e., a differential equa-
tion of the form

∂

∂x
y + p(x)y = g(x) (27)

with

p(x) = −2x
L2 (28)

and

g(x) = 2η
L2

(
2x2

L2 − 1
)
. (29)

We can solve by finding the integrating factor µ(x)

µ(x) = exp
(∫

p(x)dx
)

(30)

∫
p(x)dx = −x

2

L2 (31)

µ(x) = exp
(
−x

2

L2

)
(32)

Multiplying the differential equation with the integrating factor yields:

exp
(
−x

2

L2

)
∂

∂x
vx − exp

(
−x

2

L2

)
2x
L2 vx = exp

(
−x

2

L2

)
2η
L2

(
2x2

L2 − 1
)

(33)

The left hand side can be rearranged using the product rule:

∂

∂x

(
exp

(
−x

2

L2

)
vx

)
= 2η
L2

(
2x2

L2 − 1
)

exp
(
−x

2

L2

)
(34)
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Integrate both sides

exp
(
−x

2

L2

)
vx =

∫ [ 2η
L2

(
2x2

L2 − 1
)

exp
(
−x

2

L2

)]
dx (35)

yields, after realizing that
∫

(2x2 − 1) exp(−x2)dx = −x exp(−x2):

exp
(
−x

2

L2

)
vx = −2ηx

L2 exp
(
−x

2

L2

)
+ C (36)

or the final solution

vx = −2ηx
L2 + C exp

(
x2

L2

)
. (37)

Test solution by putting it into the differential equation. First:

∂

∂x
vx = − 2η

L2 + 2xC
L2 exp

(
x2

L2

)
(38)

then substitute:

(
C exp

(
x2

L2

)
− 2ηx

L2

)
2x
L2Bz

+Bz

(
2η
L2 −

2xC
L2 exp

(
x2

L2

))

+ 2η
L2

(
2x2

L2 − 1
)
Bz

?= 0 (39)

Bz cancels and indeed the result is zero:

2xC
L2 exp

(
x2

L2

)
− 4ηx2

L4

+ 2η
L2 −

2xC
L2 exp

(
x2

L2

)

+ 4ηx2

L4 −
2η
L2

!= 0. (40)

However, the C exp(x2/L2) part of the solution is unphysical such that
the only physical solution is C = 0. We expect, because Bz(x) is symmetric
around x = 0, that the velocity field satisfies vx(−x) = −vx(x) for all x,
i.e., at a certain distance x from x = 0 the velocity is equal but of opposite
direction, depending on its location relative to x = 0. This is fulfilled only
if C = 0.
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Hence the physical solution for this problem is

vx = −2ηx
L2 (41)
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