1 Solution

1.1 Derive 1D induction equation

3 D induction equation:

$$
\begin{equation*}
\frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{v} \times \vec{B})+\eta \nabla^{2} \vec{B} \tag{1}
\end{equation*}
$$

Do the vector products and write out the Laplacian:

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left(\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right)=\left(\begin{array}{l}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right) \times\left(\begin{array}{l}
v_{y} B_{z}-v_{z} B_{y} \\
v_{z} B_{x}-v_{x} B_{z} \\
v_{x} B_{y}-v_{y} B_{x}
\end{array}\right)+\eta\left(\begin{array}{l}
\frac{\partial^{2}}{\partial x^{2}} B_{x}+\frac{\partial^{2}}{\partial y^{2}} B_{x}+\frac{\partial^{2}}{\partial z^{2}} B_{x} \\
\frac{\partial^{2}}{} B_{y}+\frac{\partial^{2}}{\partial y^{2}} B_{y}+\frac{\partial^{2}}{\partial z^{2}} B_{y} \\
\frac{\partial^{2}}{\partial x^{2}} B_{z}+\frac{\partial^{2}}{\partial y^{2}} B_{z}+\frac{\partial^{2}}{\partial z^{2}} B_{z}
\end{array}\right) \\
\frac{\partial}{\partial t}\left(\begin{array}{l}
B_{x} \\
B_{y} \\
B_{z}
\end{array}\right)=\left(\begin{array}{l}
\frac{\partial}{\partial y}\left(v_{x} B_{y}-v_{y} B_{x}\right)-\frac{\partial}{\partial z}\left(v_{z} B_{x}-v_{x} B_{z}\right) \\
\frac{\partial}{\partial z}\left(v_{y} B_{z}-v_{z} B_{y}\right)-\frac{\partial}{\partial x}\left(v_{x} B_{y}-v_{y} B_{x}\right) \\
\frac{\partial}{\partial x}\left(v_{z} B_{x}-v_{x} B_{z}\right)-\frac{\partial}{\partial y}\left(v_{y} B_{z}-v_{z} B_{y}\right)
\end{array}\right) \\
+\eta\left(\begin{array}{c}
\frac{\partial^{2}}{\partial x^{2}} B_{x}+\frac{\partial^{2}}{\partial y^{2}} B_{x}+\frac{\partial^{2}}{\partial z^{2}} B_{x} \\
\frac{\partial^{2}}{\partial x^{2}} B_{y}+\frac{\partial^{2}}{\partial y^{2}} B_{y}+\frac{\partial^{2}}{\partial z^{2}} B_{y} \\
\frac{\partial^{2}}{\partial x^{2}} B_{z}+\frac{\partial^{2}}{\partial y^{2}} B_{z}+\frac{\partial^{2}}{\partial z^{2}} B_{z}
\end{array}\right) \tag{3}
\end{array}
$$

Assume $\vec{B}=\left(0,0, B_{z}(x, t)\right)^{T}$ and $\vec{v}=\left(v_{x}(x, t), 0,0\right)^{T}$, then $\partial / \partial y=$ $\partial / \partial z=0$

$$
\frac{\partial}{\partial t}\left(\begin{array}{c}
0 \tag{4}\\
0 \\
B_{z}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\frac{\partial}{\partial x}\left(-v_{x} B_{z}\right)
\end{array}\right)+\eta\left(\begin{array}{c}
0 \\
0 \\
\frac{\partial^{2}}{\partial x^{2}} B_{z}
\end{array}\right)
$$

or

$$
\begin{equation*}
\frac{\partial B_{z}}{\partial t}=-\frac{\partial}{\partial x}\left(v_{x} B_{z}\right)+\eta \frac{\partial^{2} B_{z}}{\partial x^{2}} \tag{5}
\end{equation*}
$$

1.2 Find time dependent solution

Initial profile

$$
\begin{equation*}
B_{z}(x, t=0)=f(x)=A_{0} \exp \left(-\frac{x^{2}}{L^{2}}\right) \tag{6}
\end{equation*}
$$

Time dependent solution is given by

$$
\begin{equation*}
B_{z}(x, t)=\frac{1}{2 \eta \sqrt{\pi t}} \int_{-\infty}^{\infty} f(x-\lambda) \exp \left(-\frac{\lambda^{2}}{4 \eta^{2} t}\right) d \lambda \tag{7}
\end{equation*}
$$

such that we get

$$
\begin{gather*}
B_{z}(x, t)=\frac{1}{2 \eta \sqrt{\pi t}} \int_{-\infty}^{\infty} A_{0} \exp \left(-\frac{(x-\lambda)^{2}}{L^{2}}\right) \exp \left(-\frac{\lambda^{2}}{4 \eta^{2} t}\right) d \lambda \tag{8}\\
B_{z}(x, t)=\frac{1}{2 \eta \sqrt{\pi t}} \int_{-\infty}^{\infty} A_{0} \exp \left(-\left[\left(\frac{1}{L^{2}}+\frac{1}{4 \eta^{2} t}\right) \lambda^{2}-\frac{2 x}{L^{2}} \lambda+\frac{x^{2}}{L^{2}}\right]\right) d \lambda \tag{9}\\
B_{z}(x, t)=\frac{1}{2 \eta \sqrt{\pi t}} \int_{-\infty}^{\infty} A_{0} \exp \left(-\left[r^{2}(\lambda-s)^{2}+q\right]\right) d \lambda \tag{10}\\
B_{z}(x, t)=\frac{A_{0}}{2 \eta \sqrt{\pi t}} \exp (-q) \int_{-\infty}^{\infty} \exp \left(-\alpha \tau^{2}\right) d \lambda \tag{11}
\end{gather*}
$$

with

$$
\left.\left.\begin{array}{c}
\tau=\lambda-s \\
\alpha=r^{2}=\frac{1}{L^{2}}+\frac{1}{4 \eta^{2} t} \\
2 r^{2} s=\frac{2 x}{L^{2}} \leftrightarrow s=\frac{x}{L^{2} r^{2}} \\
s=\frac{x}{L^{2}\left(\frac{1}{L^{2}}+\frac{1}{4 \eta^{2} t}\right)} \\
q=\frac{x^{2}}{L^{2}}-\left(\frac{1}{L^{2}}+\frac{1}{4 \eta^{2} t}\right)\left(\frac{x^{2}}{L^{2}} \leftrightarrow q=\frac{x^{2}}{L^{2}}-r^{2} s^{2}\left(\frac{1}{L^{2}}+\frac{1}{4 \eta^{2} t}\right)\right.
\end{array}\right)^{2}\right) ~=\frac{1}{x^{2}}\left(1-\frac{1}{L^{2}\left(\frac{1}{L^{2}}+\frac{1}{4 \eta^{2} t}\right)}\right)
$$

Executing the integration and simplifying yields

$$
\begin{equation*}
B_{z}(x, t)=\frac{A_{0}}{2 \eta \sqrt{\pi t}} \exp \left(-\frac{x^{2}}{4 \eta^{2} t+L^{2}}\right) \sqrt{\frac{\pi}{\frac{1}{L^{2}}+\frac{1}{4 \eta^{2} t}}} \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
B_{z}(x, t)=\frac{A_{0} L}{\sqrt{4 \eta^{2} t+L^{2}}} \exp \left(-\frac{x^{2}}{4 \eta^{2} t+L^{2}}\right) \tag{19}
\end{equation*}
$$

It describes a Gaussian distribution centered around $x=0$. For $t \rightarrow \infty$ the amplitude of the distribution slowly decreases while the width increases (conservation of total $\mathrm{B}!$). This is analog to the dispersion of a wave packet. Instead of being concentrated at one location, B disperses over the entire x axis - it diffuses!

Test that total B_{z} is conserved $\left(\chi=1 / \sqrt{4 \eta^{2} t+L^{2}}\right)$:

$$
\begin{equation*}
\int_{-\infty}^{\infty} B_{z}(x, t) d x=A_{0} L \chi \int_{-\infty}^{\infty} \exp \left(-\chi^{2} x^{2}\right) d x=A_{0} L \chi \sqrt{\frac{\pi}{\chi^{2}}}=A_{0} L \sqrt{\pi} \tag{20}
\end{equation*}
$$

The result is independent of t, hence the total B_{z} is conserved.
The resistivity η is the time constant of the diffusion process. If the conductivity is very large, the resistivity η becomes very small, such that the time dependence of $B_{z}(x, t)$ becomes very weak. Hence the diffusion process is very slow and the dispersion takes a very long time, the shape of the B-field distribution is conserved over long times (frozen- in theorem!).

1.3 Find velocity profile such that B_{z} profile is constant in time

Initial time independent profile:

$$
\begin{equation*}
B_{z}(x)=A_{0} \exp \left(-\frac{x^{2}}{L^{2}}\right) \tag{21}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial B_{z}}{\partial x}=-\frac{2 x}{L^{2}} B_{z} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} B_{z}}{\partial x^{2}}=-\frac{2}{L^{2}} B_{z}+\frac{4 x^{2}}{L^{4}} B_{z}=\frac{2}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) B_{z} \tag{23}
\end{equation*}
$$

For $\partial B_{z} / \partial t=0$:

$$
\begin{equation*}
-v_{x} \frac{\partial B_{z}}{\partial x}-B_{z} \frac{\partial v_{x}}{\partial x}+\eta \frac{\partial^{2} B_{z}}{\partial x^{2}}=0 \tag{24}
\end{equation*}
$$

Inserting derivatives:

$$
\begin{equation*}
v_{x} \frac{2 x}{L^{2}} B_{z}-B_{z} \frac{\partial v_{x}}{\partial x}+\eta\left(\frac{2}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) B_{z}\right)=0 \tag{25}
\end{equation*}
$$

B_{z} cancels (it can never be 0) and rearranging gives:

$$
\begin{equation*}
\frac{\partial}{\partial x} v_{x}-\frac{2 x}{L^{2}} v_{x}=\frac{2 \eta}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) \tag{26}
\end{equation*}
$$

That is a linear first order differential equation, i.e., a differential equation of the form

$$
\begin{equation*}
\frac{\partial}{\partial x} y+p(x) y=g(x) \tag{27}
\end{equation*}
$$

with

$$
\begin{equation*}
p(x)=-\frac{2 x}{L^{2}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x)=\frac{2 \eta}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) \tag{29}
\end{equation*}
$$

We can solve by finding the integrating factor $\mu(x)$

$$
\begin{gather*}
\mu(x)=\exp \left(\int p(x) d x\right) \tag{30}\\
\int p(x) d x=-\frac{x^{2}}{L^{2}} \tag{31}\\
\mu(x)=\exp \left(-\frac{x^{2}}{L^{2}}\right) \tag{32}
\end{gather*}
$$

Multiplying the differential equation with the integrating factor yields:

$$
\begin{equation*}
\exp \left(-\frac{x^{2}}{L^{2}}\right) \frac{\partial}{\partial x} v_{x}-\exp \left(-\frac{x^{2}}{L^{2}}\right) \frac{2 x}{L^{2}} v_{x}=\exp \left(-\frac{x^{2}}{L^{2}}\right) \frac{2 \eta}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) \tag{33}
\end{equation*}
$$

The left hand side can be rearranged using the product rule:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\exp \left(-\frac{x^{2}}{L^{2}}\right) v_{x}\right)=\frac{2 \eta}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) \exp \left(-\frac{x^{2}}{L^{2}}\right) \tag{34}
\end{equation*}
$$

Integrate both sides

$$
\begin{equation*}
\exp \left(-\frac{x^{2}}{L^{2}}\right) v_{x}=\int\left[\frac{2 \eta}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) \exp \left(-\frac{x^{2}}{L^{2}}\right)\right] d x \tag{35}
\end{equation*}
$$

yields, after realizing that $\int\left(2 x^{2}-1\right) \exp \left(-x^{2}\right) d x=-x \exp \left(-x^{2}\right)$:

$$
\begin{equation*}
\exp \left(-\frac{x^{2}}{L^{2}}\right) v_{x}=-\frac{2 \eta x}{L^{2}} \exp \left(-\frac{x^{2}}{L^{2}}\right)+C \tag{36}
\end{equation*}
$$

or the final solution

$$
\begin{equation*}
v_{x}=-\frac{2 \eta x}{L^{2}}+C \exp \left(\frac{x^{2}}{L^{2}}\right) \tag{37}
\end{equation*}
$$

Test solution by putting it into the differential equation. First:

$$
\begin{equation*}
\frac{\partial}{\partial x} v_{x}=-\frac{2 \eta}{L^{2}}+\frac{2 x C}{L^{2}} \exp \left(\frac{x^{2}}{L^{2}}\right) \tag{38}
\end{equation*}
$$

then substitute:

$$
\begin{align*}
\left(C \exp \left(\frac{x^{2}}{L^{2}}\right)-\frac{2 \eta x}{L^{2}}\right) & \frac{2 x}{L^{2}} B_{z} \\
& +B_{z}\left(\frac{2 \eta}{L^{2}}-\frac{2 x C}{L^{2}} \exp \left(\frac{x^{2}}{L^{2}}\right)\right) \\
& +\frac{2 \eta}{L^{2}}\left(\frac{2 x^{2}}{L^{2}}-1\right) B_{z} \stackrel{?}{=} 0 \tag{39}
\end{align*}
$$

B_{z} cancels and indeed the result is zero:

$$
\begin{align*}
\frac{2 x C}{L^{2}} \exp \left(\frac{x^{2}}{L^{2}}\right)-\frac{4 \eta x^{2}}{L^{4}} & \\
& +\frac{2 \eta}{L^{2}}-\frac{2 x C}{L^{2}} \exp \left(\frac{x^{2}}{L^{2}}\right) \\
& +\frac{4 \eta x^{2}}{L^{4}}-\frac{2 \eta}{L^{2}} \stackrel{!}{=} 0 \tag{40}
\end{align*}
$$

However, the $C \exp \left(x^{2} / L^{2}\right)$ part of the solution is unphysical such that the only physical solution is $C=0$. We expect, because $B_{z}(x)$ is symmetric around $x=0$, that the velocity field satisfies $v_{x}(-x)=-v_{x}(x)$ for all x, i.e., at a certain distance x from $x=0$ the velocity is equal but of opposite direction, depending on its location relative to $x=0$. This is fulfilled only if $C=0$.

Hence the physical solution for this problem is

$$
\begin{equation*}
v_{x}=-\frac{2 \eta x}{L^{2}} \tag{41}
\end{equation*}
$$

