1 Solution

1.1  Derive 1D induction equation

3D induction equation:
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Do the vector products and write out the Laplacian:

62
o B, % Usz - Usz szB + B + 022B
En By, | = @ X | v,By —v:B, | +n 8902B + B —1—8223 (2)
B F Vg By — vy By LB+ B + 2B,
B 9 (y,B, — vyBy) — @(UB—UB)
8 x %y =Yy Yy % z zz
ot By | = %(%B —vBy) - %( »By — vyBz)
B, {T(UZBl“ v, B,) — 8—( B, —v.By)

83:2B + B +8z2B
+n 3x2B + B + B (3)
WB +8y2B + 2 B

Assume B = (0,0, B.(z,t))T and ¥ = (vy(x,t),0,0)7, then 8/dy =
0/0z =0

5 [0 0 0

L N 0 wq| 0 (4)
ot B B 52

z 81(_1}1 ) WBZ

or
o9B. 0 92B.
_ B
o = oz B T (5)

1.2 Find time dependent solution

Initial profile

Time dependent solution is given by
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such that we get
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Executing the integration and simplifying yields
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It describes a Gaussian distribution centered around x = 0. For t — oo
the amplitude of the distribution slowly decreases while the width increases
(conservation of total B!). This is analog to the dispersion of a wave packet.
Instead of being concentrated at one location, B disperses over the entire x
axis — it diffuses!

Test that total B, is conserved (x = 1/+v/4n%t + L?):
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The result is independent of ¢, hence the total B, is conserved.

The resistivity n is the time constant of the diffusion process. If the
conductivity is very large, the resistivity 1 becomes very small, such that
the time dependence of B,(x,t) becomes very weak. Hence the diffusion
process is very slow and the dispersion takes a very long time, the shape of
the B-field distribution is conserved over long times (frozen- in theorem!).

1.3 Find velocity profile such that B, profile is constant in
time

Initial time independent profile:
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For 0B, /0t = 0:
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Inserting derivatives:
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B, cancels (it can never be 0) and rearranging gives:
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That is a linear first order differential equation, i.e., a differential equa-
tion of the form
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We can solve by finding the integrating factor u(zx)
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Multiplying the differential equation with the integrating factor yields:
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The left hand side can be rearranged using the product rule:
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Integrate both sides
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yields, after realizing that [(2z2% — 1) exp(—2?)dz = —x exp(—2?):
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or the final solution
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Test solution by putting it into the differential equation. First:
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B, cancels and indeed the result is zero:
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However, the Cexp(x?/L?) part of the solution is unphysical such that
the only physical solution is C' = 0. We expect, because B,(z) is symmetric
around x = 0, that the velocity field satisfies v,(—z) = —v,(x) for all x,
i.e., at a certain distance z from x = 0 the velocity is equal but of opposite
direction, depending on its location relative to x = 0. This is fulfilled only

itC'=0.



Hence the physical solution for this problem is

(41)



