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A bar walks into a man; oops, wrong frame of reference. 
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Hovedtyper

Mekanisk spenning Utbøyning
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Dynamic equation (without damping)

Resonance frequency

Dynamics
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Damped resonance frequency

Quality factor

Damping: Spring-mass-dashpot model
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Frequency response (Sandia measurements)
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Q factor is a measure of the "quality" of a resonant system. 
Resonant systems respond to frequencies close to the natural 
frequency much more strongly than they respond to other 
frequencies. On a graph of response versus frequency, the 
bandwidth is defined as the 3 dB change in level besides the center 
frequency. 
The Q factor is defined as the resonant frequency (center frequency 
) f0 divided by the bandwidth BW: 

Bandwidth BW = f2 - f1 , where f2 is the upper and f1 the lower cutoff 
frequency . 
In a tuned radio frequency receiver (TRF) the Q factor is: 

http://encyclopedia.thefreedictionary.com/resonance
http://encyclopedia.thefreedictionary.com/frequency
http://encyclopedia.thefreedictionary.com/bandwidth
http://encyclopedia.thefreedictionary.com/cutoff frequency
http://encyclopedia.thefreedictionary.com/cutoff frequency
http://encyclopedia.thefreedictionary.com/tuned radio frequency receiver
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Damping

Another equivalent definition of quality 
factor:

The number of oscillations before the 
amplitude reaches 1/e times the 
original amplitude
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Quasi-static response
Resonant frequency much larger than the 
expected maximum frequency component of 
the acceleration signal

Quasi static response:

Scale factor depends only on resonant 
frequency
Quick response - small position sensitivity
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Capacitor

Capacitance is typified by a parallel 
plate arrangement and is defined 
in terms of charge storage:

where

Q = magnitude of charge stored on 
each plate. 

V = voltage applied to the plates.

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elecur.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elevol.html#c1


10ICT

Parallel plate capacitor

A parallel plate capacitor's effective capacitance is defined in 
terms of its geometry. 
C = εA / d
ε, the permittivity of free space, is a constant equal to 8.85 x 10 
-12 F/m,
A is the cross sectional area of ONE plate, and 
d is the distance between the plates.
Dimensionally, capacitance is expressed in terms of a unit
called a farad. 

If the capacitors arranged in parallel then
Qtotal = Q1 + Q2 + Q3 
Ctotal = C1 + C2 + C3 
Vtotal = V1 = V2 = V3
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A Capacitive Accelerometer
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ADXL322 - Small, Thin, Low Power, Dual Axis ± 2g 
Accelerometer with Analog Output

Product Description
The ADXL322 is an ultra small package (4 x 4 x 
1.45 mm LFCSP) and low power (340 µA at Vs = 
2.4V) ± 2g iMEMS® Accelerometer designed to 
accomodate the integration requirements of mobile 
phones and other portable devices for a variety of 
motion, tilt, and inertial sensing features (e.g., data 
entry, menu and display control, power 
management, situational awareness, navigation, 
and portrait vs. landscape display orientation). The 
ADXL322 also enables hard disk drive protection 
systems and security features in notebook 
computers, as well as position and tilt sensing for 
PC and gaming peripherals such as mouse and 
joystick devices. 

Price: 3.75$
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FEM solution to parallel plate capacitor

Fringe fields effect
Capacitance from parallel plate 
approximation: 53.1 pF

Capacitance calculated from FEM: 
71.7 pF
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Position measurement with capacitance

Changes in capacitance: <10-18 F
Sensitivity;  ∂C/∂x

Output: voltage
Sensitivity: ∂V/∂x



17ICT

Capacitive comb-shaped accelerometer

mass
elastic spring
capacitor (differential) for 
measurement of displacement
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Differential capacitor

Cancels many effects to first order
Linearization about balance point

Voltage that appears at output
G=d = gap between capacitor 
plates
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Circuits for capacitance measurement

More complicated than for 
piezoresistive sensing

Transfer from capacitance change to 
output voltage 

Open-loop – linear, large deflections ?
Closed-loop
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Brownian motion noise

Noise related to the fluid damping
Similar to johnson noise in resistor 
(4 Π kB T R Δf)

Convert to an equivalent acceleration
The root mean square force noise is 
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Fluctuation dissipation theorem
Almost two centuries ago, the atomic nature of 

matter was elegantly revealed by brownian 
motion -- as exemplified by the random 
motion of pollen particles in water as they 
are bombarded by water molecules. In 
1905, Albert Einstein (1879-1955)(2) 
pointed out a subtle consequence of the 
fluctuations in classical brownian motion: 
the same random forces that make a pollen 
particle jitter would also cause friction if the 
particle were dragged through the water. In 
other words, the fluctuation of the particle at 
rest has the same origin as the dissipation 
of the motion of a moving particle that is 
subject to an external force. Einstein's result 
is a general one, codified in the "fluctuation- 
dissipation theorem", which is one of the 
deepest results of thermodynamics and 
statistical physics.
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ADXL202

Dual axis accelerometer
The bandwidth

 

of the ADXL202 may

 

be set

from 0.01 Hz to 6 kHz via capacitors

 

CX

 

and CY

 

. 

The typical

 

noise

 

floor

 

is 200µg/√Hz

allowing

 

signals below

 

2 mg to be resolved

 

for 

bandwidths

 

below

 

60Hz.

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elecur.html#c2
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Fabrication, Analog Devices
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Sensor design ADXL150

Shuttle, electrodes and folded 
spring, 2 μm thick
Nominal gap between fingers 1.3 
μm
42 fingers
Length of overlap region 104 μm

Capacitances:
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Doubly clamped beam with point load at 
midpoint

Spring constant:

c-central beam displacement
W beam width (poly thickness)
H beam thickness (lithography)

Stiffness of folded spring: 2.8 N/m
Stiffness of two springs: 5.6 N/m

Spring softening due to applied voltage 
gives: 5.2 N/m
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Accelerometer specifications ADXL150
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Accelerometer specifications

Mass of shuttle: m=2.2x10-10 kg
Stiffness: k=5.4 N/m
Undamped resonant frequency: 
ω=1.55x105 rad/sec = 24.7 kHz

Operational bandwidth: 1000Hz

Q-factor: 5
Couette flow
b=ηA/h
Q-factor from Couette: 120
Squeezed film damping
Q-factor from Couette: 34
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General electrostatic forces

Electric forces between charges
Electric potential Φ
Laplace equation + boundary 
conditions (dirichlet)

Electrostatic field: gradient of 
potential

Electric force normal to 
conductor surface 
Charge distribution on surface 
conductors related to field

Force proportional to electric field

Forces between parallel plates in 
capacitor:
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Linear elastic force
Partial differential equation for force-
elastic displacement (beam) + 
boundary conditions:

Approximation e.g.

Linear relation stress-strain (Always 
true for single-crystal silicon):

Strain is derivative of displacement. 
May give non-linear relation 
displacement-strain for large 
deflections (geometric effect)
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Electrostatic bending of beam, 
simplest model: plate suspended in spring

Set up voltage ΔV between beam 
and substrate
Beam bend due to electrostatic 
forces 
Elastic forces tend to pull beam 
back

Total force: 

Equilibrium:
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Pull-in of parallel plates with linear spring

Increase ΔV, reach pull-in distance and 
voltage

If voltage is larger than pull-in voltage 
=> no stable solution except  g=0

ζ=1-g/g0

Senturia section 6.4.3
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Pull-in of parallel capacitor plates with linear 
spring

Stable and unstable equilibrium:

STABLE
∂F/∂g negative: gap perturbed to be larger, 
negative forces pull back to equilibrium 
position
∂F/∂g negative: gap smaller, positive 
forces pull back to equilibrium position

UNSTABLE
∂F/∂g positive: gap perturbed to be larger, 
positive forces increase gap, pulled to 
other stable equilibrium
∂F/∂g positive: gap smaller, negative 
forces decrease gap, pulled to other stable 
equilibrium
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Gap vs. voltage

Parallell plates, linear spring 
elastic force

Normalized gap g/g0

Normalized voltage V/VPI
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Mechanical and electrostatic equations

Naviers equation for elastic forces: 
(isotropic version)

Poisson equation for electrostatic 
field:
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Numerical electrostatic-elastic solvers
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Coventor – pull in and release voltage
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