
Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

• Give a short description of the nature of the problem and the eventual numerical
methods you have used.

• Describe the algorithm you have used and/or developed. Here you may find it con-
venient to use pseudocoding. In many cases you can describe the algorithm in the
program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test your program
when developing the code.

• Include your results either in figure form or in a table. Remember to label your
results. All tables and figures should have relevant captions and labels on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your results. If pos-
sible, include a qualitative and/or quantitative discussion of the numerical stability,
eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the exercise, whether
you felt you learnt something, ideas for improvements and other thoughts you’ve
made when solving the exercise. We wish to keep this course at the interactive level
and your comments can help us improve it.

• Try to establish a practice where you log your work at the computerlab. You may
find such a logbook very handy at later stages in your work, especially when you
don’t properly remember what a previous test version of your program did. Here you
could also record the time spent on solving the exercise, various algorithms you may
have tested or other topics which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or postscript
formats. As programming language we prefer that you choose between C/C++ and
Fortran90/95. You could also use Java or Python as programming languages. Mat-
lab/Maple/Mathematica/IDL are not accepted, but you can use them to check your results
where possible. Finally, we do prefer that you work together. Optimal working groups con-
sist of 2-3 students, but more people can collaborate. You can then hand in a common
report.
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Project 2, Variational Monte Carlo for BEC with 87Rb,

deadline april 16 12am (midnight)

The spectacular demonstration of Bose-Einstein condensation (BEC) in gases of alkali
atoms 87Rb, 23Na, 7Li confined in magnetic traps [1, 2, 3] has led to an explosion of interest
in confined Bose systems. Of interest is the fraction of condensed atoms, the nature of
the condensate, the excitations above the condensate, the atomic density in the trap as a
function of Temperature and the critical temperature of BEC, Tc. The extensive progress
made up to early 1999 is reviewed by Dalfovo et al.[4].

A key feature of the trapped alkali and atomic hydrogen systems is that they are dilute.

The characteristic dimensions of a typical trap for 87Rb is ah0 = (h̄/mω⊥)
1

2 = 1 − 2 × 104

Å (Ref. [1]). The interaction between 87Rb atoms can be well represented by its s-wave
scattering length, aRb. This scattering length lies in the range 85 < aRb < 140a0 where
a0 = 0.5292 Å is the Bohr radius. The definite value aRb = 100a0 is usually selected and
for calculations the definite ratio of atom size to trap size aRb/ah0 = 4.33× 10−3 is usually
chosen [4]. A typical 87Rb atom density in the trap is n ' 1012−1014 atoms/cm3 giving an
inter-atom spacing ` ' 104 Å. Thus the effective atom size is small compared to both the
trap size and the inter-atom spacing, the condition for diluteness (i.e., na3

Rb ' 10−6 where
n = N/V is the number density). In this limit, although the interaction is important,
dilute gas approximations such as the Bogoliubov theory [5], valid for small na3 and large
condensate fraction n0 = N0/N , describe the system well. Also, since most of the atoms are
in the condensate (except near Tc), the Gross-Pitaevskii equation [6, 7] for the condensate
describes the whole gas well. Effects of atoms excited above the condensate have been
incorporated within the Popov approximation [8].

The aim of this project is to use the Variational Monte Carlo (VMC) method and
evaluate the ground state energy of a trapped, hard sphere Bose gas for different numbers
of particles with a specific trial wave function. See Ref. [9] for a discussion of VMC.

This wave function is used to study the sensitivity of condensate and non-condensate
properties to the hard sphere radius and the number of particles. The trap we will use is
a spherical (S) or an elliptical (E) harmonic trap in three dimensions given by
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where (S) stands for symmetric and
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Vint(ri, rj), (2)

as the two-body Hamiltonian of the system. Here ω2

ho defines the trap potential strength.
In the case of the elliptical trap, Vext(x, y, z), ωho = ω⊥ is the trap frequency in the perpen-
dicular or xy plane and ωz the frequency in the z direction. The mean square vibrational
amplitude of a single boson at T = 0K in the trap (1) is < x2 >= (h̄/2mωho) so that
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aho ≡ (h̄/mωho)
1

2 defines the characteristic length of the trap. The ratio of the frequencies

is denoted λ = ωz/ω⊥ leading to a ratio of the trap lengths (a⊥/az) = (ωz/ω⊥)
1

2 =
√

λ.
We represent the inter boson interaction by a pairwise, hard core potential

Vint(|ri − rj|) =

{

∞ |ri − rj| ≤ a
0 |ri − rj| > a

(3)

where a is the hard core diameter of the bosons. Clearly, Vint(|ri−rj|) is zero if the bosons
are separated by a distance |ri − rj| greater than a but infinite if they attempt to come
within a distance |ri − rj| ≤ a.

Our trial wave function for the ground state with N atoms is given by

ΨT (R) = ΨT (r1, r2, . . . rN , α, β) =
∏

i

g(α, β, ri)
∏

i<j

f(a, |ri − rj|), (4)

where α and β are variational parameters. The single-particle wave function is proportional
to the harmonic oscillator function for the ground state, i.e.,

g(α, β, ri) = exp [−α(x2

i + y2

i + βz2

i )]. (5)

For spherical traps we have β = 1 and for non-interacting bosons (a = 0) we have α =
1/2a2

ho. The correlation wave function is

f(a, |ri − rj|) =

{

0 |ri − rj| ≤ a
(1 − a

|ri−rj |
) |ri − rj| > a.

(6)

Exercise 1: Variational Monte Carlo study of the BEC

ground state

1a) Find analytic expressions for the local energy

EL(R) =
1

ΨT (R)
HΨT (R), (7)

for the above trial wave function of Eq. (4). Compute also the analytic expression
for the drift force to be used in importance sampling

F =
2∇ΨT

ΨT

. (8)

1b) Write a Variational Monte Carlo program which uses standard Metropolis sampling
and compute the ground state energy of a spherical harmonic oscillator (β = 1) with
no interaction. Use natural units and make an analysis of your calculations using
both the analytic expression for the local energy and a numerical calculation of the
kinetic energy using numerical derivation. Compare the CPU time difference. You
should also parallelize your code. The only variational parameter is α. Perform these
calculations for N = 10, 100 and 500 atoms. Compare your results with the exact
answer.
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1c) We turn now to the elliptic trap with a hard core interaction. We fix, as in Refs. [10,
11] a/aho = 0.0043. Introduce lengths in units of aho, r → r/aho and energy in units
of h̄ωho. Show then that the original Hamiltonian can be rewritten as

H =
N
∑

i=1

1

2

(

−∇2

i + x2

i + y2

i + γ2z2

i

)

+
∑

i<j

Vint(|ri − rj|). (9)

What is the expression for γ? Choose the initial value for β = γ = 2.82843 and set up
a VMC program which computes the ground state energy using the trial wave function
of Eq. (4). using only α as variational parameter. Use standard Metropolis sampling
and vary the parameter α in order to find a minimum. Perform the calculations for
N = 10, 50 and N = 100 and compare your results to those from the ideal case in
the previous exercise.

1d) We repeat exercise 1c), but now we replace the brute force Metropolis algorithm with
importance sampling based on the Fokker-Planck and the Langevin equations. Dis-
cuss your results and comment on eventual differences between importance sampling
and brute force sampling.

In the statistical analysis of your results you should use for example the blocking
technique from Project 1. Your code should reproduce the results of Refs. [10, 11].
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