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18 January - 1 March

Part I: Statistical Physics and Monte Carlo Simulations
1 Simulations of Phase Transitions, examples with spin

models such as the Ising Model and the Potts Model.
2 Parallelization (MPI) and high-performance computing

topics (OOP). Choose between F95 and/or C++.
Python also possible as programming language.

3 Algorithms for Monte Carlo Simulations, Metropolis,
Wolff, Swendsen-Wang and heat bath.

4 Histogram method and statistical analysis of data
5 Finite size scaling and Monte Carlo renormalization

group
6 Project 1, deadline march 5

Computational Physics II FYS4410



2 march -31 March

Part II: Quantum Mechanical Systems
1 Coupled cluster methods, approximation to

configuration interaction methods
2 widely used in quantum physics, atomic,

molecular,solid state and nuclear physics
3 Coupled cluster with single and doubles excitations
4 Simulation of quantum dots (electrons in harmonic

oscillator-like traps)
5 Parallelization of sparse matrix multiplications
6 Project 2, deadline april 16
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Lectures and ComputerLab

Lectures: Thursday (14.15-16.00, room FV329) and friday
day (14.15-16, room FV311)

Detailed lecture notes, all programs presented and
projects can be found at the homepage of the course.

Computerlab: 16-19 thursday, room FV329

Weekly plans and all other information are on the official
webpage.

The thursday lectures will be used to demonstrate
algorithms etc, while the friday lectures will be more like
classical blackboard sessions.

For the first part, chapters 8-12 of the FYS3150/4150
lecture notes give a good starting point, together with
Newman and Barkema’s text, see next slide. For the
FYS3150 lectures see http://www.uio.no/studier/
emner/matnat/fys/FYS3150/h06/
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Monte Carlo text

Newman and Barkema

Monte Carlo Methods
in Statistical Physics

Chapters 1-4 and 8

see http://www.
oup.com/uk/
catalogue/?ci=
9780198517979
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MPI text

Gropp, Lusk and Sjellum

Using MPI

Chapters 1-5

see
http://mitpress.
mit.edu/catalog/
item/default.
asp?ttype=2&tid=
10761
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Lattice Gas and Cellular Automata text

Rothman and Zaleski

Lattice Gas and
Cellular Automata

see http:
//www.cambridge.
org/catalogue/
catalogue.asp?
isbn=
9780521607605
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Topics for Week 3, January 15-19

Review of Statistical Physics and Parallelization

Introduction to Message Passing Interface and
parallelization.

How to use the local cluster.

Presentation of topics to be covered in part I

Review of Statistical physics, with an emphasis on the
canonical ensemble and the Ising model.
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Message Passing Interface (MPI) and the local cluster

Basic info for C/C++ users

The basic instructions for using the local cluster are at
http://folk.uio.no/jonkni/gvd/workdoc/
mpich2-fys/mpich2-fys.html . Follow these instructions
in detail. The file ’machines’ can be pulled down from MHJ’s
part under the webpage of the course, see programs and MPI
examples.

Use the example code calc_pi.c
compile and load with
mpicc -O2 -o calc_pi.x calc_pi.c
run with 20 nodes
mpirun -np 20 ./calc_pi.x

For better machines, see www.notur.no
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Message Passing Interface (MPI) and the local cluster

Basic info for Fortran95 users
Use the example code paraising.f90
compile and load with
mpif90 -O2 -o ising.exe paraising.f90
run with 20 nodes
mpirun -np 20 ./ising.exe < input.dat
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Message Passing Interface (MPI) and the local cluster

Profiling

For both Fortran and C/C++ users it is recommended that you
compile with the profiling option −pg in the beginning. This
allows you to profile the code and figure out possible
bottlenecks of CPU consumption.

mpicc -O2 -pg -o calc_pi.x calc_pi.c

Your codes produces the profiling info in gmon.out . Run
thereafter

gprof calc_pi.x > profileinfo

The file profileinfo contains then information about the CPU
consumption of the individual functions. The strategy is then to
start with the most time-consuming functions in order to see
where to improve. When you are done, you should remove the
−pg option. Saves CPU time.
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What is Message Passing Interface (MPI)?

MPI is a library, not a language. It specifies the names, calling
sequences and results of functions or subroutines to be called
from C or Fortran programs, and the classes and methods that
make up the MPI C++ library. The programs that users write in
Fortran, C or C++ are compiled with ordinary compilers and
linked with the MPI library.
MPI is a specification, not a particular implementation. MPI
programs should be able to run on all possible machines and
run all MPI implementetations without change.
An MPI computation is a collection of processes
communicating with messages.
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MPI

MPI is a library specification for the message passing interface,
proposed as a standard.

independent of hardware;

not a language or compiler specification;

not a specific implementation or product.

We will only learn MPI-1 in this course.
A message passing standard for portability and ease-of-use.
Primarily for SPMD/MIMD. Designed for high performance.
Insert communication and synchronization functions where
necessary.
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Demands from the HPC community

In the field of scientific computing, there is an ever-lasting wish
to do larger simulations using shorter computer time.
Development of the capacity for single-processor computers
can hardly keep up with the pace of scientific computing:

processor speed

memory size/speed

Solution: parallel computing!
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The basic ideas of parallel computing

Pursuit of shorter computation time and larger simulation
size gives rise to parallel computing.

Multiple processors are involved to solve a global problem.

The essence is to divide the entire computation evenly
among collaborative processors.
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A rough classification of hardware models

Conventional single-processor computers can be called
SISD (single-instruction-single-data) machines.

SIMD (single-instruction-multiple-data) machines
incorporate the idea of parallel processing, which use a
large number of process- ing units to execute the same
instruction on different data.

Modern parallel computers are so-called MIMD
(multiple-instruction- multiple-data) machines and can
execute different instruction streams in parallel on different
data.
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Shared memory and distributed memory

One way of categorizing modern parallel computers is to
look at the memory configuration.

In shared memory systems the CPUs share the same
address space. Any CPU can access any data in the
global memory.

In distributed memory systems each CPU has its own
memory. The CPUs are connected by some network and
may exchange messages.

A recent trend is ccNUMA
(cache-coherent-non-uniform-memory- access) systems
which are clusters of SMP (symmetric multi-processing)
machines and have a virtual shared memory.
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Different parallel programming paradigms

Task parallelism the work of a global problem can be
divided into a number of independent tasks, which rarely
need to synchronize. Monte Carlo simulation is one
example. However this paradigm is of limited use.

Data parallelism use of multiple threads (e.g. one thread
per processor) to dissect loops over arrays etc. This
paradigm requires a single memory address space.
Communication and synchronization between processors
are often hidden, thus easy to program. However, the user
surrenders much control to a specialized compiler.
Examples of data parallelism are compiler-based
parallelization and OpenMP directives.
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Different parallel programming paradigms

Message-passing all involved processors have an
independent memory address space. The user is
responsible for partition- ing the data/work of a global
problem and distributing the subproblems to the
processors. Collaboration between processors is achieved
by explicit message passing, which is used for data
transfer plus synchronization.

This paradigm is the most general one where the user has
full control. Better parallel efficiency is usually achieved by
explicit message passing. However, message-passing
programming is more difficult.
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SPMD

Although message-passing programming supports MIMD, it
suffices with an SPMD (single-program-multiple-data) model,
which is flexible enough for practical cases:

Same executable for all the processors.

Each processor works primarily with its assigned local
data.

Progression of code is allowed to differ between
synchronization points.

Possible to have a master/slave model. The standard
option in Monte Carlo calculations
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Today’s situation of parallel computing

Distributed memory is the dominant hardware
configuration. There is a large diversity in these machines,
from MPP (massively parallel pro cessing) systems to
clusters of off-the-shelf PCs, which are very cost-effective.

Message-passing is a mature programming paradigm and
widely accepted. It often provides an efficient match to the
hardware. It is primarily for the distributed memory
systems, but can also be used on shared memory systems.

In these lectures we consider only message-passing for writing
parallel programs.
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Some useful concepts

Speed-up

S(P) =
T (1)

T (P)

T (1) is the time for one processor while T (P) is the time
for P processors.

Efficiency

η(P) =
S(P)

P
Latency and bandwidth – the cost model of sending a
message of length L between two processors:

tC(L) = τ + βL.
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Overhead present in parallel computing

Uneven load balance : not all the processors can perform
useful work at all time.

Overhead of synchronization.

Overhead of communication .

Extra computation due to parallelization.

Due to the above overhead and that certain part of a sequential
algorithm cannot be parallelized,

T (P) ≥ T (1)

P
→ S(P) ≤ P

However, superlinear speed-up (S(P) > P) may sometimes
occur due to for example cache effects.
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Parallelizing a sequential algorithm

Identify the part(s) of a sequential algorithm that can be
executed in parallel.

Distribute the global work and data among P processors.
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Process and processor

We refer to process as a logical unit which executes its
own code, in an MIMD style.

The processor is a physical device on which one or several
processes are executed.

The MPI standard uses the concept process consistently
throughout its documentation.

However, we only consider situations where one processor
is responsible for one process and therefore use the two
terms interchangeably.
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Bindings to MPI routines

MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI_COMMAND_NAME

The discussion in these slides focuses on the C++ binding.
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Communicator

A group of MPI processes with a name (context).

Any process is identified by its rank. The rank is only
meaningful within a particular communicator.

By default communicator MPI COMM WORLD contains all
the MPI processes.

Mechanism to identify subset of processes.

Promotes modular design of parallel libraries.
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The 6 most important MPI routines

MPI Init - initiate an MPI computation

MPI Finalize - terminate the MPI computation and clean up

MPI Comm size - how many processes participate in a
given MPI communicator?

MPI Comm rank - which one am I? (A number between 0
and size-1.)

MPI Send - send a message to a particular pro cess within
an MPI communicator

MPI Recv - receive a message from a particular pro cess
within an MPI communicator
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The first MPI C/C++ program

Let every process write ”Hello world” on the standard output.

#include <stdio.h>
#include <mpi.h>
int main (int nargs, char** args)
{

int size, my_rank;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
printf("Hello world, I’ve rank %d

out of %d procs.\n",
my_rank,size);

MPI_Finalize ();
return 0;

}
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The Fortran program

PROGRAM hello
INCLUDE "mpif.h"
INTEGER:: size, my_rank, ierr

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
WRITE(*,*)"Hello world, I’ve rank ",my_rank," out of ",size
CALL MPI_FINALIZE(ierr)

END PROGRAM hello
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Computing π in parallel

1 #include "mpi.h"
2 #include <stdio.h>
3 int main (int nargs, char** args)
4 {
5 int size, my_rank, i, n = 1000;
6 double l_sum, g_sum, x, h;
7 MPI_Init (&nargs, &args);
8 MPI_Comm_size (MPI_COMM_WORLD, &size);
9 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
11 if (my_rank==0 && nargs>1)
12 n = atoi(args[1]); h = 1.0/n;
13 MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
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Computing π in parallel

14 l_sum = 0.;
15 for (i=my_rank; i<n; i+=size) {
16 x = (i+0.5)*h;
17 l_sum += 4.0/(1.0+x*x);
18 }
19 l_sum *= h;

Here you see what we integrate

π =

∫ 1

0
dx

4
1 + x2
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Computing π in parallel

20 if (my_rank==0) {
21 MPI_Status status;
22 g_sum = l_sum;
23 for (i=1; i<size; i++) {
24 MPI_Recv(&l_sum,1,MPI_DOUBLE,MPI_ANY_SOURCE,

500,MPI_COMM_WORLD,&status);
25 g_sum += l_sum;
26 }
27 printf("result=%g\n",g_sum);
28 }
29 else
30 MPI_Send(&l_sum,1,MPI_DOUBLE,0,500,

MPI_COMM_WORLD);
31 MPI_Finalize ();
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Monte Carlo integration

Brute force integration of f (x)

E [f ] = 〈f 〉 =

Z b

a
fp(x)dx ≈

1

N

NX
i=1

f (xi )p(xi ),

σ2
f = E [f 2]− (E [f ])2 = 〈f 2〉 − 〈f 〉2
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Monte Carlo integration, change of Variables
The starting point is always the uniform distribution

p(x)dx =


dx 0 ≤ x ≤ 1
0 else

with p(x) = 1 and satisfying Z ∞

−∞
p(x)dx = 1.

When we attempt a transformation to a new variable x → y we have to conserve the
probability

p(y)dy = p(x)dx = dx ,

Assume that p(y) is a PDF different from the uniform PDF p(x) = 1 with x ∈ [0, 1]. If
we integrate the last expression we arrive at

x(y) =

Z y

0
p(y ′)dy ′,

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P(y) =

Z y

0
p(y ′)dy ′.
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Monte Carlo integration

Example: Suppose we have the general uniform distribution

p(y)dy =

(
dy

b−a a ≤ y ≤ b
0 else

If we wish to relate this distribution to the one in the interval x ∈ [0, 1] we have

p(y)dy =
dy

b − a
= dx ,

and integrating we obtain the cumulative function

x(y) =

Z y

a

dy ′

b − a
,

yielding
y = a + (b − a)x ,

a well-known result!
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Importance Sampling

Let us assume that p(y) is a PDF whose behavior resembles that of a function F
defined in a certain interval [a, b]. The normalization condition isZ b

a
p(y)dy = 1.

We can rewrite our integral as

I =

Z b

a
F (y)dy =

Z b

a
p(y)

F (y)

p(y)
dy .

Since random numbers are generated for the uniform distribution p(x) with x ∈ [0, 1],
we need to perform a change of variables x → y through

x(y) =

Z y

a
p(y ′)dy ′,

where we used
p(x)dx = dx = p(y)dy .

If we can invert x(y), we find y(x) as well.
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Monte Carlo integration

I =

Z b

a
p(y)

F (y)

p(y)
dy =

Z b

a

F (y(x))

p(y(x))
dx ,

meaning that a Monte Carlo evaluation of the above integral gives

Z b

a

F (y(x))

p(y(x))
dx =

1

N

NX
i=1

F (y(xi ))

p(y(xi ))
.

The advantage of such a change of variables in case p(y) follows closely F is that the
integrand becomes smooth and we can sample over relevant values for the integrand.
It is however not trivial to find such a function p. The conditions on p which allow us to
perform these transformations are

1 p is normalizable and positive definite,

2 it is analytically integrable and

3 the integral is invertible, allowing us thereby to express a new variable in terms of
the old one.
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Monte Carlo integration

The variance is now with the definition

F̃ =
F (y(x))

p(y(x))
,

given by

σ2 =
1

N

NX
i=1

“
F̃
”2
−

0@ 1

N

NX
i=1

F̃

1A2

.

If the relation between the two functions F/p results in an almost constant, then we

can get a variance close to zero, or zero!!
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Monte Carlo integration
The algorithm for this procedure is

Use the uniform distribution to find the random variable y in the interval [0,1].
p(x) is a user provided PDF.

Evaluate thereafter

I =

Z b

a
F (x)dx =

Z b

a
p(x)

F (x)

p(x)
dx ,

by rewriting Z b

a
p(x)

F (x)

p(x)
dx =

Z b

a

F (x(y))

p(x(y))
dy ,

since
dy

dx
= p(x).

Perform then a Monte Carlo sampling for

Z b

a

F (x(y))

p(x(y))
dy ≈

1

N

NX
i=1

F (x(yi ))

p(x(yi ))
,

with yi ∈ [0, 1],

and evaluate the variance.
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Exercises

Run the parallel program to obtain π, calc pi.c

Rewrite the serial program multidim.cpp on the webpage at
http://www.uio.no/studier/emner/matnat/fys/
FYS4410/v07 as a parallel program.
This programs computes the integral∫ ∞

−∞
dxdy g(x, y),

where

g(x, y) = exp (−x2 − y2 − (x − y)2/2),

with d = 6. See chapter 8 of the FYS3150 lectures at
http://www.uio.no/studier/emner/matnat/fys/
FYS3150/h06
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Topics for Week 4, January 22-26

Statistical Physics and Parallelization

Review of Statistical physics, with an emphasis on the
canonical ensemble, Landau’s mean field and the Ising
model.

Simple parallelization of the Ising model, discussion of the
codes in both C/C++ and Fortran95. Further discussion of
MPI.

Discussion of correlation functions
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Most Common Ensembles in Statistical Physics

Microcanonical Canonical Grand can. Pressure can.

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V ,M,D V ,M,D V ,M,D P,H, E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs

Energy Internal Internal Internal Enthalpy
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Microcanonical Ensemble

Entropy
S = kB lnΩ (1)

dS =
1

T
dE +

p

T
dV −

µ

T
dN (2)

Temperature
1

kBT
=

„
∂lnΩ

∂E

«
N,V

(3)

Pressure
p

kBT
=

„
∂lnΩ

∂V

«
N,E

(4)

Chemical potential
µ

kBT
= −

„
∂lnΩ

∂N

«
V ,E

(5)
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Canonical Ensemble

Helmholtz Free Energy
F = −kBTlnZ (6)

dF = −SdT − pdV + µdN (7)

Entropy

S = kB lnZ + kBT
„
∂lnZ

∂T

«
N,V

(8)

Pressure

p = kBT
„
∂lnZ

∂V

«
N,T

(9)

Chemical Potential

µ = −kBT
„
∂lnZ

∂N

«
V ,T

(10)

Energy (internal only)

E = kBT 2
„
∂lnZ

∂T

«
V ,N

(11)
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Grand Canonical Ensemble

Potential
pV = kBTlnΞ (12)

d(pV ) = SdT + Ndµ+ pdV (13)

Entropy

S = kB lnΞ + kBT
„
∂lnΞ

∂T

«
V ,µ

(14)

Particles

N = kBT
„
∂lnΞ

∂µ

«
V ,T

(15)

Pressure

p = kBT
„
∂lnΞ

∂V

«
µ,T

(16)
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Pressure Canonical Ensemble

Gibbs Free Energy
G = −kBTln∆ (17)

dG = −SdT + Vdp + µdN (18)

Entropy

S = kB ln∆ + kBT
„
∂ln∆

∂T

«
p,N

(19)

Volume

V = −kBT
„
∂ln∆

∂p

«
N,T

(20)

Chemical potential

µ = −kBT
„
∂ln∆

∂N

«
p,T

(21)
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Expectation Values

At a given temperature we have the probability distribution

Pi (β) =
e−βEi

Z
(22)

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ei is the
energy of a state i while Z is the partition function for the canonical ensemble defined
as

Z =
MX

i=1

e−βEi , (23)

where the sum extends over all states M. Pi expresses the probability of finding the

system in a given configuration i .
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Expectation Values

For a system described by the canonical ensemble, the energy is an expectation value
since we allow energy to be exchanged with the surroundings (a heat bath with
temperature T ). This expectation value, the mean energy, can be calculated using the
probability distribution Pi as

〈E〉 =
MX

i=1

Ei Pi (β) =
1

Z

MX
i=1

Ei e
−βEi , (24)

with a corresponding variance defined as

σ2
E = 〈E2〉 − 〈E〉2 =

1

Z

MX
i=1

E2
i e−βEi −

0@ 1

Z

MX
i=1

Ei e
−βEi

1A2

. (25)

If we divide the latter quantity with kT 2 we obtain the specific heat at constant volume

CV =
1

kT 2

“
〈E2〉 − 〈E〉2

”
. (26)

Computational Physics II FYS4410



Expectation Values

We can also write

〈E〉 = −
∂lnZ

∂β
. (27)

The specific heat is

CV =
1

kT 2

∂2lnZ

∂β2
(28)

These expressions link a physical quantity (in thermodynamics) with the microphysics

given by the partition function. Statistical physics is the field where one relates

microscopic quantities to observables at finite temperature.
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Expectation Values

〈M〉 =
MX
i

Mi Pi (β) =
1

Z

MX
i

Mi e
−βEi , (29)

and the corresponding variance

σ2
M = 〈M2〉 − 〈M〉2 =

1

Z

MX
i=1

M2
i e−βEi −

0@ 1

Z

MX
i=1

Mi e
−βEi

1A2

. (30)

This quantity defines also the susceptibility χ

χ =
1

kT

“
〈M2〉 − 〈M〉2

”
. (31)
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Phase Transitions

NOTE: Helmholtz free energy and canonical ensemble

F = 〈E〉 − TS = −kTlnZ

meaning lnZ = −F/kT = −Fβ and

〈E〉 = −
∂lnZ

∂β
=
∂(βF )

∂β
.

and

CV = −
1

kT 2

∂2(βF )

∂β2
.

We can relate observables to various derivatives of the partition function and the free

energy. When a given derivative of the free energy or the partition function is

discontinuous or diverges (logarithmic divergence for the heat capacity from the Ising

model) we talk of a phase transition of order of the derivative.
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Phase Transitions

An important quantity is the correlation length (ξ, to be discussed during friday’s
lecture). The correlation length defines the length scale at which the overall
properties of a material start to differ from its bulk properties. It is the distance
over which the fluctuations of the microscopic degrees of freedom (for example
the position of atoms) are significantly correlated with each other. Usually it is of
the order of few interatomic spacings for a solid.

The correlation length ξ depends however on external conditions such as
pressure and temperature.

A phase transition is marked by abrupt macroscopic changes as external
parameters are changed, such as an increase of temperature.

The point where a phase transition takes place is called a critical point.
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Two Scenarios for Phase Transitions

1 First order/discontinuous phase transitions: Two or more states on either side of
the critical point also coexist exactly at the critical point. As we pass through the
critical point we observe a discontinuous behavior of thermodynamical functions,
see figure in forthcoming slides. The correlation length is mormally finite at the
critical point. Phenomena such as hysteris occur, viz. there is a continuation of
state below the critical point into one above the critical point. This continuation is
metastable so that the system may take a macroscopically long time to readjust.
Classical example, melting of ice.

2 Second order or continuous transitions: The correlation length diverges at the
critical point, fluctuations are correlated over all distance scales, which forces the
system to be in a unique critical phase. The two phases on either side of the
critical point become identical. Smooth behavior of first derivatives of the
partition function, while second derivatives diverge. Strong correlations make a
perturbative treatment impossible. Renormalization group theory.

Computational Physics II FYS4410



Examples of Phase Transitions

System Transition Order Parameter

Liquid-gas Condensation/evaporation Density difference ∆ρ = ρliquid − ρgas
Binary liquid mixture/Unmixing Composition difference

Quantum liquid Normal fluid/superfluid < φ >, ψ = wavefunction
Liquid-solid Melting/crystallisation Reciprocal lattice vector

Magnetic solid Ferromagnetic Spontaneous magnetisation M
Antiferromagnetic Sublattice magnetisation M

Dielectric solid Ferroelectric Polarization P
Antiferroelectric Sublattice polarisation P
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Examples of Phase Transitions
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Ising and Potts Model

The model we will employ first in our studies of phase transitions at finite temperature
for magnetic systems is the so-called Ising model. In its simplest form the energy is
expressed as

E = −J
NX

<kl>

sk sl − B
NX
k

sk , (32)

with sk = ±1, N is the total number of spins, J is a coupling constant expressing the

strength of the interaction between neighboring spins and B is an external magnetic

field interacting with the magnetic moment set up by the spins. The symbol < kl >

indicates that we sum over nearest neighbors only.
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Ising Model

Notice that for J > 0 it is energetically favorable for neighboring spins to be aligned.

This feature leads to, at low enough temperatures, to a cooperative phenomenon called

spontaneous magnetization. That is, through interactions between nearest neighbors,

a given magnetic moment can influence the alignment of spins that are separated from

the given spin by a macroscopic distance. These long range correlations between

spins are associated with a long-range order in which the lattice has a net

magnetization in the absence of a magnetic field. This phase is normally called the

ferromagnetic phase. With J < 0, we have a so-called antiferromagnetic case. At a

critical temperature we have a phase transition to a disordered phase, a so-called

paramagnetic phase.
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Potts Model

Energy given by

E = −J
NX

<kl>

δsl ,sk ,

where the spin sk at lattice position k can take the values 1, 2, . . . , q. N is the total
number of spins. For q = 2 the Potts model corresponds to the Ising model, we can
rewrite the last equation as

E = −
J

2

NX
<kl>

2(δsl ,sk −
1

2
)−

NX
<kl>

J

2
.

Now, 2(δsl ,sk −
1
2 ) is +1 when sl = sk and −1 when they are different. Equivalent

except the last term which is a constant and that J → J/2.
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Analytic Results: one-dimensional Ising model

For the one-dimensional Ising model we can compute rather easily the exact partition
function for a system of N spins. Let us consider first the case with free ends. The
energy reads

E = −J
N−1X
j=1

sj sj+1.

The partition function for N spins is given by

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (βJ
N−1X
j=1

sj sj+1), (33)

and since the last spin occurs only once in the last sum in the exponential, we can
single out the last spin as followsX

sN =±1

exp (βJsN−1sN) = 2cosh(βJ). (34)

The partition function consists then of a part from the last spin and one from the
remaining spins resulting in

ZN = ZN−12cosh(βJ). (35)
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Analytic Results: one-dimensional Ising model

We can repeat this process and obtain

ZN = (2cosh(βJ))N−2Z2, (36)

with Z2 given by
Z2 =

X
s1=±1

X
s2=±1

exp (βJs1s2) = 4cosh(βJ), (37)

resulting in
ZN = 2(2cosh(βJ))N−1. (38)

In the thermodynamical limit where we let N →∞, the way we treat the ends does not
matter. However, since our computations will always be carried out with a limited value
of N, we need to consider other boundary conditions as well. Here we limit the
attention to periodic boundary conditions.

Computational Physics II FYS4410



Analytic Results: one-dimensional Ising model

We can then calculate the mean energy with free ends from the above formula for the
partition function using

〈E〉 = −
∂lnZ

∂β
= −(N − 1)Jtanh(βJ). (39)

Helmholtz’s free energy is given by

F = −kBTlnZN = −NkBTln (2cosh(βJ)) . (40)

The specific heat in one-dimension with free ends is

CV =
1

kT 2

∂2

∂β2
lnZN = (N − 1)k

„
βJ

cosh(βJ)

«2

. (41)

Note well that this expression for the specific heat from the one-dimensional Ising

model does not diverge, thus we do not have a second order phase transition.
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Analytic Results: one-dimensional Ising model

If we use periodic boundary conditions, the partition function is given by

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (βJ
NX

j=1

sj sj+1), (42)

where the sum in the exponential runs from 1 to N since the energy is defined as

E = −J
NX

j=1

sj sj+1.

We can then rewrite the partition function as

ZN =
X

{si =±1}

NY
i=1

exp (βJsj sj+1), (43)

where the first sum is meant to represent all lattice sites. Introducing the matrix T̂ (the
so-called transfer matrix)

T̂ =

„
eβJ e−βJ

e−βJ eβJ

«
, (44)
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Analytic Results: one-dimensional Ising model

ZN =
X

{si =±1}
T̂s1s2 T̂s2s3 . . . T̂sN s1 = Tr T̂N . (45)

The 2× 2 matrix T̂ is easily diagonalized with eigenvalues λ1 = 2cosh(βJ) and
λ2 = 2sinh(βJ). Similarly, the matrix T̂N has eigenvalues λN

1 and λN
2 and the trace of

T̂N is just the sum over eigenvalues resulting in a partition function

ZN = λN
1 + λN

2 = 2N
“
[cosh(βJ)]N + [sinh(βJ)]N

”
. (46)

Helmholtz’s free energy is in this case

F = −kBTln(λN
1 + λN

2 ) = −kBT
{

Nln(λ1) + ln
(

1 + (
λ2

λ1
)N

)}
(47)

which in the limit N →∞ results in F = −kBTNln(λ1)

Computational Physics II FYS4410



Analytic Results: one-dimensional Ising model

Hitherto we have limited ourselves to studies of systems with zero external magnetic
field, viz H = ′. We will mostly study systems which exhibit a spontaneous
magnitization. It is however instructive to extend the one-dimensional Ising model to
H 6= ′, yielding a partition function (with periodic boundary conditions)

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (β
NX

j=1

(Jsj sj+1 +
H
2

(si + sj+1)), (48)

which yields a new transfer matrix with matrix elements t11 = eβ(J+H), t1−1 = e−βJ ,
t−11 = eβJ and t−1−1 = eβ(J−H) with eigenvalues

λ1 = eβJ cosh(βJ) +

„
e2βJ sinh2(βH) + e§√(−β∈J )

«1/2

, (49)

and

λ2 = eβJ cosh(βJ)−
„

e2βJ sinh2(βH) + e§√(−β∈J )

«1/2

. (50)
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Analytic Results: one-dimensional Ising model

It is now useful to compute the expectation value of the magnetisation per spin

〈M/N〉 =
1

NZ

MX
i

Mi e
−βEi = −

1

N

∂F

∂H
, (51)

resulting in

〈M/N〉 =
sinh(βH)`

sinh2(βH) + exp (−β∈J )
´1/2

. (52)

We see that for H = ′ the magnetisation is zero. This means that for a one-dimensional

Ising model we cannot have a spontaneous magnetization. And there is no second

order phase transition as well.
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Mean Field Theory and the Ising Model

In studies of phase transitions we are interested in minimizing the free energy by
varying the average magnetisation, which is the order parameter (disappears at TC ).
In mean field theory the local magnetisation is a treated as a constant, all effects from
fluctuations are neglected. A way to achieve this is to rewrite by adding and subtracting
the mean magnetisation 〈s〉

si sj = (si − 〈s〉+ 〈s〉)(si − 〈s〉+ 〈s〉) ≈ 〈s〉2 + 〈s〉(si − 〈s〉) + 〈s〉(sj − 〈s〉), (53)

where we have ignored terms of the order (si − 〈s〉)(si − 〈s〉), which leads to

correlations between neighbouring spins. In mean field theory we ignore correlations.
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Mean Field Theory and the Ising Model

This means that we can rewrite the Hamiltonian

E = −J
NX

<ij>

sk sl − B
NX
i

si , (54)

as
E = −J

X
<ij>

〈s〉2 + 〈s〉(si − 〈s〉) + 〈s〉(sj − 〈s〉)− B
X

i

si , (55)

resulting in
E = −(B + zJ〈s〉)

X
i

si + zJ〈s〉2, (56)

with z the nuber of nearest neighbours for a given site i . We can define an effective
field which all spins see, namely

Beff = (B + zJ〈s〉). (57)
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Mean Field Theory and the Ising Model

How do we get 〈s〉)?
Here we use the canonical ensemble. The partition function reads in this case

Z = e−NzJ〈s〉2/kT (2cosh(Beff/kT ))N , (58)

with a free energy

F = −kTlnZ = −NkTln(2) + NzJ〈s〉2 − NkTln (cosh(Beff/kT )) (59)

and minimizing F wrt 〈s〉 we arrive at

〈s〉 = tanh(2cosh (Beff/kT )) . (60)
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Connecting to Landau Theory

Close to the phase transition we expect 〈s〉 to become small and eventually vanish. We
can then expand F in powers of 〈s〉 as

F = −NkTln(2) + NzJ〈s〉2 − NkT − BN〈s〉+ NkT
„

1

2
〈s〉2 +

1

12
〈s〉4 + . . .

«
, (61)

and using 〈M〉 = N〈s〉 we can rewrite as

F = F0 − B〈M〉+
1

2
a〈M〉2 +

1

4
b〈M〉4 + . . . (62)
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Connecting to Landau Theory

Let 〈M〉 = m and

F = F0 +
1

2
am2 +

1

4
bm4 +

1

6
cm6 (63)

F has a minimum at equilibrium F ′(m) = 0 and F ′′(m) > 0

F ′(m) = 0 = m(a + bm2 + cm4),

and if we assume that m is real we have two solutions

m = 0,

or

m2 =
b

2c

„
−1±

q
1− 4ac/b2

«
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Second Order Phase Transition

Can describe both first and second-order phase transitions. Here we consider the
second case. Assume b > 0 and a � 1 small since we want to study a perturbation
around m = 0. We reach the critical point when a = 0.

m2 =
b

2c

„
(−1±

q
1− 4ac/b2

«
≈ −a/b

Assume that
a(T ) = α(T − TC),

with α > 0 and TC the critical temperature where the magnetization vanishes. If a is
negative we have two solutions

m = ±
p
−a/b = ±

s
α(TC − T )

b

m evolves continuously to the critical temperature where F = 0 for T ≤ TC (see

separate graph).
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Entropy and Specific Heat

We can now compute the entropy

S = −
„
∂F

∂T

«
For T ≥ TC we have m = 0 and

S = −
„
∂F0

∂T

«
and for T ≤ TC

S = −
„
∂F0

∂T

«
− α2(TC − T )/2b,

and we see that there is a smooth crossover at TC .
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Entropy and Specific Heat

We can now compute the specific heat

CV = T
„
∂S

∂T

«
and TC we get a discontinuity of

∆CV = −α2/2b,

signalling a second-order phase transition. Landau theory gives irrespective of
dimension critical exponents

m ∼ (TC − T )β ,

and
CV ∼ (TC − T )α,

with β = 1/2 and α = 1. It predicts a phase transition for one dimension as well. For

the Ising model there is no phase transition for d = 1. In two dimensions we have

β = 1/8 and α = 0.
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Analytic Results: two-dimensional Ising model

The analytic expression for the Ising model in two dimensions was obtained in 1944 by
the Norwegian chemist Lars Onsager (Nobel prize in chemistry). The exact partition
function for N spins in two dimensions and with zero magnetic field H is given by

ZN =
h
2cosh(βJ)eI

iN
, (64)

with

I =
1

2π

Z π

0
dφln

»
1

2

“
1 + (1− κ2sin2φ)1/2

”–
, (65)

and
κ = 2sinh(2βJ)/cosh2(2βJ). (66)
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Analytic Results: two-dimensional Ising model

The resulting energy is given by

〈E〉 = −Jcoth(2βJ)

»
1 +

2

π
(2tanh2(2βJ)− 1)K1(q)

–
, (67)

with q = 2sinh(2βJ)/cosh2(2βJ) and the complete elliptic integral of the first kind

K1(q) =

Z π/2

0

dφp
1− q2sin2φ

. (68)
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Analytic Results: two-dimensional Ising model

Differentiating once more with respect to temperature we obtain the specific heat given
by

CV =
4kB

π
(βJcoth(2βJ))2

n
K1(q)− K2(q)− (1− tanh2(2βJ))

hπ
2

+ (2tanh2(2βJ)− 1)K1(q)
io
,

with

K2(q) =

Z π/2

0
dφ
q

1− q2sin2φ. (69)

is the complete elliptic integral of the second kind. Near the critical temperature TC the
specific heat behaves as

CV ≈ −
2

kBπ

„
J

TC

«2

ln

˛̨̨̨
1−

T

TC

˛̨̨̨
+ const. (70)

Computational Physics II FYS4410



Analytic Results: two-dimensional Ising model

In theories of critical phenomena one has that

CV ∼
˛̨̨̨
1−

T

TC

˛̨̨̨−α
, (71)

and Onsager’s result is a special case of this power law behavior. The limiting form of
the function

limα→0
1

α
(Y−α − 1) = −lnY , (72)

meaning that the analytic result is a special case of the power law singularity with

α = 0.
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Analytic Results: two-dimensional Ising model

One can also show that the mean magnetization per spin is

»
1−

(1− tanh2(βJ))4

16tanh4(βJ)

–1/8

for T < TC and 0 for T > TC . The behavior is thus as T → TC from below

M(T ) ∼ (TC − T )1/8

The susceptibility behaves as

χ(T ) ∼ |TC − T |−7/4
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Correlation Length

Another quantity (given by the covariance) is the correlation function (defined in friday’s
lecture)

Gij = 〈Si Sj 〉 − 〈Si 〉〈Sj 〉. (73)

and the correlation length

ξ−1 = − lim
r→∞

∂

∂r
lnG(r), (74)

with r = |i − j|.
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Scaling Results

Near TC we can characterize the behavior of many physical quantities by a power law
behavior. As an example, the mean magnetization is given by

〈M(T )〉 ∼ (T − TC)β , (75)

where β is a so-called critical exponent. A similar relation applies to the heat capacity

CV (T ) ∼ |TC − T |−α , (76)

the susceptibility
χ(T ) ∼ |TC − T |γ . (77)

and the correlation length
ξ(T ) ∼ |TC − T |−ν . (78)

α = 0, β = 1/8, γ = 7/4 and ν = 1. Later we will derive these coefficients from finite

size scaling theories.
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Scaling Results

Through finite size scaling relations it is possible to relate the behavior at finite lattices
with the results for an infinitely large lattice. The critical temperature scales then as

TC(L)− TC(L = ∞) ∼ aL−1/ν , (79)

〈M(T )〉 ∼ (T − TC)β → L−β/ν , (80)

CV (T ) ∼ |TC − T |−γ → Lγ/ν , (81)

and
χ(T ) ∼ |TC − T |−α → Lα/ν . (82)

We can compute the slope of the curves for M, CV and χ as function of lattice sites

and extract the exponent ν.
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Topics for Week 6, January 29- February 2

Project 1

Brief reminder from last week

Markov processes and the Metropolis algorithm

Discussion of project 1 and simulation of the Ising and
Potts models.

Time-correlation functions and the correlation time

Discussions of the Wolff and Swendsen-Wang algos
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Brownian Motion and Markov Processes

A Markov process is a random walk with a selected probability for making a move. The
new move is independent of the previous history of the system. The Markov process is
used repeatedly in Monte Carlo simulations in order to generate new random states.
The reason for choosing a Markov process is that when it is run for a long enough time
starting with a random state, we will eventually reach the most likely state of the
system. In thermodynamics, this means that after a certain number of Markov
processes we reach an equilibrium distribution. This mimicks the way a real system
reaches its most likely state at a given temperature of the surroundings.
To reach this distribution, the Markov process needs to obey two important conditions,
that of ergodicity and detailed balance . These conditions impose then constraints on
our algorithms for accepting or rejecting new random states. The Metropolis algorithm
discussed here abides to both these constraints. The Metropolis algorithm is widely
used in Monte Carlo simulations and the understanding of it rests within the
interpretation of random walks and Markov processes.
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Brownian Motion and Markov Processes

In a random walk one defines a mathematical entity called a walker , whose attributes
completely define the state of the system in question. The state of the system can refer
to any physical quantities, from the vibrational state of a molecule specified by a set of
quantum numbers, to the brands of coffee in your favourite supermarket.
The walker moves in an appropriate state space by a combination of deterministic and
random displacements from its previous position.

This sequence of steps forms a chain .
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A simple Example

The obvious case is that of a random walker on a one-, or two- or three-dimensional
lattice (dubbed coordinate space hereafter)
Consider a system whose energy is defined by the orientation of single spins. Consider
the state i , with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We may be interested in the transition with one single spinflip to a new state j with
energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to another microstate j is the

configuration space analogue to a random walk on a lattice. Instead of jumping from

one place to another in space, we ’jump’ from one microstate to another.
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Brownian Motion and Markov Processes

We wish to study the time-development of a PDF after a given number of time steps.
We define our PDF by the function w(t). In addition we define a transition probability
W . The time development of our PDF w(t), after one time-step from t = 0 is given by

wi (t = ε) = W (j → i)wj (t = 0).

This equation represents the discretized time-development of an original PDF. We can
rewrite this as a

wi (t = ε) = Wij wj (t = 0).

with the transition matrix W for a random walk left or right (cannot stay in the same
position) given by

Wij (ε) = W (il − jl, ε) =

 1
2 |i − j| = 1
0 else

We call Wij for the transition probability and we represent it as a matrix.
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Brownian Motion and Markov Processes

Both W and w represent probabilities and they have to be normalized, meaning that
that at each time step we have X

i

wi (t) = 1,

and X
j

W (j → i) = 1.

Further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. We can thus write the action of W
as

wi (t + 1) =
X

j

Wij wj (t),

or as vector-matrix relation
ŵ(t + 1) = Ŵŵ(t),

and if we have that ||ŵ(t + 1)− ŵ(t)|| → 0, we say that we have reached the most
likely state of the system, the so-called steady state or equilibrium state. Another way
of phrasing this is

w(t = ∞) = Ww(t = ∞).
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Brownian Motion and Markov Processes, a simple
Example

Consider the simple 3× 3 matrix Ŵ

Ŵ =

0@ 1/4 1/8 2/3
3/4 5/8 0
0 1/4 1/3

1A ,

and we choose our initial state as

ŵ(t = 0) =

0@ 1
0
0

1A .

The first iteration is
wi (t = ε) = W (j → i)wj (t = 0),

resulting in

ŵ(t = ε) =

0@ 1/4
3/4
0

1A .
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Brownian Motion and Markov Processes, a simple
Example

The next iteration results in

wi (t = 2ε) = W (j → i)wj (t = ε),

resulting in

ŵ(t = 2ε) =

0@ 5/23
21/32
6/32

1A .

Note that the vector ŵ is always normalized to 1. We find the steady state of the
system by solving the linear set of equations

w(t = ∞) = Ww(t = ∞).
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Brownian Motion and Markov Processes, a simple
Example

This linear set of equations reads

W11w1(t = ∞) + W12w2(t = ∞) + W13w3(t = ∞) = w1(t = ∞)

W21w1(t = ∞) + W22w2(t = ∞) + W23w3(t = ∞) = w2(t = ∞)

W31w1(t = ∞) + W32w2(t = ∞) + W33w3(t = ∞) = w3(t = ∞)

(83)

with the constraint that X
i

wi (t = ∞) = 1,

yielding as solution

ŵ(t = ∞) =

0@ 4/15
8/15
3/15

1A .
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Brownian Motion and Markov Processes, a simple
Example

Convergence of the simple example

Iteration w1 w2 w3
0 1.00000 0.00000 0.00000
1 0.25000 0.75000 0.00000
2 0.15625 0.62625 0.18750
3 0.24609 0.52734 0.22656
4 0.27848 0.51416 0.20736
5 0.27213 0.53021 0.19766
6 0.26608 0.53548 0.19844
7 0.26575 0.53424 0.20002
8 0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005

10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.20000
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000

ŵ(t = ∞) 0.26667 0.53333 0.20000

Exercise: make a small program where you perform these iterations,but change the

initial vector and study the convergence.
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Brownian Motion and Markov Processes, what is
happening?

We have after t-steps
ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix.
We can always expand ŵ(0) in terms of the right eigenvectors v̂ of Ŵ as

ŵ(0) =
X

i

αi v̂ i ,

resulting in
ŵ(t) = Ŵt ŵ(0) = Ŵt

X
i

αi v̂ i =
X

i

λt
iαi v̂ i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂ i .
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Brownian Motion and Markov Processes, what is
happening?

If we assume that λ0 is the largest eigenvector we see that in the limit t →∞, ŵ(t)
becomes proportional to the corresponding eigenvector v̂0. This is our steady state or
final distribution.
In our discussion below in connection with the entropy of a system and tomorrow’s
lecture on physics applications, we will relate these properties to correlation functions
such as the time-correlation function.

That will allow us to define the so-called equilibration time,viz the time needed for the

system to reach its most likely state. Form that state and on we can can compute

contributions to various statistical variables.
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Brownian Motion and Markov Processes, what is
happening?

We can relate this property to an observable like the mean magnetization of say a
magnetic material. With the probabilty ŵ(t) we can write the mean magnetization as

〈M(t)〉 =
X
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values of Mµ in its various
microstates µ.
Recall our definition of an expectation value with a discrete PDF p(xi ):

E [xk ] = 〈xk 〉 =
1

N

NX
i=1

xk
i p(xi ),

provided that the sums (or integrals)
PN

i=1 p(xi ) converge absolutely (viz ,
PN

i=1 |p(xi )|
converges)
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Brownian Motion and Markov Processes, what is
happening?

We rewrite the last relation as

〈M(t)〉 = ŵ(t)m =
X

i

λt
iαi v̂ i m i .

If we define mi = v̂ i m i as the expectation value of M in the i th eigenstate we can
rewrite the last equation as

〈M(t)〉 =
X

i

λt
iαi mi .

Since we have that in the limit t →∞ the mean magnetization is dominated by the
largest eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

λt
iαi mi .
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Brownian Motion and Markov Processes, what is
happening?

We define the quantity

τi = −
1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

αi mi e
−t/τi .

The quantities τi are the correlation times for the system. They control also the
time-correlation functions to be discussed later.

The longest correlation time is obviously given by the second largest eigenvalue τ1,

which normally defines the correlation time discussed above. For large times, this is

the only correlation time that survives. If higher eigenvalues of the transition matrix are

well separated from λ1 and we simulate long enough, τ1 may well define the

correlation time. In other cases we may not be able to extract a reliable result for τ1.
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Detailed Balance
An important condition we require that our Markov chain should satisfy is that of
detailed balance. In statistical physics this condition ensures that it is e.g., the
Boltzmann distribution which is generated when equilibrium is reached. The definition
for being in equilibrium is that the rates at which a system makes a transition to or from
a given state i have to be equal, that isX

i

W (j → i)wj =
X

i

W (i → j)wi .

However, the condition that the rates should equal each other is in general not sufficient
to guarantee that we, after many simulations, generate the correct distribution. We
therefore introduce an additional condition, namely that of detailed balance

W (j → i)wj = W (i → j)wi .

At equilibrium detailed balance gives thus

W (j → i)

W (i → j)
=

wi

wj
.

Proof: X
i

W (i → j)wi =
X

i

W (j → i)wj = wj

X
i

W (j → i) = wj .

In a Markov process w is known while W is the unknown.
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Ergodicity

It should be possible for any Markov process to reach every
possible state of the system from any starting point if the
simulations is carried out for a long enough time. If any state in
a distribution which has a probability different from zero and
this state cannot be reached from any given starting point if we
simulate long enough, then the system is not ergodic.
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The Boltzmann Distribution as Example

We introduce the Boltzmann distribution

wi =
exp (−β(Ei ))

Z
,

which states that probability of finding the system in a state i with energy Ei at an
inverse temperature β = 1/kBT is wi ∝ exp (−β(Ei )). The denominator Z is a
normalization constant which ensures that the sum of all probabilities is normalized to
one. It is defined as the sum of probabilities over all microstates j of the system

Z =
X

j

exp (−β(Ei )).

From the partition function we can in principle generate all interesting quantities for a

given system in equilibrium with its surroundings at a temperature T .
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Boltzmann Distribution as Example

With the probability distribution given by the Boltzmann distribution we are now in the
position where we can generate expectation values for a given variable A through the
definition

〈A〉 =
X

j

Aj wj =

P
j Aj exp (−β(Ej )

Z
.

In general, most systems have an infinity of microstates making thereby the
computation of Z practically impossible and a brute force Monte Carlo calculation over
a given number of randomly selected microstates may therefore not yield those
microstates which are important at equilibrium. To select the most important
contributions we need to use the condition for detailed balance. Since this is just given
by the ratios of probabilities, we never need to evaluate the partition function Z . For the
Boltzmann distribution, detailed balance results in

wi

wj
= exp (−β(Ei − Ej )).
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Boltzmann Distribution as Example

Let us now specialize to a system whose energy is defined by the orientation of single
spins. Consider the state i , with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We are interested in the transition with one single spinflip to a new state j with energy
Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We saw previously that this change from one microstate i (or spin configuration) to

another microstate j is the configuration space analogue to a random walk on a lattice.
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Boltzmann Distribution as Example

However, the selection of states has to generate a final distribution which is the
Boltzmann distribution. This is again the same we saw for a random walker, for the
discrete case we had always a binomial distribution, whereas for the continuous case
we had a normal distribution. The way we sample configurations should result in, when
equilibrium is established, in the Boltzmann distribution. Else, our algorithm for
selecting microstates has to be wrong.
Since we do not know the analytic form of the transition rate, we are free to model it as

W (i → j) = g(i → j)A(i → j),

where g is a selection probability while A is the probability for accepting a move. It is

also called the acceptance ratio.
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Boltzmann Distribution as Example

The selection probability should be same for all possible spin orientations, namely

g(i → j) =
1

N
.

With detailed balance this gives

g(j → i)A(j → i)

g(i → j)A(i → j)
= exp (−β(Ei − Ej )),

but since the selection ratio is the same for both transitions, we have

A(j → i)

A(i → j)
= exp (−β(Ei − Ej ))

In general, we are looking for those spin orientations which correspond to the average

energy at equilibrium.
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Boltzmann Distribution as Example

We are in this case interested in a new state Ej whose energy is lower than Ei , viz.,
∆E = Ej − Ei ≤ 0. A simple test would then be to accept only those microstates which
lower the energy. Suppose we have ten microstates with energy
E0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · ≤ E9. Our desired energy is E0. At a given temperature T
we start our simulation by randomly choosing state E9. Flipping spins we may then find
a path from E9 → E8 → E7 · · · → E1 → E0. This would however lead to biased
statistical averages since it would violate the ergodic hypothesis discussed above. This
principle states that it should be possible for any Markov process to reach every
possible state of the system from any starting point if the simulations is carried out for a
long enough time.
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Boltzmann Distribution as Example

Any state in a Boltzmann distribution has a probability different from zero and if such a
state cannot be reached from a given starting point, then the system is not ergodic.
This means that another possible path to E0 could be
E9 → E7 → E8 · · · → E9 → E5 → E0 and so forth. Even though such a path could
have a negligible probability it is still a possibility, and if we simulate long enough it
should be included in our computation of an expectation value.

Thus, we require that our algorithm should satisfy the principle of detailed balance and

be ergodic. One possible way is the Metropolis algorithm.

Computational Physics II FYS4410



Metropolis Algorithm

The equation for detailed balance

A(µ→ ν)

A(ν → µ)
= exp (−β(Eν − Eµ))

is general and we could replace the Boltzmann distribution with other distributions as
well. It specifies the ratio of pairs of acceptance probabilities, which leaves us with
quite some room to manouvre.

We give the largest of the two acceptance ratios the value 1 and adjust the other
to satisfy the constraint.

If Eµ < Eν then the larger of the two acceptance ratios is A(ν → µ) and we set
to 1.

Then we must have

A(µ→ ν) = exp (−β(Eν − Eµ))

if Eν − Eµ > 0 and 1 otherwise. And that is the Metropolis algorithm.
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Implementation

Establish an initial energy Eb

Do a random change of this initial state by e.g., flipping an
individual spin. This new state has energy Et . Compute then
∆E = Et − Eb

If ∆E ≤ 0 accept the new configuration.

If ∆E > 0, compute w = e−(β∆E).

Compare w with a random number r . If r ≤ w accept, else keep
the old configuration.

Compute the terms in the sums
∑

AsPs.

Repeat the above steps in order to have a large enough number
of microstates

For a given number of MC cycles, compute then expectation
values.
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More general Definition

A Markov chain Monte Carlo method for the simulation of a distribution p is any method
producing an ergodic Markov chain of events x whose stationary distribution is p.

Generate an initial value x (i).

Generate a trial value yt with probability f (yt |x (i)).

Take a new value

x (i+1) =


yt with probability= ρ(x (i), yt )

x (i) with probability= 1− ρ(x (i), yt )

We have defined

ρ(x , y) = min


p(y)f (x |y)

p(x)f (y |x)
, 1
ff
.

The distribution f is often called the instrumental (we will relate it to the jumping
of a walker) or proposal distribution while ρ is the Metropolis-Hastings
acceptance probability. When f (y |x) is symmetric it is just called the Metropolis
algo.
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Implementation

Establish an initial state with some selected features to test.

Do a random change of this initial state.

Compute the Metropolis-Hastings acceptance probability ρ

Compare ρ with a random number r . If r ≤ ρ accept, else keep
the old configuration.

Compute the terms needed to obtain expectations values.

Repeat the above steps in order to have as good statistics as
possible.

For a given number of MC cycles, compute then the final
expectation values.
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Modelling the Ising Model

The code uses periodic boundary conditions with energy

Ei = −J
NX

j=1

sj sj+1,

In our case we have as the Monte Carlo sampling function the probability for finding the
system in a state s given by

Ps =
e−(βEs)

Z
,

with energy Es , β = 1/kT and Z is a normalization constant which defines the partition
function in the canonical ensemble

Z (β) =
X

s

e−(βEs)

This is difficult to compute since we need all states. In a calculation of the Ising model

in two dimensions, the number of configurations is given by 2N with N = L× L the

number of spins for a lattice of length L. Fortunately, the Metropolis algorithm considers

only ratios between probabilities and we do not need to compute the partition function

at all.

Computational Physics II FYS4410



Metropolis Algorithm

1 Establish an initial state with energy Eb by positioning yourself at a random
position in the lattice

2 Change the initial configuration by flipping e.g., one spin only. Compute the
energy of this trial state Et .

3 Calculate ∆E = Et − Eb . The number of values ∆E is limited to five for the Ising
model in two dimensions, see the discussion below.

4 If ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered
and we are hopefully moving towards the energy minimum at a given
temperature. Go to step 7.

5 If ∆E > 0, calculate w = e−(β∆E).

6 Compare w with a random number r . If

r ≤ w ,

then accept the new configuration, else we keep the old configuration and its
values.

7 The next step is to update various expectations values.

8 The steps (2)-(7) are then repeated in order to obtain a sufficently good
representation of states.
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Modelling the Ising Model

In the calculation of the energy difference from one spin configuration to the other, we
will limit the change to the flipping of one spin only. For the Ising model in two
dimensions it means that there will only be a limited set of values for ∆E . Actually,
there are only five possible values. To see this, select first a random spin position x , y
and assume that this spin and its nearest neighbors are all pointing up. The energy for
this configuration is E = −4J. Now we flip this spin as shown below. The energy of the
new configuration is E = 4J, yielding ∆E = 8J.

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑
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Modelling the Ising Model

The four other possibilities are as follows

E = −2J
↑

↓ ↑ ↑
↑

=⇒ E = 2J
↑

↓ ↓ ↑
↑

with ∆E = 4J,

E = 0
↑

↓ ↑ ↑
↓

=⇒ E = 0
↑

↓ ↓ ↑
↓

with ∆E = 0
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Modelling the Ising Model

E = 2J
↓

↓ ↑ ↑
↓

=⇒ E = −2J
↓

↓ ↓ ↑
↓

with ∆E = −4J and finally

E = 4J
↓

↓ ↑ ↓
↓

=⇒ E = −4J
↓

↓ ↓ ↓
↓

with ∆E = −8J. This means in turn that we could construct an array which contains all

values of eβ∆E before doing the Metropolis sampling. Else, we would have to evaluate

the exponential at each Monte Carlo sampling.
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The loop over T in main

for ( double temp = initial_temp; temp <= final_temp; temp+=temp_step){
// initialise energy and magnetization
E = M = 0.;
// setup array for possible energy changes
for( int de =-8; de <= 8; de++) w[de] = 0;
for( int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temp);
// initialise array for expectation values
for( int i = 0; i < 5; i++) average[i] = 0.;
initialize(n_spins, temp, spin_matrix, E, M);
// start Monte Carlo computation
for (int cycles = 1; cycles <= mcs; cycles++){

Metropolis(n_spins, idum, spin_matrix, E, M, w);
// update expectation values
average[0] += E; average[1] += E*E;
average[2] += M; average[3] += M*M; average[4] += fabs(M);

}
// print results
output(n_spins, mcs, temp, average);

}
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The Initialise function

void initialize(int n_spins, double temp, int **spin_matrix,
double& E, double& M)
{

// setup spin matrix and intial magnetization
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
spin_matrix[y][x] = 1; // spin orientation for the ground state
M += (double) spin_matrix[y][x];

}
}
// setup initial energy
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
E -= (double) spin_matrix[y][x]*

(spin_matrix[periodic(y,n_spins,-1)][x] +
spin_matrix[y][periodic(x,n_spins,-1)]);

}
}

}// end function initialise
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The periodic function

A compact way of dealing with periodic boundary conditions is given as follows:

// inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);

with the following example from the function initialise

E -= (double) spin_matrix[y][x]*
(spin_matrix[periodic(y,n_spins,-1)][x] +

spin_matrix[y][periodic(x,n_spins,-1)]);
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Alternative way for periodic boundary conditions

A more pedagogical way is given by the Fortran program

DO y = 1,lattice_y
DO x = 1,lattice_x

right = x+1 ; IF(x == lattice_x ) right = 1
left = x-1 ; IF(x == 1 ) left = lattice_x
up = y+1 ; IF(y == lattice_y ) up = 1
down = y-1 ; IF(y == 1 ) down = lattice_y
energy=energy - spin_matrix(x,y)*(spin_matrix(right,y)+&

spin_matrix(left,y)+spin_matrix(x,up)+ &
spin_matrix(x,down) )

magnetization = magnetization + spin_matrix(x,y)
ENDDO

ENDDO
energy = energy*0.5
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The Metropolis function

// loop over all spins
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
int ix = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int iy = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int deltaE = 2*spin_matrix[iy][ix]*

(spin_matrix[iy][periodic(ix,n_spins,-1)]+
spin_matrix[periodic(iy,n_spins,-1)][ix] +
spin_matrix[iy][periodic(ix,n_spins,1)] +
spin_matrix[periodic(iy,n_spins,1)][ix]);

if ( ran1(&idum) <= w[deltaE+8] ) {
spin_matrix[iy][ix] *= -1; // flip one spin and accept new spin config

M += (double) 2*spin_matrix[iy][ix];
E += (double) deltaE;

}
}

}
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Expectation Values

double norm = 1/((double) (mcs));// divided by total number of cycles
double Eaverage = average[0]*norm;
double E2average = average[1]*norm;
double Maverage = average[2]*norm;
double M2average = average[3]*norm;
double Mabsaverage = average[4]*norm;
// all expectation values are per spin, divide by 1/n_spins/n_spins
double Evariance = (E2average- Eaverage*Eaverage)/n_spins/n_spins;
double Mvariance = (M2average - Mabsaverage*Mabsaverage)/n_spins/n_spins;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << temp;
ofile << setw(15) << setprecision(8) << Eaverage/n_spins/n_spins;
ofile << setw(15) << setprecision(8) << Evariance/temp/temp;
ofile << setw(15) << setprecision(8) << Maverage/n_spins/n_spins;
ofile << setw(15) << setprecision(8) << Mvariance/temp;
ofile << setw(15) << setprecision(8) << Mabsaverage/n_spins/n_spins << endl;
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Potts Model

The Potts model has been, in addition to the Ising model, widely used in studies of
phase transitions in statistical physics. The so-called two-dimensional q-state Potts
model has an energy given by

E = −J
NX

<kl>

δsl ,sk ,

where the spin sk at lattice position k can take the values 1, 2, . . . , q. The Kronecker

delta function δsl ,sk equals unity if the spins are equal and is zero otherwise. N is the

total number of spins.
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Potts Model

For q = 2 the Potts model corresponds to the Ising model. To see that we can rewrite
the last equation as

E = −
J

2

NX
<kl>

2(δsl ,sk −
1

2
)−

NX
<kl>

J

2
.

Now, 2(δsl ,sk −
1
2 ) is +1 when sl = sk and −1 when they are different. This model is

thus equivalent to the Ising model except a trivial difference in the energy minimum
given by a an additional constant and a factor J → J/2. One of the many applications
of the Potts model is to helium absorbed on the surface of graphite.
For references on the Potts Models, see Barkema and Newman chapter 4.5 and
Monroe at http://prola.aps.org/abstract/PRE/v66/i6/e066129 and Challa and Landau at
http://link.aps.org/abstract/PRB/v34/p1841 .
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Metropolis Algorithm for the Potts Model

1 Establish an initial state with energy Eb by positioning yourself at a random
position in the lattice

2 Change the initial configuration by flipping e.g., one spin only. Compute the
energy of this trial state Et .

3 Calculate ∆E = Et − Eb . The number of values ∆E is limited to five for the Ising
model in two dimensions, see the discussion below.

4 If ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered
and we are hopefully moving towards the energy minimum at a given
temperature. Go to step 7.

5 If ∆E > 0, calculate w = e−(β∆E).

6 Compare w with a random number r . If

r ≤ w ,

then accept the new configuration, else we keep the old configuration and its
values.

7 The next step is to update various expectations values.

8 The steps (2)-(7) are then repeated in order to obtain a sufficently good
representation of states.

Metropolis for Potts model for q ≥ 5 is inefficient! Use heat bath algo.
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Potts Model

Only four possible values for ∆E

void Energy(double T,double *Boltzmann){

Boltzmann[0] = exp(-J/T) ;
Boltzmann[1] = exp(-2*J/T);
Boltzmann[2] = exp(-3*J/T);
Boltzmann[3] = exp(-4*J/T);

}//Energy
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Potts Model

Must choose q randomly!

void Metropolis(int q,double *Boltzmann,int **Spin,long& seed,double& E){

int SpinFlip, LocalEnergy0, LocalEnergy, x, y, dE;

for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){

x = (int) (ran1(&seed)*N);
y = (int) (ran1(&seed)*N);
LocalEnergy0 = 0;
LocalEnergy = 0;
dE = 0;
if(Spin[x][y] == Spin[x][periodic(y,N,-1)])

LocalEnergy0 --;
if(Spin[x][y] == Spin[periodic(x,N,-1)][y])

LocalEnergy0 --;
if(Spin[x][y] == Spin[x][periodic(y,N,1)])

LocalEnergy0 --;
if(Spin[x][y] == Spin[periodic(x,N,1)][y])

LocalEnergy0 --;
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Potts Model

do{
SpinFlip = (int)(ran1(&seed)*(q)+1);
}while(SpinFlip == Spin[x][y]);

if(SpinFlip == Spin[x][periodic(y,N,-1)])
LocalEnergy --;

if(SpinFlip == Spin[periodic(x,N,-1)][y])
LocalEnergy --;

if(SpinFlip == Spin[x][periodic(y,N,1)])
LocalEnergy --;

if(SpinFlip == Spin[periodic(x,N,1)][y])
LocalEnergy --;

dE = LocalEnergy - LocalEnergy0;

if(dE<=0){
Spin[x][y] = SpinFlip;
E += J*dE;

}
else if(ran1(&seed)<Boltzmann[dE-1]){

Spin[x][y] = SpinFlip;
E += J*dE;
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Time Auto-correlation Function

Here we mention that one can show, using scaling relations, that at the critical
temperature the correlation time τ relates to the lattice size L as

τ ∼ Ld+z ,

with d the dimensionality of the system. For the Metropolis algorithm based on a single
spin-flip process, Nightingale and Blöte obtained z = 2.1665± 0.0012. This is a rather
high value, meaning that our algorithm is not the best choice when studying properties
of the Ising model near TC .

We can understand this behavior by studying the development of the two-dimensional

Ising model as function of temperature.
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Time Auto-correlation Function
Cooling the system down to the critical temperature we observe clusters pervading
larger areas of the lattice. The reason for the large correlation time (and the parameter
z) for the single-spin flip Metropolis algorithm is the development of these large
domains or clusters with all spins pointing in one direction. It is quite difficult for the
algorithm to flip over one of these large domains because it has to do it spin by spin,
with each move having a high probability of being rejected due to the ferromagnetic
interaction between spins. Since all spins point in the same direction, the chance of
performing the flip

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

leads to an energy difference of ∆E = 8J. Using the exact critical temperature

kBTC/J ≈ 2.2.69, we obtain a probability exp−(8/2.269) = 0.029429 which is rather

small. The increase in large correlation times due to increasing lattices can be

diminished by using so-called cluster algorithms, such as that introduced by Ulli Wolff

in 1989 and the Swendsen-Wang algorithm from 1987. The two-dimensional Ising

model with the Wolff or Swendsen-Wang algorithms exhibits a much smaller correlation

time, with the variable z = 0.25± 001. Here, instead of flipping a single spin, one flips

an entire cluster of spins pointing in the same direction.
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Time Auto-correlation Function

The so-called time-displacement autocorrelation φ(t) for the magnetization is given by

φ(t) =

Z
dt ′
ˆ
M(t ′)− 〈M〉

˜ ˆ
M(t ′ + t)− 〈M〉

˜
,

which can be rewritten as

φ(t) =

Z
dt ′
h
M(t ′)M(t ′ + t)− 〈M〉2

i
,

where 〈M〉 is the average value of the magnetization and M(t) its instantaneous
value. We can discretize this function as follows, where we used our set of computed
values M(t) for a set of discretized times (our Monte Carlo cycles corresponding to a
sweep over the lattice)

φ(t) =
1

tmax− t

tmax−tX
t′=0

M(t ′)M(t ′+ t)−
1

tmax− t

tmax−tX
t′=0

M(t ′)×
1

tmax− t

tmax−tX
t′=0

M(t ′+ t).
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Time Auto-correlation Function

One should be careful with times close to tmax, the upper limit of the sums becomes
small and we end up integrating over a rather small time interval. This means that the
statistical error in φ(t) due to the random nature of the fluctuations in M(t) can
become large.
One should therefore choose t � tmax.
Note also that we could replace the magnetization with the mean energy, or any other
expectation values of interest.

The time-correlation function for the magnetization gives a measure of the correlation

between the magnetization at a time t ′ and a time t ′ + t . If we multiply the

magnetizations at these two different times, we will get a positive contribution if the

magnetizations are fluctuating in the same direction, or a negative value if they

fluctuate in the opposite direction. If we then integrate over time, or use the discretized

version of, the time correlation function φ(t) should take a non-zero value if the

fluctuations are correlated, else it should gradually go to zero. For times a long way

apart the magnetizations are most likely uncorrelated and φ(t) should be zero.
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Time Auto-correlation Function

We can derive the correlation time by observing that our Metropolis algorithm is based
on a random walk in the space of all possible spin configurations. Our probability
distribution function ŵ(t) after a given number of time steps t could be written as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix.
We can always expand ŵ(0) in terms of the right eigenvectors of v̂ of Ŵ as

ŵ(0) =
X

i

αi v̂ i ,

resulting in
ŵ(t) = Ŵt ŵ(0) = Ŵt

X
i

αi v̂ i =
X

i

λt
iαi v̂ i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂ i .
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Time Auto-correlation Function

If we assume that λ0 is the largest eigenvector we see that in the limit t →∞, ŵ(t)
becomes proportional to the corresponding eigenvector v̂0. This is our steady state or
final distribution.
We can relate this property to an observable like the mean magnetization. With the
probabilty ŵ(t) (which in our case is the Boltzmann distribution) we can write the mean
magnetization as

〈M(t)〉 =
X
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values of Mµ in its various

microstates µ.
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Time Auto-correlation Function
We rewrite this relation as

〈M(t)〉 = ŵ(t)m =
X

i

λt
iαi v̂ i m i .

If we define mi = v̂ i m i as the expectation value of M in the i th eigenstate we can
rewrite the last equation as

〈M(t)〉 =
X

i

λt
iαi mi .

Since we have that in the limit t →∞ the mean magnetization is dominated by the the
largest eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

λt
iαi mi .

We define the quantity

τi = −
1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

αi mi e
−t/τi .
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Time Auto-correlation Function

The quantities τi are the correlation times for the system. They control also the
auto-correlation function discussed above. The longest correlation time is obviously
given by the second largest eigenvalue τ1, which normally defines the correlation time
discussed above. For large times, this is the only correlation time that survives. If
higher eigenvalues of the transition matrix are well separated from λ1 and we simulate
long enough, τ1 may well define the correlation time. In other cases we may not be
able to extract a reliable result for τ1. Coming back to the time correlation function φ(t)
we can present a more general definition in terms of the mean magnetizations 〈M(t)〉.
Recalling that the mean value is equal to 〈M(∞)〉 we arrive at the expectation values

φ(t) = 〈M(0)−M(∞)〉〈M(t)−M(∞)〉,

resulting in
φ(t) =

X
i,j 6=0

miαi mjαj e
−t/τi ,

which is appropriate for all times.

Computational Physics II FYS4410



Topics for Week 7, February 5- 9

Brief reminder from last week

How to compute the time-correlation function and the
correlation time

Wolff and Swendsen-Wang algorithms

Heat-Bath algorithm and Potts Model

MPI instructions

Histogram method and statistical analysis of data.
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Time Auto-correlation Function, Point b) in Project 1

The so-called time-displacement autocorrelation φ(t) for the magnetization is given by

φ(t) =

Z
dt ′
ˆ
M(t ′)− 〈M〉

˜ ˆ
M(t ′ + t)− 〈M〉

˜
,

which can be rewritten as

φ(t) =

Z
dt ′
h
M(t ′)M(t ′ + t)− 〈M〉2

i
,

where 〈M〉 is the average value of the magnetization and M(t) its instantaneous
value. We can discretize this function as follows, where we used our set of computed
values M(t) for a set of discretized times (our Monte Carlo cycles corresponding to a
sweep over the lattice)

φ(t) =
1

tmax− t

tmax−tX
t′=0

M(t ′)M(t ′+ t)−
1

tmax− t

tmax−tX
t′=0

M(t ′)×
1

tmax− t

tmax−tX
t′=0

M(t ′+ t).
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Time Auto-correlation Function

One should be careful with times close to tmax, the upper limit of the sums becomes
small and we end up integrating over a rather small time interval. This means that the
statistical error in φ(t) due to the random nature of the fluctuations in M(t) can
become large. Note also that we could replace the magnetization with the mean
energy, or any other expectation values of interest.

The time-correlation function for the magnetization gives a measure of the correlation

between the magnetization at a time t ′ and a time t ′ + t . If we multiply the

magnetizations at these two different times, we will get a positive contribution if the

magnetizations are fluctuating in the same direction, or a negative value if they

fluctuate in the opposite direction. If we then integrate over time, or use the discretized

version the time correlation function φ(t) should take a non-zero value if the

fluctuations are correlated, else it should gradually go to zero. For times a long way

apart the magnetizations are most likely uncorrelated and φ(t) should be zero.
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Correlation Time, Point f) in Project 1

The Ising model does not have dynamics built into it: there is no kinetic energy term

associated with the spins Si . The Metropolis Monte Carlo method generates

successive configurations of spins, but this does not represent the real time evolution

of a system of spins. In a Metropolis simulation, the successive spin configurations

also exhibit a type of critical slowing down near the phase transition temperature TC(L)

of the finite lattice. This is not the same as relaxation in a real system. However, it is

useful to measure a relaxation time for the Metropolis ”dynamics” because it helps to

determine how many steps to skip in order to generate statistically independent

configurations. Recall that one Monte Carlo step per spin is taken conventionally to be

N Metropolis steps. If the correlation time is of the order of a single Monte Carlo step,

then every configuration can be used in measuring averages. But if the correlation time

is longer, then approximately Monte Carlo steps should be discarded between every

data point.
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Correlation Time

If the correlation function decays exponentially

φ(t) ∼ exp (−t/τ)

then the exponential correlation time can be computed as the average

τexp = −〈
t

log| φ(t)
φ(0)

|
〉.

If the decay is exponential, thenZ ∞

0
dtφ(t) =

Z ∞

0
dtφ(0) exp (−t/τ) = τφ(0),

which suggests another measure of correlation

τint =
X

k

φ(k)

φ(0)
,

called the integrated correlation time.
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Better Algorithm needed

Monte Carlo simulations close to a phase transition are affected by critical slowing
down. In the 2-D Ising system, the correlation length becomes very large, and the
correlation time, which measures the number of steps between independent Monte
Carlo configurations behaves like

τ ∼ ξz ,

with z ≈ 2.1 for the Metropolis algorithm. The exponent z is called the dynamic critical
exponent, The maximum possible value for ξ in a finite system of N = L× L spins is
ξ ∼ L, because ξ cannot be larger than the lattice size! This implies that τ ∼ Lz ≈ N.
This makes simulations difficult because the Metropolis algorithm time scales like N, so
the time to generate independent Metropolis configurations scales like

Nτ ∼ N2 = L4.

If the lattice size
L →

√
10L ≈ 3.2L

, the simulation time increases by a factor of 100.
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Better Algorithm needed

There is a simple physical argument which helps understand why z = 2, The

Metropolis algorithm is a local algorithm, i.e., one spin is tested and flipped at a time.

Near TC the system develops large domains of correlated spins which are difficult to

break up. So the most likely change in configuration is the movement of a whole

domain of spins. But one Metropolis sweep of the lattice can move a domain at most by

approximately one lattice spacing in each time step. This motion is stochastic, i.e., like

a random walk. The distance traveled in a random walk scales like
√

time, so to move a

domain a distance of order ξ takes τ ∼ ξ2 Monte Carlo steps. This argument suggests

that the way to speed up a Monte Carlo simulation near TC is to use a non-local

algorithm.
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Swendsen-Wang Algorithm, Ising Model

The essential idea of this algorithm suggested by R.H. Swendsen and J.-S. Wang,
Phys. Rev. Lett. 58, 86 (1987), is to identify clusters of like spins and treat each cluster
as a giant spin to be flipped according to a random criterion. It is necessary that the
algorithm obey the detailed balance condition. Swendsen and Wang found the
following algorithm based on ideas from percolation theory.
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Swendsen-Wang Algorithm, Ising Model

Freeze/delete bonds: The 2− D square lattice, periodic boundary conditions, has
N = L× L spins and 2N bonds between spins. Construct a bond lattice as follows:

If the bond connects opposite spins, then delete it, i.e., temporarily uncouple the
two spins. Note that opposite spins have a higher bond energy +J if J > 0 and
thus a higher effective temperature. So if J is large we are effectively ”melting”
the bond.

If the bond connects like spins (both up or both down), then delete the bond with
probability e−2J/(kBT ) , i.e., generate a random deviate r and delete the bond if
r < e−2J/(kBT ) . Note that a like-spin pair has bond energy −J : so the change
in energy in flipping one spin of the pair, i.e., in going from like to unlike spins is
E = 2J . Bonds which survive this test are ”frozen”. The probability of this
happening is 1− e−2J/(kBT ) . If T = 0 all like-spin bonds get frozen, while at
T = ∞ the freezing probability is zero and all the bonds melt.

Note that constructing the bond lattice takes time of O(N) because there are 2N

bonds.
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Swendsen-Wang Algorithm, Ising Model

After the bond lattice has been set up, the spins are decomposed into clusters. A
cluster is simply a domain of spins connected to one another by frozen bonds.
The lattice obviously decomposes into clusters in a unique way, and the
decomposition is a deterministic problem. Cluster decomposition is potentially
time consuming. A naive algorithm can take time of O(N2), so it is essential to
use a decomposition algorithm that scales linearly with lattice size like
Metropolis!

Spin Up date: So far, constructing the bond lattice and identifying clusters has
not changed any of the spins. The spins in each cluster are now ”frozen” and the
bonds between different clusters have been deleted. Each cluster is now
updated by assigning a random new value ±1 to all of the spins simultaneously,
i.e., generate a random deviate r and flip all spins in that cluster if r < 0.5. Note
that T does not play a role in this flipping decision. The spin update step scales
like the number of clusters which is < N . Swendsen and Wang showed that
z ≈ 0.35 for this algorithm in the 2− D Ising model. Assuming that each
Swendsen-Wang step scales like N , the running time for the simulation scales
like

Nτ ∼ Nξ0.35 ∼ NL0.35 ∼ N1.175

which is much better than O(N2) with Metropolis.
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Wolff Algorithm, Ising Model

Two years after Swendsen and Wang published their algorithm, U. Wolff, Phys. Rev.
Lett. 62, 361 (1989) published an even more efficient algorithm based on constructing
and flipping one single cluster at a time Freeze/delete bonds: The 2− D square lattice,
periodic boundary conditions, has N = L× L spins and 2N bonds between spins.
Construct a bond lattice as follows:

Choose a random spin in the lattice

Look at the nearest neighbors of that spin. If they point in the same direction as
the seed spin, add them to the cluster with a probability Padd = 1− e−2J/(kBT ) as
in the Swendsen-Wang algo.

For each spin that is added, examine each ot its neighbors. If they point in the
same direction, add each with the probability Padd. Repeat till no more neighbors
to consider for inclusions.

Flip the cluster.
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Wolff Algorithm, Detailed Balance

Consider two states of the total lattice, i a and j . They differ from one another by the
flipping of a single cluster of similarly oriented spins. The crucial thing to notice is the
way the spins are oriented around the edge of the cluster. The bonds between these
spins and the ones in the cluster have to be broken when the cluster is flipped. This
means that the bonds which are not broken in going from i to j must be broken when
we flip back again from j to i
When we move from i to j we break m bonds in order to flip the cluster. These bonds
represent pairs of similarly oriented spins which are not added to the cluster. The
probability of not adding a spin is 1− Padd. If we break m bonds we have a selection
probability (1− Padd)

m.

If there are n bonds to break in the reverse move, then the selection probability is

(1− Padd)
n.
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Wolff Algorithm, Detailed Balance

An important condition we require that our Markov chain should satisfy is that of
detailed balance. At equilibrium detailed balance gives thus

W (j → i)

W (i → j)
=

wi

wj
.

We model the transition probability as W (j → i) = g(j → i)A(j → i), where g is the
selection probability and A is the acceptance probability. Our cluster algo gives

g(j → i)A(j → i)

g(i → j)A(i → j)
=

wi

wj
,

which with the Boltzmann distribution results in

(1− Padd)
m−n A(j → i)

A(i → j)
= e−β(Ei−Ej ).
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Wolff Algorithm, Detailed Balance

The change between the two states depends on the number of broken bonds. For each
broken bond of the m ones the change is (Ising model, you must figure out what this
means for the Potts model) +2J. For each broken bond for the reverse process (total
n) we an energy change −2J. That means that we get

(1− Padd)
m−n A(j → i)

A(i → j)
= e−β2J(m−n),

which we rewrite as
A(j → i)

A(i → j)
=
“

eβ2J(1− Padd)
”n−m

,

and using the fact that Padd = 1− e−2J/(kBT ) we obtain a ratio between the acceptance
probabilities as

A(j → i)

A(i → j)
= 1

The cluster is always flipped. We make the acceptance ratios for both forward and

backward moves equal unity. Note that we need not go through the whole lattice to flip

a cluster, this should be contrasted with the Swendsen-Wang also. Wolff showed that

z ≈ 0.25 for this algorithm.
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Wolff Algorithm, Ising Code, useful for Point g) in
Project 1

#include <cmath>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <list>
#include "rng.h"

using namespace std;

double J = +1; // ferromagnetic coupling
int Lx, Ly; // number of spins in x and y
int N; // number of spins
int **s; // the spins
double T; // temperature
double H = 0; // magnetic field
int steps; // number of Monte Carlo steps
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Wolff Algorithm

void initialize ( ) {
s = new int* [Lx];
for (int i = 0; i < Lx; i++)

s[i] = new int [Ly];
for (int i = 0; i < Lx; i++)

for (int j = 0; j < Ly; j++)
s[i][j] = qadran() < 0.5 ? +1 : -1; // hot start

steps = 0;
}
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Wolff Algorithm

This function initialises the cluster with its given probability.

bool **cluster; // cluster[i][j] = true if i,j belongs
double addProbability; // 1 - eˆ(-2J/kT)

void initializeClusterVariables() {

// allocate 2-D array for spin cluster labels
cluster = new bool* [Lx];
for (int i = 0; i < Lx; i++)

cluster[i] = new bool [Ly];

// compute the probability to add a like spin to the cluster
addProbability = 1 - exp(-2*J/T);

}

The array to mark whether a spin belongs to the cluster or not is given by the variable

cluster.
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Wolff Algorithm

At each Monte Carlo step a single cluster is grown around a randomly
chosen seed spin and all the spins of this cluster are flipped.

// declare functions to implement Wolff algorithm
void growCluster(int i, int j, int clusterSpin);
void tryAdd(int i, int j, int clusterSpin);

void oneMonteCarloStep() {

// no cluster defined so clear the cluster array
for (int i = 0; i < Lx; i++)
for (int j = 0; j < Lx; j++)

cluster[i][j] = false;

// choose a random spin and grow a cluster
int i = int(qadran() * Lx);
int j = int(qadran() * Ly);
growCluster(i, j, s[i][j]);

++steps;
}
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Wolff Algorithm

This function grows a Wolff cluster and simultaneously flips all spins in the cluster. We
do it in two steps

void growCluster(int i, int j, int clusterSpin) {

// mark the spin as belonging to the cluster and flip it
cluster[i][j] = true;
s[i][j] = -s[i][j];

// find the indices of the 4 neighbors
// assuming periodic boundary conditions
int iPrev = i == 0 ? Lx-1 : i-1;
int iNext = i == Lx-1 ? 0 : i+1;
int jPrev = j == 0 ? Ly-1 : j-1;
int jNext = j == Ly-1 ? 0 : j+1;

}
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Wolff Algorithm

// if the neighbor spin does not belong to the
// cluster, then try to add it to the cluster
if (!cluster[iPrev][j])

tryAdd(iPrev, j, clusterSpin);
if (!cluster[iNext][j])

tryAdd(iNext, j, clusterSpin);
if (!cluster[i][jPrev])

tryAdd(i, jPrev, clusterSpin);
if (!cluster[i][jNext])

tryAdd(i, jNext, clusterSpin);
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Wolff Algorithm

void tryAdd(int i, int j, int clusterSpin) {
if (s[i][j] == clusterSpin)

if (qadran() < addProbability)
growCluster(i, j, clusterSpin);

}
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Wolff Algorithm

// variables to measure chi and its error estimate
double chi; // current susceptibility per spin
double chiSum; // accumulate chi values
double chiSqdSum; // accumulate chiˆ2 values
int nChi; // number of values accumulated

// variables to measure autocorrelation time
int nSave = 10; // number of values to save
double cChiSum; // accumulate
list<double> chiSave; // the saved values
double *cChi; // correlation sums
int nCorr; // number of values accumulated

// variables to estimate fluctuations by blocking
int stepsPerBlock = 1000; // suggested in Wolff paper
double chiBlock; // used to calculate block average
double chiBlockSum; // accumulate block <chi> values
double chiBlockSqdSum; // accumulate block <chi>ˆ2 values
int stepInBlock; // number of steps in current block
int blocks; // number of blocks
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Wolff Algorithm

void initializeObservables() {
chiSum = chiSqdSum = 0;
nChi = 0;
chiBlock = chiBlockSum = chiBlockSqdSum = 0;
stepInBlock = blocks = 0;
cChiSum = 0;
cChi = new double [nSave + 1];
for (int i = 0; i <= nSave; i++)

cChi[i] = 0;
nCorr = 0;

}
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Wolff Algorithm

void measureObservables() {

// observables are derived from the magnetic moment
int M = 0;
for (int i = 0; i < Lx; i++)
for (int j = 0; j < Ly; j++)

M += s[i][j];
chi = M * double(M) / double(N);
// accumulate values
chiSum += chi;
chiSqdSum += chi * chi;
++nChi;
// accumulate correlation values
if (chiSave.size() == nSave) {

cChiSum += chi;
cChi[0] += chi * chi;
++nCorr;
list<double>::const_iterator iter = chiSave.begin();
for (int i = 1; i <= nSave; i++)

cChi[i] += *iter++ * chi;
chiSave.pop_back(); // remove oldest saved chi value

}
chiSave.push_front(chi); // add current chi value
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Wolff Algorithm

// accumulate block values
chiBlock += chi;
++stepInBlock;
if (stepInBlock == stepsPerBlock) {

chiBlock /= stepInBlock;
chiBlockSum += chiBlock;
chiBlockSqdSum += chiBlock * chiBlock;
++blocks;
stepInBlock = 0;
chiBlock = 0;

}
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Wolff Algorithm

// averages of observables
double chiAve; // average susceptibility per spin
double chiError; // Monte Carlo error estimate
double chiStdDev; // Standard deviation error from blocking
double tauChi; // autocorrelation time
double tauEffective; // effective autocorrelation time
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Wolff Algorithm

void computeAverages() {
// average susceptibility per spin
chiAve = chiSum / nChi;
// Monte Carlo error estimate
chiError = chiSqdSum / nChi;
chiError = sqrt(chiError - chiAve * chiAve);
chiError /= sqrt(double(nChi));
// exponential correlation time
tauChi = 0;
double cAve = cChiSum / nCorr;
double c0 = cChi[0] / nCorr - cAve * cAve;
for (int i = 1; i <= nSave; i++) {

double c = (cChi[i] / nCorr - cAve * cAve) / c0;
if (c > 0.01) {

tauChi += -i/log(c);
} else {

tauChi /= (i - 1);
break;

}
if (i == nSave)

tauChi /= nSave;
}
// standard deviation from blocking
double chiBlockAve = chiBlockSum / blocks;
chiStdDev = chiBlockSqdSum / blocks;
chiStdDev = sqrt(chiStdDev - chiBlockAve * chiBlockAve);
chiStdDev /= sqrt(double(blocks));
// effective autocorrelation time
tauEffective = chiStdDev / chiError;
tauEffective *= tauEffective / 2;

}
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Wolff Algorithm, Main function

int main() {

cout << " Two-dimensional Ising Model - Wolff Cluster Algorithm\n"
<< " -----------------------------------------------------\n"
<< " Enter number of spins L in each direction: ";

cin >> Lx;
Ly = Lx;
N = Lx * Ly;
cout << " Enter temperature T: ";
cin >> T;
cout << " Enter number of Monte Carlo steps: ";
int MCSteps;
cin >> MCSteps;

initialize();
initializeClusterVariables();
int thermSteps = MCSteps / 5;
cout << " Performing " << thermSteps

<< " thermalization steps ..." << flush;
for (int i = 0; i < thermSteps; i++)

oneMonteCarloStep();

Computational Physics II FYS4410



Wolff Algorithm, Main function

cout << " done\n Performing production steps ..." << flush;
initializeObservables();
for (int i = 0; i < MCSteps; i++) {

oneMonteCarloStep();
measureObservables();

}
cout << " done" << endl;
computeAverages();
cout << "\n Average chi per spin = " << chiAve

<< "\n Monte Carlo error estimate = " << chiError
<< "\n Autocorrelation time tau = " << tauChi
<< "\n Std. Dev. using blocking = " << chiStdDev

<< "\n Effective tau = " << tauEffective << endl;
}
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Repeat: Metropolis Algorithm

The equation for detailed balance

A(µ→ ν)

A(ν → µ)
= exp (−β(Eν − Eµ))

results in the following algo

We give the largest of the two acceptance ratios the value 1 and adjust the other
to satisfy the constraint.

If Eµ < Eν then the larger of the two acceptance ratios is A(ν → µ) and we set
to 1.

Then we must have

A(µ→ ν) = exp (−β(Eν − Eµ))

if Eν − Eµ > 0 and 1 otherwise. And that is the Metropolis algorithm.
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Potts Model and Metropolis

In the calculation of the energy difference from one spin configuration to the other, we
have for the q = 2 Potts two possible values only. When change one of the values such
as flipping a spin we start with an energy E = −4J. Now we flip this spin as shown
below. The energy of the new configuration is E = 0J, yielding ∆E = 4J.

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑
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Potts Model and Heat-Bath Algorithm, last Point of
Project

However, when q becomes large the standard Metropolis algorithm becomes
inefficient. Assume that q = 100. At high T the acceptance probability is close to 1 and
our algorithm is efficient.
When we cool down the system T → TC , more and more ’spins’ will take the same
value and we build up cluster/domains with equally valued ’spins’. If the spins is
aligned with its neigbours it has lower energy and thereby larger e−βE weight.
The problem comes when q is large. If our value is one of the other 96 values, we need
on average 100/4 = 25 steps to find a desired state. Long time to find state with lower
energy.
If we start at low temperatures, there is an extra cost to excite, leading to smaller
acceptance probability. Could then have almost 96 out 100 moves rejected.

We need a better algo again.
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Potts Model and Heat-Bath Algorithm

Choose a random spin Si in the lattice

Regardless of its value, choose a new value Si in proportion to the Boltzmann
weight for the different values, the values are drawn from a so-called heat-bath.
In other words, we give the spin a value n between 1 and q (n ∈ [1, q]) with a
probability

pn =
eβEnPq

m=1 eβEn
,

with En the energy of the system with spin Si = n

The probabilities of add up to one. The probability of making the transition from a
state with Si = n to one in which Si = m is then pm and for going back pn. Note
that these probabilities do not depend on the initial state, only on the final one,
unlike the Metropolis algo.
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Potts Model and Heat-Bath Algorithm

The equation for detailed balance

P(n → m)

P(m → n)
=

pm

pn
= exp (−β(Em − En))

The algorithm is much more efficient than the standard Metropolis for large values of q
since it will choose the states with the highest Boltzmann weight most often and can
find them in one move instead of wandering among large numbers of unfavourable
states.
For q = 2 it is less efficient than the Metropolis algorithm. For the Ising model it gives
and acceptance ratio of

A =
exp−(1/2β∆E)

exp−(1/2β∆E) + exp (1/2β∆E)

which is smaller than the standard exp−(β∆E).
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Bootstrap and Jackknife Methods, formalities

A good reference is M. C. K. Yang and David H. Robinson, Understanding and
Learning Statistics by Computer, (World Scientific, Singapore, 1986).
Simple example: suppose we want to estimate the mass of an elementary particle as
predicted in a numerical simulation. The mass is obtained by fitting an exponential to a
simulation data set as follows:

y(t) = a exp(−mt)

where the data are given as a table of y values for integer values of t , as

{y(0), y(1), y(2), . . . , y(L)}.

Actually the simulation spits out a list of such values in one single measurement, runs
for a while, and spits out another list, and so on. So our data set looks like

{yi (0), yi (1), yi (2), . . . , yi (L)},

where i = 1, . . . ,N labels a list of measurements.
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Bootstrap and Jackknife Methods

We might think all we have to do is to take the raw data and construct means ȳ(t) and

standard errors σ(t) at each time t and then do a standard least chi square fit. We

would get the best values for the parameters a and m and we would get the errors from

the error matrix. But we have a problem. The standard chi square fit assumes that the

fluctuations in the data points are statistically independent. It turns out that with the

numerical simulations (also often a problem with experimental data as well) the

fluctuations in the data are correlated. That is, if y(0) fluctuates upwards, chances are

better that y(1) also fluctuates upwards. So we can’t use the standard formula for chi

square. Now it is possible to modify the formula for chi square to take proper account of

the correlations. But the analysis becomes much more involved, so one would like to

develop more confidence in the resulting error in the mass parameter.
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Bootstrap and Jackknife Methods, formalities

Starting from a sample of N measurements, the jackknife begins by throwing out the
first measurement, leaving a jackknife data set of N − 1 “resampled” values. The
statistical analysis is done on the reduced sample, giving a measured value of a
parameter, say mJ1. Then a new resampling is done, this time throwing out the second
measurement, and a new measured value of the parameter is obtained, say mJ2. The
process is repeated for each set i in the sample, resulting in a set of parameter values
{mJi , i = 1, . . . ,N}. The standard error is given by the formula

σ2
Jmean= (N − 1)

NX
i=1

(mJi −m)2/N

where m is the result of fitting the full sample.
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Bootstrap and Jackknife Methods, formalities

The jackknife method is also capable of giving an estimate of sampling bias. We may
have a situation in which a parameter estimate tends to come out on the high side (or
low side) of its true value if a data sample is too small. Thus the estimate m derived
from a fit to N data points may be higher (or lower) than the true value. When this
happens, we might expect that removing a measurement, as we do in the jackknife,
would enhance the bias. We measure this effect by comparing the mean of the
jackknife values mJi , call it mJ. with the result m of fitting the full data set. If there is a
difference, we can correct for the bias using

m̃ = m − (N − 1)(mJ. −m)
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Bootstrap and Jackknife Methods, formalities

To see how the jackknife works, let us consider the much simpler problem of computing
the mean and standard deviation of the mean of a random sample {xi}. The
conventional approach gives

x̄ =
NX

j=1

xi/N

σ2
mean =

NX
j=1

(xj − x̄)2/[N(N − 1)]

The jackknife approach computes the jackknife sample means

xJi =
X
j 6=i

xi/(N − 1)

for i = 1, . . . ,N. Then we compute the jackknife error in the mean, which is given by

σ2
Jmean = (N − 1)

NX
i=1

(xJi − x̄)2/N
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Bootstrap and Jackknife Methods, formalities

Compare the placement of the factors of N and N − 1 here with the expression for
σmean. The reason for the difference is that the jackknife sample means are distributed
N − 1 times closer to the mean than the original values xi , so we need a correction
factor of (N − 1)2. In fact for this simple example, it is easy to show that

xJi − x̄ = (x̄ − xi )/(N − 1).

Consequently we can show trivially that

σJmean= σmean

so the jackknife procedure hasn’t gained us anything in this simple case. But our
example of determining the mass of an elementary particle is not so simple. The error
estimate is found from Eq ([*]). This error estimate is not likely to be the same as the
error obtained from a full correlated chi square analysis. However, we expect that in the
limit of an infinitely large sample, both estimates should agree.

So if we get two error estimates and they don’t agree, which should we believe? A

conservative approach would take the larger of the two.
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Topics for Week 8, February 12- 16

Brief reminder from last week

Histogram method and statistical analysis of data.

Finite size scaling and Monte Carlo renormalization group
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Histogram Method

During the simulation we can build up an estimate of the complete density Pβ(O), and
clearly it would be beneficial to utilize this information. This insight is the key to
histogram methods. In 1989 Ferrenberg and Swendsen published a method to
combine results obtained at different couplings. The method was highly efficient, and
Ferrenberg-Swendsen reweighting has become an essential tool for MC practitioners.
The use of rawdata from several couplings allow for reweighting to a much broader
range of couplings than ordinary single histogram methods. When doing a MC
simulation with the Metropolis algorithm the probability to be in a state ψ with energy
εψ is proportional to

w(εψ)e−βεψ .
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Histogram Method

If we record a histogram of energies from a simulation at coupling β; we get a
histogram hβ(ε) which is proportional to w(ε)e−βε. Multiplying this histogram with eβε

we get something which is proportional to w(ε), i.e.

ŵβ(ε) = eξβeβεhβ(ε)

is an estimator for w(ε). Here eξβ is a dimensionless constant of proportionality to be

determined. The density of states has an index β to indicate that the histogram was

recorded at this coupling, but it does not have any intrinsic temperature dependence.

In principle this equation can be used to estimate w(ε) regardless of temperature,

however practically only a small energy range around 〈E〉(T ) will be sampled with a

sufficiently high frequency.
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Histogram Method

Although the equation is useless as an immediate estimator for w(ε), it provides a
basis for combining results from different couplings to an estimator ŵ(ε) which can be
applied over the complete energy range. Given N different histograms hi (E) recorded
at the couplings β1 > β2 > · · · > βN , we can combine them as

ŵ(ε) = w0

NX
i=1

eξi hi (ε)Wi (ε)e
βiε,

Wi (ε) =
hi (ε)PN
i=1 hi (ε)

,

to obtain an estimator which is usable over the complete ε range

[minε hi (ε),maxε h(ε)]. Wi (ε) is a weight function, which denotes the weight ascribed

to histogram i in the estimation of w(ε). The constants eξi are determined by joining

the various histograms.
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Histogram Method

The algorithm we have applied to determine ξi is to set ξ1 to an arbitrary value, and
then compute ξi>1 by minimising

χ2 =

N−1X
i=1

NX
j=i+1

X
ε

hi (ε)hj (ε)
`
ξi + βiε+ ln hi (ε)− ξj − βjε− ln hj (ε)

´2| {z }
ln ŵβi

(ε)−ln ŵβj
(ε)

.
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Histogram Method

The central principle is to minimise the pairwise difference between all the ĝ(ε)
estimates.
Minimising χ2 with respect to ξi gives N − 1 linear equations which can be solved by
e.g. LU decomposition.
When the coefficients ξi have been determined we have all the coefficients ξi>1
expressed in terms of ξ1. For discrete models with a finite ground state degeneracy w0
we can determine ξ1 by requiring w(ε0) = w0, or alternatively if the total number of
states is known, this can be used to normalize w(ε).

To determine w(ε) is in principle quite straightforward, but in practice it is important to

be careful to avoid numeric underflow or overflow in intermediate steps, in particular

the implementation must ensure that only ln w(ε) is needed in actual computations.
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Histogram Method

Knowledge of w(ε) is in principle equivalent to knowledge of the partition function
Z (β), hence all the properties of a system are contained in w(ε), however w(ε) does
not have a very prominent role in modern statistical mechanics. We will therefor
express some important results based on w(ε).
The definition of temperature in statistical mechanics is given by

β =
∂ ln w(ε)

∂ε
.
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Histogram Method

From this we find that the fundamental requirement CV (T ) ≥ 0 is equivalent to
∂2
ε ln w(ε) ≤ 0. The limiting value ∂ε ln w(ε) = C is the signature of a phase transition.

A finite ε range with ∂ε ln w(ε) = C means that the temperature is unchanged for this ε
range, i.e. an indication of a first order transition (actually, this is slightly more
complicated). When the width of the of linear part of ln w(ε) diminishes the first order
transition is weakened; until ∂2

ε ln w(ε) = 0 in a isolated point only, this is the
manifestation of a critical point. If we differentiate with respect to T we find the function
CV (ε)

CV (ε) =
∂ε

∂T
=
− (∂ε ln w(ε))2

∂2
ε ln w(ε)

.
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Histogram Method

From this we see that the critical properties, and in particular the critical exponent α,
must be related to how ∂2

ε ln w(ε) approaches zero. To infer α directly from the
behaviour of w(ε) close to εc is difficult, but if we make the size dependence of w(ε)
explicit we can use finite size scaling.
At the (pseudo)critical point in a finite system, CV scales as Ld+α/ν . The factor
(∂ε ln w(ε))2 in the heat capacity is just equal to β2

c , hence the critical properties must
come from the second derivative˛̨̨

∂2
ε ln w(ε, L)

˛̨̨
Ld ∝ L−α/ν .

In general ∂ε ln w(ε, L) will also have finite size effects, however for this only the

deviation from the thermodynamic value will show critical scaling.
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Histogram Method

For microcanonical systems the externally specified variable is ε, and not T , and critical
scaling is governed by the difference |ε− εc |.
When we have w(ε) we can easily calculate F (T ) and P(ε,T )

F (T ) = −T ln
X
ε

w(ε)e−βε,

P(ε,T ) =
w(ε)e−βεP
ε w(ε)e−βε

.

From P(ε,T ) we can easily calculate the internal energy, and all moments thereof. If
we in addition to ε sample other operators like the magnetisation, we can use P(ε,T )
to find thermal averages of arbitrary operators,

〈O〉T =
X
ε

〈O〉εP(ε,T ).

Here 〈O〉ε is the mean of Ô for a given value of ε.
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Histogram Method, Ising Model
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Histogram Method, Ising Model
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Histogram Method

All critical properties must be present in w(ε). In this section we will discuss the critical
properties of the Q = 3 and Q = 10 Potts model. The first model has a continuous
phase transition with α = 1/3 and ν = 5/6, i.e. α/ν = 0.4, the second model has a
first order transition.

First we consider the Q = 3 model, for this model the goal is to determine the ratio α/ν

from w(ε, L). This can be done by considering how ∂2
ε ln w(ε, L) vanishes when

approaching the critical energy εc .
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Histogram Method, Potts Model q = 3.
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Histogram Method, Potts Model
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Histogram Method

The dashed line in the previous figure has slope of −α/ν ≈ −0.29; this is a significant

deviation from the exact value α/ν = 0.40, however we feel that these results are

sufficient to demonstrate that the critical properties, and in particular the exponents α

and ν are contained in w(ε). There is clearly significant finite size effects in

∂ε ln w(ε, L) also; including the factor ∂ε ln w(ε) gives the “improved” value α/ν ≈ 0.35,

however this can not contribute in the L →∞ limit and we have therefore not included

this factor.
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Histogram Method

Finally the last figure is based on the second derivative of a sampled quantity; hence it

will clearly be difficult to determine with high precision. In conclusion it is definitely

possible to infer the ratio α/ν from the properties of w(ε, L), but it is certainly not the

most suitable way for high precision measurements. Finally we mention that the

remaining critical exponents cannot be obtained from w(ε), their value is based on the

explicit choice of fields to represent the critical state.
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Histogram Method

Altough all thermodynamic information about a phase transition is contained in F (T ), it

is only for a first order transition, where ∂T F (T ) is discontinous at Tc , that the phase

transition stands out in F (T ). The next figure shows F (T ) for the strongly transition in

the two dimensional Q = 10 Potts model; a discontinuity in ∂T F (T ) at T ≈ 0.71 is

easily spotted.

Computational Physics II FYS4410



Histogram Method, Potts model q = 10
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Topics for Week 10, February 26 - March 2

Finite size scaling and Monte Carlo Renormalization Group

Brief survey of Monte Carlo renormalization group and the
renormalization group idea

Discussion of finite size scaling.

Discussions of project 1
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Topics for Week 11, March 5-9

Finite size scaling and Monte Carlo Renormalization Group

Brief survey of Monte Carlo renormalization group and the
renormalization group idea

Discussions of project 1

Introduction of new topic, variational quantum Monte Carlo

Metropolis algorithm for quantal systems

Simple systems, hydrogen and helium atoms
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Finite Size Scaling

We have defined

τ =
T − TC

TC
,

and assumed that the various thermodynamical quantities of interest scale as (for
τ → 0−)

M ∼ |τ |β ,

CV ∼ |τ |−α,

ξ ∼ |τ |−ν

χ ∼ |τ |−γ ∼ ξγ/ν

and
B ∼ Mδ ∼ |τ |βδ
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Finite Size Scaling, Relations

For the Ising model in two dimensions we have β = 1/8, γ = 7/4, δ = 15, ν = 1 and
α = 0. We showed from simple dimensional analysis that we could obtain the following
relations between critical exponents (d is the dimensionality of the system)

β =
νd

δ + 1
Widom,

γ = νd
δ − 1

δ + 1
Widom,

2− α = νd Josephson,

α+ 2β + γ = 2 Rushbrooke,

which are examples of some selected dimensonalities.
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Finite Size Scaling

The scaling hypothesis is used to derive relations between critical exponents from the
fundamental definitions and relations in statistical physics.
It is an assumption based on the fact that thermodynamic functions are homogenous
close to the critical temperature or more generally a given critical point.
A function f (r) is homogeneous if for all values of a parameter λ we have

f (λr) = g(λ)f (r)

where the function g(λ) is unspecified.

Such a function has the interesting feature that if we know the value at r = r0 (one

point) and we know g(λ) then we know the function f everywhere. A simple change of

scale relates thus f (r = r0) to f (r). In our particular case this means that if have the

simulation results for one particular lattice, we can, if we know g(λ), find the result for a

larger lattice or even in the thermodynamic limit.
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Multivariable Relations

Can extend the homogeneous behavior to more variables

f (λx , λy) = λp f (x , y)

or
f (λax , λby) = λf (x , y).

Look at Gibbs’ free energy
G(T ,B) → G(τ,B),

and scale it as
G(λaτ τ, λaB B) = λG(τ,B).

Can do the same with Helmoholtz’ free energy

F (λaτ τ, λaM M) = λF (τ,M).
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Finite Size Scaling

Taking the derivative of G wrt B yields the magnetic moment M

λaB M(λaτ τ, λaB B) = λM(τ,B).

Can derive two critical exponents, β when B = 0 and τ → 0− and δ τ = 0 and B → 0.
Collecting results yields Widom’s relation

γ = β(δ + 1)

We can repeat the same by taking derivatives wrt to τ and can then obtain
Rushbrooke’s inequality

α+ 2β + γ = 2.
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Widom’s Relation

We start with
λaB M(λaτ τ, λaB B) = λM(τ,B).

and set B = 0 which results in

λaB−1M(λaτ τ, 0) = M(τ, 0).

It is valid for all λ which means it must also hold for λ = (−1/τ)1/aτ resulting in

M(τ, 0) = (−τ)(1−aB)/aτM(−1, 0)

and taking the limit τ → 0̄ we have

M(τ, 0) ∼ (−τ)β

and collecting we get

β =
1− aB

aτ
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Finite Size Scaling

Repeat this exercise for B → 0 and τ = 0. We obtain

λaB−1M(0, λaB B) = M(0,B).

and setting λ = B−1/aB we have

λaB−1M(0, λaB B) = M(0,B).

Using then
M(0,B) ∼ B1/δ,

we obtain
δ =

aB

1− aB

resulting in

aB =
δ

δ + 1

and

aτ =
1

β(δ + 1)
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Finite Size Scaling

We can repeat this exercise by taking the second derivative of G and obtain the
susceptibility χ. Studying it B = 0 and using again λ = (−1/τ)1/aτ we have

λ2aBχ(λaτ τ, λaB B) = λχ(τ,B),

resulting in
χ(τ, 0) = (−τ)(2aB−1)/aτχ(−1, 0),

and using that
χ(τ, 0) ∼ (−τ)−γ ,

we arrive at

γ =
2aB − 1

aτ
or

γ = β(δ − 1),

which is Widom’s relation we derived from dimensional analysis.
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Reminder: Monte Carlo Keywords

Consider it is a numerical experiment

Be able to generate random variables following a given
probability distribution function (PDF). The starting point for
any calculation is the derivation of random numbers based
on the uniform distribution.

Sampling rule for accepting a move, important algo
Metropolis-Hastings

Compute standard deviation and other expectation values

Techniques for improving errors
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Metropolis-Hastings Algorithm

The equation for detailed balance with the acceptance probability A is

A(µ→ ν)

A(ν → µ)
= exp (−β(Eν − Eµ))

is general and we could replace the Boltzmann distribution with other distributions as
well. It specifies the ratio of pairs of acceptance probabilities, which leaves us with
quite some room to manouvre.

We give the largest of the two acceptance ratios the value 1 and adjust the other
to satisfy the constraint.

If Eµ < Eν then the larger of the two acceptance ratios is A(ν → µ) and we set
to 1.

Then we must have

A(µ→ ν) = exp (−β(Eν − Eµ))

if Eν − Eµ > 0 and 1 otherwise. And that is the Metropolis-Hastings algorithm.
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More general Definition

A Markov chain Monte Carlo method for the simulation of a distribution p is any method
producing an ergodic Markov chain of events x whose stationary distribution is p.

Generate an initial value x (i).

Generate a trial value yt with probability f (yt |x (i)).

Take a new value

x (i+1) =


yt with probability= ρ(x (i), yt )

x (i) with probability= 1− ρ(x (i), yt )

We have defined

ρ(x , y) = min


p(y)f (x |y)

p(x)f (y |x)
, 1
ff
.

The distribution f is often called the instrumental (we will relate it to the jumping
of a walker) or proposal distribution while ρ is the Metropolis-Hastings
acceptance probability.
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Implementation

Establish an initial state with some selected features to test.

Do a random change of this initial state.

Compute the Metropolis-Hastings acceptance probability ρ

Compare ρ with a random number r . If r ≤ ρ accept, else keep
the old configuration.

Compute the terms needed to obtain expectations values.

Repeat the above steps in order to have as good statistics as
possible.

For a given number of MC cycles, compute then the final
expectation values.
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Quantum Monte Carlo

Most quantum mechanical problems of interest in e.g., atomic, molecular, nuclear and
solid state physics consist of a large number of interacting electrons and ions or
nucleons. The total number of particles N is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation value for a chosen hamiltonian for a
system of N particles is

〈H〉 =R
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)R

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

an in general intractable problem. an in general intractable problem.

This integral is actually the starting point in a Variational Monte Carlo calculation.

Gaussian quadrature: Forget it! given 10 particles and 10 mesh points for each

degree of freedom and an ideal 1 Tflops machine (all operations take the same time),

how long will it ta ke to compute the above integral? Lifetime of the universe

T ≈ 4.7× 1017s.
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Quantum Monte Carlo

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).
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Quantum Monte Carlo

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.
For a nucleus like 10Be this number is 215040. This is a truely challenging many-body
problem.

Methods like partial differential equations can at most be used for 2-3 particles.
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Quantum Many-particle(body) Methods

1 Monte-Carlo methods

2 Renormalization group (RG) methods, in particular density matrix RG

3 Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

4 Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

5 Perturbative many-body methods

6 Green’s function methods

7 Density functional theory/Mean-field theory.....

The physics of the system hints at which many-body methods to use. For systems with

strong correlations among the constituents, item 5 and 7 are ruled out.
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Pros and Cons of Monte Carlo

Is physically intuitive.

Allows one to study systems with many degrees of freedom. Diffusion Monte
Carlo (DMC) and Green’s function Monte Carlo (GFMC) yield in principle the
exact solution to Schrödinger’s equation.

Variational Monte Carlo (VMC) is easy to implement but needs a reliable trial
wave function, can be difficult to obtain.

DMC/GFMC for fermions (spin with half-integer values, electrons, baryons,
neutrinos, quarks) has a sign problem. Nature prefers an anti-symmetric wave
function. PDF in this case given distribution of random walkers (p ≥ 0).

The solution has a statistical error, which can be large. Hard to compete with
light systems in quantum chemistry (less than 100 electrons).

There is a limit for how large systems one can study, DMC needs a huge number
of random walkers in order to achieve stable results.

Obtain only the lowest-lying states with a given symmetry. Difficult to get excited
states.
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Where and why do we use Monte Carlo Methods in
Quantum Physics

Quantum systems with many particles at finite temperature: Path Integral Monte
Carlo with applications to dense matter and quantum liquids (phase transitions
from normal fluid to superfluid). Strong correlations.

Bose-Einstein condensation of dilute gases, method transition from non-linear
PDE to Diffusion Monte Carlo as density increases.

Light atoms, molecules and nuclei. In quantum chemistry, atomic and molecular
physics however precision not good enough. Applications in nuclear physics for
systems with less than 12 nucleons.

Lattice Quantum-Chromo Dynamics. Impossible to solve without MC
calculations.

Simulations of systems in solid state physics, from semiconductors to spin
systems. Many electrons active and possibly strong correlations.
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Bose-Einstein Condensation of atoms, thousands of
Atoms in one State, Project 2
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Lattice QCD

Brief Description

Analytic or perturbative solutions in QCD are hard or
impossible due to the highly nonlinear nature of the strong
force. The formulation of QCD on a discrete rather than
continuous space-time naturally introduces a momentum cut off
at the order 1/a, which regularizes the theory. As a result lattice
QCD is mathematically well-defined. Most importantly, lattice
QCD provides the framework for investigation of
non-perturbative phenomena such as confinement and
quark-gluon plasma formation, which are intractable by means
of analytic field theories.
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Lattice QCD, Ishii et al, nucl-th/0611096
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Quantum Monte Carlo and Schrödinger’s equation

For one-body problems (one dimension)

−
~2

2m
∇2Ψ(x , t) + V (x , t)Ψ(x , t) = ı~

∂Ψ(x , t)

∂t
,

Quantum mechanical probablity distribution function (PDF)

P(x , t) = Ψ(x , t)∗Ψ(x , t)

P(x , t)dx = Ψ(x , t)∗Ψ(x , t)dx

Interpretation: probability of finding the system in a region between x and x + dx .
Always real

Ψ(x , t) = R(x , t) + ıI(x , t)

yielding
Ψ(x , t)∗Ψ(x , t) = (R − ıI)(R + ıI) = R2 + I2

Variational Monte Carlo uses only P(x , t)!!
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Quantum Monte Carlo and Schrödinger’s equation

Petit digression
Choose τ = it/~.
The time-dependent (1-dim) Schrödinger equation becomes then

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2
− V (x , τ)Ψ(x , τ).

With V = 0 we have a diffusion equation in complex time with diffusion constant

D =
~2

2m
.

Used in diffusion Monte Carlo calculations. The wave function is given by the

distribution of random walkers. Leads to problems if the wave function is

anti-symmetric.
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Quantum Monte Carlo and Schrödinger’s equation

Conditions which Ψ has to satisfy:

1 Normalization Z ∞

−∞
P(x , t)dx =

Z ∞

−∞
Ψ(x , t)∗Ψ(x , t)dx = 1

meaning that Z ∞

−∞
Ψ(x , t)∗Ψ(x , t)dx <∞

2 Ψ(x , t) and ∂Ψ(x , t)/∂x must be finite

3 Ψ(x , t) and ∂Ψ(x , t)/∂x must be continuous.

4 Ψ(x , t) and ∂Ψ(x , t)/∂x must be single valued

Square integrable functions.
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First Postulate

Any physical quantity A(~r , ~p) which depends on position~r and momentum ~p has a
corresponding quantum mechanical operator by replacing ~p −i~~5, yielding the
quantum mechanical operator bA = A(~r ,−i~ ~5).

Quantity Classical definition QM operator

Position ~r b̃r = ~r
Momentum ~p b̃p = −i~~5
Orbital momentum ~L = ~r × ~p b̃L = ~r × (−i~~5)

Kinetic energy T = (~p)2/2m bT = −(~2/2m)(~5)2

Total energy H = (p2/2m) + V (~r) bH = −(~2/2m)(~5)2 + V (~r)
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Second Postulate

The only possible outcome of an ideal measurement of the physical quantity A are the
eigenvalues of the corresponding quantum mechanical operator bA.

bAψν = aνψν ,

resulting in the eigenvalues a1, a2, a3, · · · as the only outcomes of a measurement.

The corresponding eigenstates ψ1, ψ2, ψ3 · · · contain all relevant information about the

system.
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Third Postulate

Assume Φ is a linear combination of the eigenfunctions ψν for bA,

Φ = c1ψ1 + c2ψ2 + · · · =
X
ν

cνψν .

The eigenfunctions are orthogonal and we get

cν =

Z
(Φ)∗ψνdτ.

From this we can formulate the third postulate:

When the eigenfunction is Φ, the probability of obtaining the value aν as the outcome

of a measurement of the physical quantity A is given by |cν |2 and ψν is an

eigenfunction of bA with eigenvalue aν .
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Third Postulate

As a consequence one can show that:
when a quantal system is in the state Φ, the mean value or expectation value of a
physical quantity A(~r , ~p) is given by

〈A〉 =

Z
(Φ)∗bA(~r ,−i~~5)Φdτ.

We have assumed that Φ has been normalized, viz.,
R

(Φ)∗Φdτ = 1. Else

〈A〉 =

R
(Φ)∗bAΦdτR
(Φ)∗Φdτ

.
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Fourth Postulate

The time development of of a quantal system is given by

i~
∂Ψ

∂t
= bHΨ,

with bH the quantal Hamiltonian operator for the system.
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Quantum Monte Carlo

Given a hamiltonian H and a trial wave function ΨT , the variational principle states that
the expectation value of 〈H〉, defined through

E [H] = 〈H〉 =

R
dRΨ∗T (R)H(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre

will not be adequate for say the computation of the energy of a many-body system.
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Quantum Monte Carlo

The trial wave function can be expanded in the eigenstates of the hamiltonian since
they form a complete set, viz.,

ΨT (R) =
X

i

aiΨi (R),

and assuming the set of eigenfunctions to be normalized one obtainsP
nm a∗man

R
dRΨ∗m(R)H(R)Ψn(R)P

nm a∗man
R

dRΨ∗m(R)Ψn(R)
=

P
n a2

nEnP
n a2

n
≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the integrals involved in the

calculation of various expectation values are multi-dimensional ones. The variational

principle yields the lowest state of a given symmetry.
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Quantum Monte Carlo

In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed random
points in configuration space will most likely lead to poor results. This may suggest that
some kind of importance sampling combined with e.g., the Metropolis algorithm may
be a more efficient way of obtaining the ground state energy. The hope is then that
those regions of configurations space where the wave function assumes appreciable
values are sampled more efficiently.

The tedious part in a VMC calculation is the search for the variational minimum. A

good knowledge of the system is required in order to carry out reasonable VMC

calculations. This is not always the case, and often VMC calculations serve rather as

the starting point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way

of solving exactly the many-body Schrödinger equation by means of a stochastic

procedure. A good guess on the binding energy and its wave function is however

necessary. A carefully performed VMC calculation can aid in this context.
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Quantum Monte Carlo

Construct first a trial wave function ψαT (R), for a many-body system consisting of
N particles located at positions R = (R1, . . . ,RN). The trial wave function
depends on α variational parameters α = (α1, . . . , αN).

Then we evaluate the expectation value of the hamiltonian H

E [H] = 〈H〉 =

R
dRΨ∗Tα (R)H(R)ΨTα (R)R

dRΨ∗Tα (R)ΨTα (R)
.

Thereafter we vary α according to some minimization algorithm and return to the
first step.

Computational Physics II FYS4410



Quantum Monte Carlo

Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The approximation to the
expectation value of the Hamiltonian is now

E [H] ≈
R

dRΨ∗T (R)H(R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

.

Define a new quantity

EL(R) =
1

ψT (R)
HψT (R),

called the local energy, which, together with our trial PDF yields

E [H] = 〈H〉 ≈
Z

P(R)EL(R)dR ≈
1

N

NX
i=1

P(Ri)EL(Ri)

with N being the number of Monte Carlo samples.
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Quantum Monte Carlo

Algo:

Initialisation: Fix the number of Monte Carlo steps. Choose an initial R and
variational parameters α and calculate

˛̨
ψαT (R)

˛̨2.

Initialise the energy and the variance and start the Monte Carlo calculation
(thermalize)

1 Calculate a trial position Rp = R + r ∗ step where r is a random variable
r ∈ [0, 1].

2 Metropolis algorithm to accept or reject this move

w = P(Rp)/P(R).

3 If the step is accepted, then we set R = Rp . Update averages

Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. Called brute-force

sampling. Need importance sampling.
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Quantum Monte Carlo

The radial Schrödinger equation for the hydrogen atom can be written as

−
~2

2m

∂2u(r)

∂r2
−
„

ke2

r
−

~2l(l + 1)

2mr2

«
u(r) = Eu(r),

or with dimensionless variables

−
1

2

∂2u(ρ)

∂ρ2
−

u(ρ)

ρ
+

l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −
1

2

∂2

∂ρ2
−

1

ρ
+

l(l + 1)

2ρ2
.

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.
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Quantum Monte Carlo

Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −
1

ρ
−
α

2

„
α−

2

ρ

«
.

α 〈H〉 σ2 σ/
√

N
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
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Quantum Monte Carlo

We note that at α = 1 we obtain the exact result, and the variance is zero, as it should.
The reason is that we then have the exact wave function, and the action of the
hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values involving
moments of the hamiltonian becomes then

〈Hn〉 =

R
dRΨ∗T (R)Hn(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
= constant×

R
dRΨ∗T (R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave function leads to zero

variance! Variation is then performed by minimizing both the energy and the variance.
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Quantum Monte Carlo

The helium atom consists of two electrons and a nucleus with charge Z = 2. The
contribution to the potential energy due to the attraction from the nucleus is

−
2ke2

r1
−

2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain the
potential energy

V (r1, r2) = −
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.
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Quantum Monte Carlo

The hamiltonian becomes then

bH = −
~2∇2

1

2m
−

~2∇2
2

2m
−

2ke2

r1
−

2ke2

r2
+

ke2

r12
,

and Schrödingers equation reads bHψ = Eψ.

All observables are evaluated with respect to the probability distribution

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate an exact

eigenstate in order that accurate results are to be obtained. Improved trial wave

functions also improve the importance sampling, reducing the cost of obtaining a

certain statistical accuracy.
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Quantum Monte Carlo

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1

ψT (R)

„
−

1

2
∇2

1 −
Z

r1

«
ψT (R) + finite terms.

EL(R) =
1

RT (r1)

 
−

1

2

d2

dr2
1

−
1

r1

d

dr1
−

Z

r1

!
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

„
−

1

r1

d

dr1
−

Z

r1

«
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the origin.
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Quantum Monte Carlo

This results in
1

RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have

1

RT (r)

dRT (r)

dr
= −

Z

l + 1
.

Similalry, studying the case r12 → 0 we can write a possible trial wave function as

ψT (R) = e−α(r1+r2)er12/2.

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
Y
i<j

f (rij ),

for a system with N electrons or particles.
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Topics for Week 12, March 12-16

Quantum Monte Carlo Methods

Reminder from last week

Variational Monte Carlo

Discussions of project 2

Importance sampling
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Project 2

Here we limit ourselves to a mere technical discussion of the physics of Bose-Einstein
condensation (BEC). That is we focus on the technical aspects we need to deal with in
connection with this project. We will discuss in more detail later the physics behind
BEC.

A key feature of the trapped alkali and atomic hydrogen systems is that they are dilute.

The characteristic dimensions of a typical trap for 87Rb is

ah0 = (~/mω⊥)
1
2 = 1− 2× 104 Å . The interaction between 87Rb atoms can be well

represented by its s-wave scattering length, aRb. This scattering length lies in the

range 85 < aRb < 140a0 where a0 = 0.5292 Å is the Bohr radius. The definite value

aRb = 100a0 is usually selected and for calculations the definite ratio of atom size to

trap size aRb/ah0 = 4.33× 10−3 is usually chosen. A typical 87Rb atom density in the

trap is n ' 1012 − 1014 atoms/cm3 giving an inter-atom spacing ` ' 104 Å. Thus the

effective atom size is small compared to both the trap size and the inter-atom spacing,

the condition for diluteness (i.e., na3
Rb ' 10−6 where n = N/V is the number density).
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Project 2

The aim of this project is to use Variational Monte Carlo (VMC) and Diffusion Monte
Carlo (DMC) methods and evaluate the ground state energy of a trapped, hard sphere
Bose gas for different numbers of particles with a specific trial wave function.
This wave function is used to study the sensitivity of condensate and non-condensate
properties to the hard sphere radius and the number of particles. The trap we will use
is a spherical (S) or an elliptical (E) harmonic trap in three dimensions given by

Vext (r) =

(
1
2 mω2

hor2 (S)
1
2 m[ω2

ho(x2 + y2) + ω2
z z2] (E)

(84)
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Project 2

The two-body interaction is

H =
NX
i

„
−~2

2m
52

i + Vext (r i )

«
+

NX
i<j

Vint (r i , r j ), (85)

Here ω2
ho defines the trap potential strength. In the case of the elliptical trap,

Vext (x , y , z), ωho = ω⊥ is the trap frequency in the perpendicular or xy plane and ωz

the frequency in the z direction. The mean square vibrational amplitude of a single

boson at T = 0K in the trap (84) is < x2 >= (~/2mωho) so that aho ≡ (~/mωho)
1
2

defines the characteristic length of the trap. The ratio of the frequencies is denoted

λ = ωz/ω⊥ leading to a ratio of the trap lengths (a⊥/az) = (ωz/ω⊥)
1
2 =

√
λ.
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Project 2

We represent the inter boson interaction by a pairwise, hard core potential

Vint (|r i − r j |) =

(
∞ |r i − r j | ≤ a
0 |r i − r j | > a

(86)

where a is the hard core diameter of the bosons. Clearly, Vint (|r i − r j |) is zero if the

bosons are separated by a distance |r i − r j | greater than a but infinite if they attempt to

come within a distance |r i − r j | ≤ a.
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Project 2

Our trial wave function for the ground state with N atoms is given by

ΨT (R) = ΨT (r1, r2, . . . rN , α, β) =
Y

i

g(α, β, r i )
Y
i<j

f (a, |r i − r j |), (87)

where α and β are variational parameters. The single-particle wave function is
proportional to the harmonic oscillator function for the ground state, i.e.,

g(α, β, r i ) = exp [−α(x2
i + y2

i + βz2
i )]. (88)

For spherical traps we have β = 1 and for non-interacting bosons (a = 0) we have
α = 1/2a2

ho . The correlation wave function is

f (a, |r i − r j |) =

(
0 |r i − r j | ≤ a
(1− a

|r i−r j |
) |r i − r j | > a. (89)
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Project 2

The first problem is to find analytic expressions for the local energy

EL(R) =
1

ΨT (R)
HΨT (R), (90)

for the above trial wave function of Eq. (87). You will also have to compute the analytic
expression for the drift force to be used in the importance sampling (1d)

F =
2∇ΨT

ΨT
. (91)
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How to find the analytic expression?

Our trial wave function is

ΨT (R) = ΨT (r1, r2, . . . rN , α, β) =
Y

i

g(α, β, r i )
Y
i<j

f (a, |r i − r j |),

The tricky part is to find an analytic expressions for the derivative of the trial wave
function

1

ΨT (R)

NX
i

∇2
i ΨT (R),

for the above trial wave function of Eq. (87). We need also to compute the drift force

F =
2∇ΨT

ΨT
.
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How to find the analytic expression?

We rewrite

ΨT (R) = ΨT (r1, r2, . . . rN , α, β) =
Y

i

g(α, β, r i )
Y
i<j

f (a, |r i − r j |),

as
ΨT (R) =

Y
i

g(α, β, r i )e
P

i<j u(rij )

where we have defined rij = |r i − r j | and

f (rij ) = e
P

i<j u(rij ),

and in our case
g(α, β, r i ) = e−α(x2

i +y2
i +z2

i ) = φ(r i ).
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How to find the analytic expression?

The first derivative becomes

∇kΨT (R) = ∇kφ(rk )

24Y
i 6=k

φ(r i )

35 e
P

i<j u(rij ) +
Y

i

φ(r i )e
P

i<j u(rij )
X
j 6=k

∇k u(rij )

For the second derivative, see development on blackboard (we assume that u is a

function of rij only.)
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How to find the analytic expression?

The final expression is

1

ΨT (R)
∇2

kΨT (R) =
∇2

kφ(rk )

φ(rk )
+
∇kφ(rk )

φ(rk )

0@X
j 6=k

rk

rk
u′(rij )

1A+

X
ij 6=k

(rk − r i )(rk − r j )

rki rkj
u′(rki )u

′(rkj ) +
X
j 6=k

 
u′′(rkj ) +

2

rkj
u′(rkj )

!

You need to get the analytic expression for this using the harmonic oscillator wave

functions and the correlation term defined in the project.
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Project 2

Write a Variational Monte Carlo program which uses standard Metropolis sampling and

compute the ground state energy of a spherical harmonic oscillator (β = 1) with no

interaction. Use natural units and make an analysis of your calculations using both the

analytic expression for the local energy and a numerical calculation of the kinetic

energy using numerical derivation. Compare the CPU time difference. You should also

parallelize your code. The only variational parameter is α. Perform these calculations

for N = 10, 100 and 500 atoms. Compare your results with the exact answer. (what is

the exact answer?)
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Project 2

We turn now to the elliptic trap with a hard core interaction. We fix a/aho = 0.0043.
Introduce lengths in units of aho , r → r/aho and energy in units of ~ωho . Show then
that the original Hamiltonian can be rewritten as

H =
NX

i=1

1

2

“
−∇2

i + x2
i + y2

i + γ2z2
i

”
+
X
i<j

Vint (|r i − r j |). (92)

What is the expression for γ? Choose the initial value for β = γ = 2.82843 and set up
a VMC program which computes the ground state energy using the trial wave function
of Eq. (87). using only α as variational parameter. Use standard Metropolis sampling
and vary the parameter α in order to find a minimum. Perform the calculations for
N = 10, 100 and N = 500 and compare your results to those from the ideal case in the
previous exercise.
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Project 2

We repeat exercise 1c), but now we replace the brute force Metropolis algorithm with
importance sampling based on the Fokker-Planck and the Langevin equations.
Discuss your results and comment on eventual differences between importance
sampling and brute force sampling.
In the statistical analysis of your results you should use for example the blocking
technique from Project 1.

If the parallel cluster setup works (hopefully!), you should also parallelize your code in

much the same fashion as you did with project 1.
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Importance Sampling
We need to replace the brute force Metropolis algorithm with a walk in coordinate
space biased by the trial wave function. This approach is based on the Fokker-Planck
equation and the Langevin equation for generating a trajectory in coordinate space.
For a diffusion process characterized by a time-dependent probability density P(x , t) in
one dimension the Fokker-Planck equation reads (for one particle/walker)

∂P

∂t
= D

∂P

∂x

„
∂P

∂x
− F

«
P(x , t),

where F is a drift term and D is the diffusion coefficient. The drift term is

F = 2
1

ΨT
∇ΨT

where ΨT is our trial wave function. The new positions in coordinate space are given
as the solutions of the Langevin equation using Euler’s method, namely, we go from the
Langevin equation

∂x(t)

∂t
= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x + DF (x)∆t + ξ,

where ξ is gaussian random variable and ∆t is a chosen time step.
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Importance Sampling

The Fokker-Planck equation yields a transition probability given by the Green’s function

G(y , x ,∆t) =
1

(4πD∆t)3N/2
exp

“
−(y − x − D∆tF (x))2/4D∆t

”
which in turn means that our brute force Metropolis algorithm

A(y , x) = min(1, q(y , x))),

with q(y , x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by

q(y , x) =
G(x , y ,∆t)|ΨT (y)|2

G(y , x ,∆t)|ΨT (x)|2
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Topics for Week 13, March 26-30

Finite size scaling and Monte Carlo Renormalization Group

Brief reminder from last week

Discussion of project 2

Presentation of diffusion Monte Carlo

Summary of part 1.
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Digression: Diffusion from Markov Chain

A Markov process allows in principle for a microscopic description of Brownian motion.

As with the random walk studied in the previous section, we consider a particle which

moves along the x-axis in the form of a series of jumps with step length ∆x = l . Time

and space are discretized and the subsequent moves are statistically indenpendent,

i.e., the new move depends only on the previous step and not on the results from

earlier trials. We start at a position x = jl = j∆x and move to a new position x = i∆x

during a step ∆t = ε, where i ≥ 0 and j ≥ 0 are integers. The original probability

distribution function (PDF) of the particles is given by wi (t = 0) where i refers to a

specific position on a grid, with i = 0 representing x = 0. The function wi (t = 0) is now

the discretized version of w(x , t). We can regard the discretized PDF as a vector.
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Digression: Diffusion from Markov Chain

For the Markov process we have a transition probability from a position x = jl to a
position x = il given by

Wij (ε) = W (il − jl, ε) =

 1
2 |i − j| = 1
0 else

We call Wij for the transition probability and we can represent it, see below, as a matrix.
Our new PDF wi (t = ε) is now related to the PDF at t = 0 through the relation

wi (t = ε) = W (j → i)wj (t = 0).
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Digression: Diffusion from Markov Chain

This equation represents the discretized time-development of an original PDF. Since
both W and w represent probabilities, they have to be normalized, i.e., we require that
at each time step we have X

i

wi (t) = 1,

and X
j

W (j → i) = 1.

The further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. Note that the probability for
remaining at the same place is in general not necessarily equal zero. In our Markov
process we allow only for jumps to the left or to the right.
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Digression: Diffusion from Markov Chain

The time development of our initial PDF can now be represented through the action of
the transition probability matrix applied n times. At a time tn = nε our initial distribution
has developed into

wi (tn) =
X

j

Wij (tn)wj (0),

and defining
W (il − jl, nε) = (W n(ε))ij

we obtain
wi (nε) =

X
j

(W n(ε))ij wj (0),

or in matrix form
ˆw(nε) = Ŵ n(ε)ŵ(0).
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Digression: Diffusion from Markov Chain

The matrix Ŵ can be written in terms of two matrices

Ŵ =
1

2

“
L̂ + R̂

”
,

where L̂ and R̂ represent the transition probabilities for a jump to the left or the right,
respectively. For a 4× 4 case we could write these matrices as

R̂ =

0BB@
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

1CCA ,

and

L̂ =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA .
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Digression: Diffusion from Markov Chain

However, in principle these are infinite dimensional matrices since the number of time
steps are very large or infinite. For the infinite case we can write these matrices
Rij = δi,(j+1) and Lij = δ(i+1),j , implying that

L̂R̂ = R̂L̂ = 1,

and
L̂ = R̂−1

To see that L̂R̂ = R̂L̂ = 1, perform e.g., the matrix multiplication

L̂R̂ =
X

k

L̂ik R̂kj =
X

k

δ(i+1),kδk,(j+1) = δi+1,j+1 = δi,j ,

and only the diagonal matrix elements are different from zero.
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Digression: Diffusion from Markov Chain

For the first time step we have thus

Ŵ =
1

2

“
L̂ + R̂

”
,

and using the properties in Eqs. (271) and (271) we have after two time steps

Ŵ 2(2ε) =
1

4

“
L̂2 + R̂2 + 2R̂L̂

”
,

and similarly after three time steps

Ŵ 3(3ε) =
1

8

“
L̂3 + R̂3 + 3R̂L̂2 + 3R̂2L̂

”
.
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Digression: Diffusion from Markov Chain

Using the binomial formula

nX
k=0

„
n
k

«
âk b̂n−k = (a + b)n,

we have that the transition matrix after n time steps can be written as

Ŵ n(nε)) =
1

2n

nX
k=0

„
n
k

«
R̂k L̂n−k ,

or

Ŵ n(nε)) =
1

2n

nX
k=0

„
n
k

«
L̂n−2k =

1

2n

nX
k=0

„
n
k

«
R̂2k−n,

Computational Physics II FYS4410



Diffusion from Markov Chain

and using Rm
ij = δi,(j+m) and Lm

ij = δ(i+m),j we arrive at

W (il − jl, nε) =

8<: 1
2n

„
n

1
2 (n + i − j)

«
|i − j| ≤ n

0 else
,

and n + i − j has to be an even number.
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Diffusion from Markov Chain

We note that the transition matrix for a Markov process has three important properties:

It depends only on the difference in space i − j , it is thus homogenous in space.

It is also isotropic in space since it is unchanged when we go from (i, j) to
(−i,−j).

It is homogenous in time since it depends only the difference between the initial
time and final time.

If we place the walker at x = 0 at t = 0 we can represent the initial PDF with
wi (0) = δi,0. Using Eq. (269) we have

wi (nε) =
X

j

(W n(ε))ij wj (0) =
X

j

1

2n

„
n

1
2 (n + i − j)

«
δj,0,

resulting in

wi (nε) =
1

2n

„
n

1
2 (n + i)

«
|i| ≤ n

Computational Physics II FYS4410



Diffusion from Markov Chain

Using the recursion relation for the binomials„
n + 1

1
2 (n + 1 + i))

«
=

„
n

1
2 (n + i + 1)

«
+

„
n

1
2 (n + i)− 1

«
we obtain, defining x = il , t = nε and setting

w(x , t) = w(il, nε) = wi (nε),

w(x , t + ε) =
1

2
w(x + l, t) +

1

2
w(x − l, t),

and adding and subtracting w(x , t) and multiplying both sides with l2/ε we have
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Diffusion from Markov Chain

w(x , t + ε)− w(x , t)

ε
=

l2

2ε

w(x + l, t)− 2w(x , t) + w(x − l, t)

l2
,

and identifying D = l2/2ε and letting l = ∆x and ε = ∆t we see that this is nothing but
the discretized version of the diffusion equation. Taking the limits ∆x → 0 and ∆t → 0
we recover

∂w(x , t)

∂t
= D

∂2w(x , t)

∂x2
,

the diffusion equation.
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Continuous Equation

Hitherto we have considered discretized versions of all equations. Our initial probability
distribution function was then given by

wi (0) = δi,0,

and its time-development after a given time step ∆t = ε is

wi (t) =
X

j

W (j → i)wj (t = 0).

The continuous analog to wi (0) is

w(x) → δ(x),

where we now have generalized the one-dimensional position x to a
generic-dimensional vector x. The Kroenecker δ function is replaced by the δ
distribution function δ(x) at t = 0.

The transition from a state j to a state i is now replaced by a transition to a state with

position y from a state with position x.
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Continuous Equation

The discrete sum of transition probabilities can then be replaced by an integral and we
obtain the new distribution at a time t + ∆t as

w(y, t + ∆t) =

Z
W (y, x,∆t)w(x, t)dx,

and after m time steps we have

w(y, t + m∆t) =

Z
W (y, x,m∆t)w(x, t)dx.

When equilibrium is reached we have

w(y) =

Z
W (y, x, t)w(x)dx.
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Continuous Equation

We can solve the equation for w(y, t) by making a Fourier transform to momentum
space. The PDF w(x, t) is related to its Fourier transform w̃(k, t) through

w(x, t) =

Z ∞

−∞
dk exp (ikx)w̃(k, t),

and using the definition of the δ-function

δ(x) =
1

2π

Z ∞

−∞
dk exp (ikx),

we see that
w̃(k, 0) = 1/2π.
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Continuous Equation

We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)
∂t

= −Dk2w̃(k, t),

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
h
−(Dk2t)

”
=

1

2π
exp

h
−(Dk2t)

i
.

We then obtain

w(x, t) =

Z ∞

−∞
dk exp [ikx ]

1

2π
exp

h
−(Dk2t)

i
=

1
√

4πDt
exp

h
−(x2/4Dt)

i
,

with the normalization condition Z ∞

−∞
w(x, t)dx = 1.
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Continuous Equation

It is rather easy to verify by insertion that the above is a solution of the diffusion
equation. The solution represents the probability of finding our random walker at
position x at time t if the initial distribution was placed at x = 0 at t = 0.
There is another interesting feature worth observing. The discrete transition probability
W itself is given by a binomial distribution. The results from the central limit theorem,
see yesterday’s lecture, state that the transition probability in the limit n →∞
converges to the normal distribution. It is then possible to show that

W (il − jl, nε) → W (y, x,∆t) =
1

√
4πD∆t

exp
h
−((y − x)2/4D∆t)

i
,

and that it satisfies the normalization condition and is itself a solution to the diffusion
equation.
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Variational MC and Importance Sampling

The Fokker-Planck equation yields a transition probability given by the Green’s function

G(y , x ,∆t) =
1

(4πD∆t)3N/2
exp

“
−(y − x − D∆tF (x))2/4D∆t

”
(93)

which in turn means that our brute force Metropolis algorithm

A(y , x) = min(1, q(y , x))), (94)

with q(y , x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by

q(y , x) =
G(x , y ,∆t)|ΨT (y)|2

G(y , x ,∆t)|ΨT (x)|2
(95)

Below we discuss a simple implementation of this algorithm for a simple particle in a

one-dimensional harmonic oscillator potential.
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Project 2, vmc-fp.cpp, 1-dim HO

int main() {
int MCSteps;
cin >> MCSteps;
initialize();
// perform 20% of MCSteps as thermalization steps
// and adjust time step size so acceptance ratio ˜90%
int thermSteps = int(0.2 * MCSteps);
int adjustInterval = int(0.1 * thermSteps) + 1;
nAccept = 0;
cout << " Performing " << thermSteps << " thermalization steps ..."

<< flush;
for (int i = 0; i < thermSteps; i++) {

oneMonteCarloStep();
if ((i+1) % adjustInterval == 0) {

tStep *= nAccept / (0.9 * N * adjustInterval);
nAccept = 0;

}
}
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Project 2 programs/vmc-fp.cpp

cout << "\n Adjusted time step size = " << tStep << endl;

// production steps
zeroAccumulators();
nAccept = 0;
cout << " Performing " << MCSteps << " production steps ..." << flush;
for (int i = 0; i < MCSteps; i++)

oneMonteCarloStep();
// compute and print energy
double eAve = eSum / double(N) / MCSteps;
double eVar = eSqdSum / double(N) / MCSteps - eAve * eAve;
double error = sqrt(eVar) / sqrt(double(N) * MCSteps);
cout << "\n <Energy> = " << eAve << " +/- " << error

<< "\n Variance = " << eVar << endl;
}
void oneMonteCarloStep() {

// perform N Metropolis steps
for (int n = 0; n < N; n++) {

MetropolisStep(n);
}

}
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VMC and Importance Sampling

void MetropolisStep(int n) {
// make a trial move
double x = ::x[n]; // :: chooses the global x
double Fx = - 4 * alpha * x;
double y = x + gasdev(seed) * sqrt(tStep) + Fx * tStep / 2;
// compute ratio for Metropolis test
double rhoRatio = exp( - 2 * alpha * (y * y - x * x));
double oldExp = y - x - Fx * tStep / 2;
double Fy = - 4 * alpha * y;
double newExp = x - y - Fy * tStep / 2;
double GRatio = exp( -(newExp * newExp - oldExp * oldExp) / (2 * tStep));
double w = rhoRatio * GRatio;
// Metropolis test
if (w > ran2(seed)) {

::x[n] = x = y;
++nAccept;

}
// accumulate energy and wave function
double e = eLocal(x);
eSum += e;
eSqdSum += e * e;

}
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VMC and Importance Sampling

void initialize() {
x = new double [N];
for (int i = 0; i < N; i++)

x[i] = qadran() - 0.5;
tStep = 0.1;

}
void zeroAccumulators() {

eSum = eSqdSum = 0;
}
double eLocal(double x) {

// compute the local energy
return alpha + x * x * (0.5 - 2 * alpha * alpha);

}
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Diffusion Monte Carlo

Choose τ = it/~. The time-dependent Schrödinger equation becomes then

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2

Diffusion constant

D =
~2

2m

Can solve this equation with a random walk algorithm for the above diffusion equation.
What happens with an interaction term?

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2
− V (x)Ψ(x , τ)
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Diffusion Monte Carlo

Without the kinetic energy term we have

∂Ψ(x , τ)

∂τ
= −V (x)Ψ(x , τ)

which is the same as a decay or growth process (depending on the sign of V ). We can

obtain the solution to this first-order differential equation by replacing it by a random

decay or growth process. We can thus interpret the full SE as a combination of

diffusion and branching processes. For the latter, the number of random walkers at a

point x depends on the sign of V (x).
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Diffusion Monte Carlo

A crucial aspect (which leads to the Monte Carlo sign problem for Fermions) is that the
probability distribution is no longer

P(x , τ) = Ψ∗(x , τ)Ψ(x , τ)dx

but
P(x , τ) = Ψ(x , τ)dx

Ψ must be nonnegative! It is related to distribution of walkers.
The general solution to SE

Ψ(x , τ) =
X

n

cnφn(x)e−Enτ

For sufficiently large τ the dominant term becomes the eigenvalue with lowest energy

Ψ(x , τ →∞) = c0φ0(x)e−E0τ
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Diffusion Monte Carlo

Note

Spatial dependence of Ψ(x , τ →∞) proportional to φ0

The population of walkers will however decay to zero unless E0 = 0!

Can avoid this problem by introducing an arbitrary reference energy Vref, which is
adjusted so that an approximate steady state distribution of random walkers is
obtained.

We obtain then

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2
− [V (x)− Vref] Ψ(x , τ),

and
Ψ(x , τ) ≈ c0φ0(x)e−(E0−Vref)τ
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Diffusion Monte Carlo

The DMC method is based on rewriting the SE in imaginary time, by defining τ = it .
The imaginary time SE is then

∂ψ

∂τ
= −bHψ.

The wave function ψ is again expanded in eigenstates of the Hamiltonian

ψ =
∞X
i

ciφi ,

where bHφi = εiφi ,

εi being an eigenstate of bH. A formal solution of the imaginary time Schrödinger
equation is

ψ(τ1 + δτ) = e−
bHδτψ(τ1).
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Diffusion Monte Carlo

The DMC equation reads

−
∂ψ(R, τ)
∂τ

=

24 NX
i

−
1

2
∇2

i ψ(R, τ)

35+ (V (R)− ET )ψ(R).

This equation is a diffusion equation where the wave function ψ may be interpreted as

the density of diffusing particles (or “walkers”), and the term V (R)− ET is a rate term

describing a potential-dependent increase or decrease in the particle density. The

above equation may be transformed into a form suitable for Monte Carlo methods, but

this leads to a very inefficient algorithm. The potential V (R) is unbounded in e.g.,

atomic systems and hence the rate term V (R)− ET can diverge. Large fluctuations in

the particle density then result and give impractically large statistical errors.
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Diffusion Monte Carlo

These fluctuations may be substantially reduced by the incorporation of importance
sampling in the algorithm. Importance sampling is essential for DMC methods, if the
simulation is to be efficient. A trial or guiding wave function ψT (R), which closely
approximates the ground state wave function is introduced.
For the trial wave function and energy, one typically uses the results from a as best as
possible VMC calculation. A new distribution is defined as

f (R, τ) = ψT (R)ψ(R, τ),

which is also a solution of the SE when ψ(R, τ) is a solution. Modified to

∂f (R, τ)
∂τ

=
1

2
∇ [∇− F (R)] f (R, τ) + (EL(R)− ET )f (R, τ).
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Diffusion Monte Carlo

In this equation we have introduced the so-called force-term F , given by

F (R) =
2∇ψT (R)

ψT (R)
,

and is commonly referred to as the “quantum force”. The local energy EL is defined as
previously

ELR) = −
1

ψT (R)

∇2ψT (R)

2
+ V (R),

and is computed, as in the VMC method, with respect to the trial wave function.
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Diffusion Monte Carlo

We can give the following interpretation. The right hand side of the importance

sampled DMC equation consists, from left to right, of diffusion, drift and rate terms. The

problematic potential dependent rate term of the non-importance sampled method is

replaced by a term dependent on the difference between the local energy of the

guiding wave function and the trial energy. The trial energy is initially chosen to be the

VMC energy of the trial wave function, and is updated as the simulation progresses.

Use of an optimised trial function minimises the difference between the local and trial

energies, and hence minimises fluctuations in the distribution f .
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DMC

Our previous Green’s function, (the diffusion part only)

GDiff (y , x ,∆t) =
1

(4πD∆t)3N/2
exp

“
−(y − x − D∆tF (x))2/4D∆t

”
(96)

is replaced by a diffusion piece and a branching part

GB(y , x ,∆t) = exp
„
−
»

1

2
(EL(y) + EL(x))− ET

–
∆t
«

(97)

yielding
GDMC(y , x ,∆t) ≈ GDiff (y , x ,∆t)GB(y , x ,∆t) (98)

with EL being the local energy and ET our trial energy. The Metropolis algorithm is still

A(y , x) = min(1, q(y , x))), (99)

with

q(y , x) =
GDMC(x , y ,∆t)|ΨT (y)|2

GDMC(y , x ,∆t)|ΨT (x)|2
(100)

Below we discuss a simple implementation of this algorithm for a simple

three-dimensional harmonic oscillator potential.
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DMC programs, 3-dim HO

int main() {

cout << " Diffusion Monte Carlo for the 3-D Harmonic Oscillator\n"
<< " -----------------------------------------------------\n";

cout << " Enter desired target number of walkers: ";
cin >> N_T;
cout << " Enter time step dt: ";
cin >> dt;
cout << " Enter total number of time steps: ";
int timeSteps;
cin >> timeSteps;

initialize();

// do 20% of timeSteps as thermalization steps
int thermSteps = int(0.2 * timeSteps);
for (int i = 0; i < thermSteps; i++)

oneTimeStep();

// production steps
zeroAccumulators();
for (int i = 0; i < timeSteps; i++) {

oneTimeStep();
}
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DMC programs, 3-dim HO

// compute averages
double EAve = ESum / timeSteps;
double EVar = ESqdSum / timeSteps - EAve * EAve;
cout << " <E> = " << EAve << " +/- " << sqrt(EVar / timeSteps) << endl;
cout << " <Eˆ2> - <E>ˆ2 = " << EVar << endl;
double psiNorm = 0, psiExactNorm = 0;
double dr = rMax / NPSI;
for (int i = 0; i < NPSI; i++) {

double r = i * dr;
psiNorm += r * r * psi[i] * psi[i];
psiExactNorm += r * r * exp(- r * r);

}
psiNorm = sqrt(psiNorm);
psiExactNorm = sqrt(psiExactNorm);
ofstream file("psi.data");
for (int i = 0; i < NPSI; i++) {

double r = i * dr;
file << r << ’\t’ << r * r * psi[i] / psiNorm << ’\t’

<< r * r * exp(- r * r / 2) / psiExactNorm << ’\n’;
}
file.close();

}
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DMC programs, 3-dim HO

// Diffusion Monte Carlo program for the 3-D harmonic oscillator

#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include "rng.h"

using namespace std;

int seed = -987654321; // for ran2 and gasdev
const int DIM = 3; // dimensionality of space

double V(double *r) { // harmonic oscillator in DIM dimensions
double rSqd = 0;
for (int d = 0; d < DIM; d++)

rSqd += r[d] * r[d];
return 0.5 * rSqd;

}
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DMC programs, 3-dim HO

double dt; // Delta_t set by user
double E_T; // target energy

// random walkers
int N; // current number of walkers
int N_T; // desired target number of walkers
double **r; // x,y,z positions of walkers
bool *alive; // is this walker alive?

// observables
double ESum; // accumulator for energy
double ESqdSum; // accumulator for variance
double rMax = 4; // max value of r to measure psi
const int NPSI = 100; // number of bins for wave function
double psi[NPSI]; // wave function histogram
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DMC programs, 3-dim HO

void ensureCapacity(int index) {

static int maxN = 0; // remember the size of the array

if (index < maxN) // no need to expand array
return; // do nothing

int oldMaxN = maxN; // remember the old capacity
if (maxN > 0)

maxN *= 2; // double capacity
else

maxN = 1;
if (index > maxN - 1) // if this is not sufficient

maxN = index + 1; // increase it so it is sufficient
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DMC programs, 3-dim HO

// allocate new storage
double **rNew = new double* [maxN];
bool *newAlive = new bool [maxN];
for (int n = 0; n < maxN; n++) {

rNew[n] = new double [DIM];
if (n < oldMaxN) { // copy old values into new arrays

for (int d = 0; d < DIM; d++)
rNew[n][d] = r[n][d];

newAlive[n] = alive[n];
delete [] r[n]; // release old memory

}
}
delete [] r; // release old memory
r = rNew; // point r to the new memory
delete [] alive;
alive = newAlive;

}
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DMC programs, 3-dim HO

void zeroAccumulators() {
ESum = ESqdSum = 0;
for (int i = 0; i < NPSI; i++)

psi[i] = 0;
}

void initialize() {
N = N_T; // set N to target number specified by user
for (int n = 0; n < N; n++) {

ensureCapacity(n);
for (int d = 0; d < DIM; d++)

r[n][d] = ran2(seed) - 0.5;
alive[n] = true;

}
zeroAccumulators();
E_T = 0; // initial guess for the ground state energy

}
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DMC programs, 3-dim HO

void oneMonteCarloStep(int n) {
// Diffusive step
for (int d = 0; d < DIM; d++)

r[n][d] += gasdev(seed) * sqrt(dt);
// Branching step
double q = exp(- dt * (V(r[n]) - E_T));
int survivors = int(q);
if (q - survivors > ran2(seed))

++survivors;
// append survivors-1 copies of the walker to the end of the array
for (int i = 0; i < survivors - 1; i++) {

ensureCapacity(N);
for (int d = 0; d < DIM; d++)

r[N][d] = r[n][d];
alive[N] = true;
++N;

}
// if survivors is zero, then kill the walker
if (survivors == 0)

alive[n] = false;
}

Computational Physics II FYS4410



DMC programs, 3-dim HO

void oneTimeStep() {
// DMC step for each walker
int N_0 = N;
for (int n = 0; n < N_0; n++)

oneMonteCarloStep(n);
// remove all dead walkers from the arrays
int newN = 0;
for (int n = 0; n < N; n++)
if (alive[n]) {

if (n != newN) {
for (int d = 0; d < DIM; d++)

r[newN][d] = r[n][d];
alive[newN] = true;

}
++newN;

}
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DMC programs, 3-dim HO

N = newN;
// adjust E_T
E_T += log(N_T / double(N)) / 10;
// measure energy, wave function
ESum += E_T;
ESqdSum += E_T * E_T;
for (int n = 0; n < N; n++) {

double rSqd = 0;
for (int d = 0; d < DIM; d++)

rSqd = r[n][d] * r[n][d];
int i = int(sqrt(rSqd) / rMax * NPSI);
if (i < NPSI)

psi[i] += 1;
}

}
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How to obtain the energy?

Note the statement

// adjust E_T
E_T += log(N_T / double(N)) / 10;

What does it mean? After many time steps, the remaining time dependence (complex)
for Ψ is proportional to e−(E0−ET )∆t . To obtain E0 we need to follow the growth of the
population of random walkers. If we let the current poulation of walkers be N(t), it
should be proportional to the function f (x , t), viz

N(t) =

Z
f (x , t)dx . (101)

The change in population is

N(t + ∆t) = e−(E0−ET )∆t N(t). (102)
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How to obtain the energy?

For large enough numbers of Monte Carlo cycles, we can estimate the ground state
energy from the so-called growth energy Eg which can be obtained from the
populations of walkers at different times, obtaining

Eg = ET +
1

t2 − t1
ln(

N(t1)

N(tw )
), (103)

yielding an energy E0 which is the average of < Eg >. This is not the best choice since

the population of walkers can vary strongly from time to time, resulting in large

deviations of the mean. Test this for the enclosed program. A better estimater for the

energy is the local energy EL.
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