Data Blocking

Jon K. Nilsen

Department of Physics and Scientific Computing Group
University of Oslo, N-0316 Oslo, Norway

Spring 2008

Computational Physics Il FYS4410



Data Blocking

@ Why blocking?

@ What is blocking?

@ Blocking in parallel VMC
@ Example

Computational Physics Il FYS4410



Why blocking?

Statistical analysis

@ Monte Carlo simulations can be treated as computer
experiments

@ The results can be analysed with the same statistics tools
we would use in analysing laboraty experiments

@ As in all other experiments, we are looking for expectation
values and an estimate of how accurate they are, i.e., the
error

Computational Physics Il FYS4410



Why blocking?

Statistical analysis

@ As in other experiments, Monte Carlo experiments have
two classes of errors:

o Statistical errors
e Systematic errors
@ Statistical errors can be estimated using standard tools
from statistics

@ Systematic errors are method specific and must be treated
differently from case to case. (In VMC a common source is
the step length)

<

Computational Physics Il FYS4410



What is blocking?

@ Say that we have a set of samples from a Monte Carlo
experiment

@ Assuming (wrongly) that our samples are uncorrelated our
best estimate of the standard deviation of the mean m is

given by
7= \/n11 (”32_'772)

@ If the samples are correlated it can be showed that

_ A+ 2r/At -,
7= \/ n—1 (m -m )
where 7 is the correlation time (the time between a sample

and the next uncorrelated sample) and At is time between
each sample

Computational Physics Il FYS4410




What is blocking?

Blocking

@ If At > 7 our first estimate of ¢ still holds
@ Much more common that At < 7

@ In the method of data blocking we divide the sequence of
samples into blocks

@ We then take the mean m; of block i = 1. .. Npjoeks 10
calculate the total mean and variance

@ The size of each block must be so large that sample j of
block i is not correlated with sample j of block i + 1

@ The correlation time 7 would be a good choice

Computational Physics Il FYS4410



What is blocking?

Blocking

@ Problem: We don’t know 7
@ Solution: Make a plot of std. dev. as a function of block size

@ The estimate of std. dev. of correlated data is too low —
the error will increase with increasing block size until the
blocks are uncorrelated, where we reach a plateau

@ When the std. dev. stops increasing the blocks are
uncorrelated

Computational Physics Il FYS4410



Implementation

@ Do a parallel Monte Carlo simulation, storing all samples to
files (one per process)

@ Do the statistical analysis on these files, independently of
your Monte Carlo program

@ Read the files into an array
@ Loop over various block sizes

@ For each block size ny, loop over the array in steps of ny
taking the mean of elements inp, ..., (i + 1)ny

@ Take the mean and variance of the resulting array

@ Write the results for each block size to file for later analysis

Computational Physics Il FYS4410



Implementation

@ The files vmc_para.cpp and vmc_blocking.cpp contains a
parallel VMC simulator (see Mortens slides for details) and
a program for doing blocking on the samples from the
resulting set of files

@ Will go through the parts related to blocking

Computational Physics Il FYS4410


http://www.uio.no/studier/emner/matnat/fys/FYS4410/v08/undervisningsmateriale/Material%20for%20Part%20I%20by%20Morten%20HJ/Programs/Programs%20for%20Project%201/vmc_para.cpp
http://www.uio.no/studier/emner/matnat/fys/FYS4410/v08/undervisningsmateriale/Material%20for%20Part%20I%20by%20Morten%20HJ/Programs/Programs%20for%20Project%201/vmc_blocking.cpp

Implementation
Parallel file output

@ The total number of samples from all processes may get
very large

@ Hence, storing all samples on the master node is not a
scalable solution

@ Instead we store the samples from each process in
separate files

@ Must make sure this files have different names

String handling

ostringstream ost;

0st << "blocks_rank" << my.rank << ".dat";

blockofile .open(ost.str().c_str(), ios::out | ios::
binary);

Computational Physics Il FYS4410



Implementation
Parallel file output

@ Having separated the filenames it’s just a matter of taking
the samples and store them to file

@ Note that there is no need for communication between the
processes in this procedure

File dumping

all_energies = new double[number_cycles+1];
mc_sampling (max_variations, number_cycles, cumulative_e ,
cumulative_e2 ,
all_energies);

blockofile.write ((charx) (all_energies+1),
number_cyclesx«sizeof (double)) ;
blockofile.close () ;

V.

Computational Physics Il FYS4410




Implementation
Reading the files

@ Reading the files is only about mirroring the output

@ To make life easier for ourselves we find the filesize, and
hence the number of samples by using the C function stat

File loading

struct stat result;

if (stat("blocks_rank0.dat", &result) == 0){
local_-n = result.st_size/sizeof (double) ;
n = local_-nxn_procs;

}

doublex mc_results = new double[n];

for(int i=0; i<n_procs; i++){
ostringstream ost;
ost << "blocks_rank" << i << ".dat";
ifstream infile;
infile .open(ost.str().c.str(), ios::in | ios::binary);
infile .read ((charx)&(mc_results[ixlocal-n]) ,result.st_size);
infile .close () ;

V.

Computational Physics Il FYS4410




Implementation

Blocking
@ Loop over block sizes inp, ..., (i +1)np

Loop over block sizes

for(int i=0; i<n_block_samples; i++){
block_size = min_block_size+ixblock_step_length;

blocking (mc_results, n, block_size, res);
mean = res[0];

sigma = res[1];

outfile << block_size << "\t" << mean << "\t"
<< sqrt(sigma/((n/block_size) —1.0))

<< endl;

Computational Physics Il FYS4410



Implementation
Blocking

@ The blocking itself is now just a matter of finding the
number of blocks (note the integer division) and taking the
mean of each block

@ Note the pointer aritmetic: Adding a number /j to an array
pointer moves the pointer to element i in the array

Blocking function

void blocking (double xvals, int n_vals, int

block_size , double xres){

int n_blocks = n_vals/block_size;

doublex block_vals = new double[n_blocks];

for(int i=0; i<n_blocks; i++)
block_vals[i] = mean(vals+ixblock_size ,

block_size);
meanvar (block_vals , n_blocks, res)

Computational Physics Il FYS4410




