
Data Blocking

Jon K. Nilsen

Department of Physics and Scientific Computing Group
University of Oslo, N-0316 Oslo, Norway

Spring 2008

Computational Physics II FYS4410

Outline

Data Blocking
Why blocking?
What is blocking?
Blocking in parallel VMC
Example

Computational Physics II FYS4410

Why blocking?

Statistical analysis
Monte Carlo simulations can be treated as computer
experiments
The results can be analysed with the same statistics tools
we would use in analysing laboraty experiments
As in all other experiments, we are looking for expectation
values and an estimate of how accurate they are, i.e., the
error

Computational Physics II FYS4410

Why blocking?

Statistical analysis
As in other experiments, Monte Carlo experiments have
two classes of errors:

Statistical errors
Systematic errors

Statistical errors can be estimated using standard tools
from statistics
Systematic errors are method specific and must be treated
differently from case to case. (In VMC a common source is
the step length)

Computational Physics II FYS4410

What is blocking?

Blocking

Say that we have a set of samples from a Monte Carlo
experiment
Assuming (wrongly) that our samples are uncorrelated our
best estimate of the standard deviation of the mean m̄ is
given by

σ =

√
1

n − 1

(
m̄2 − m̄2

)
If the samples are correlated it can be showed that

σ =

√
1 + 2τ/∆t

n − 1

(
m̄2 − m̄2

)
where τ is the correlation time (the time between a sample
and the next uncorrelated sample) and ∆t is time between
each sample

Computational Physics II FYS4410

What is blocking?

Blocking
If ∆t � τ our first estimate of σ still holds
Much more common that ∆t < τ

In the method of data blocking we divide the sequence of
samples into blocks
We then take the mean m̄i of block i = 1 . . . nblocks to
calculate the total mean and variance
The size of each block must be so large that sample j of
block i is not correlated with sample j of block i + 1
The correlation time τ would be a good choice

Computational Physics II FYS4410

What is blocking?

Blocking
Problem: We don’t know τ

Solution: Make a plot of std. dev. as a function of block size
The estimate of std. dev. of correlated data is too low →
the error will increase with increasing block size until the
blocks are uncorrelated, where we reach a plateau
When the std. dev. stops increasing the blocks are
uncorrelated

Computational Physics II FYS4410

Implementation

Main ideas
Do a parallel Monte Carlo simulation, storing all samples to
files (one per process)
Do the statistical analysis on these files, independently of
your Monte Carlo program
Read the files into an array
Loop over various block sizes
For each block size nb, loop over the array in steps of nb
taking the mean of elements inb, . . . , (i + 1)nb

Take the mean and variance of the resulting array
Write the results for each block size to file for later analysis

Computational Physics II FYS4410

Implementation

Example
The files vmc para.cpp and vmc blocking.cpp contains a
parallel VMC simulator (see Mortens slides for details) and
a program for doing blocking on the samples from the
resulting set of files
Will go through the parts related to blocking

Computational Physics II FYS4410

http://www.uio.no/studier/emner/matnat/fys/FYS4410/v08/undervisningsmateriale/Material%20for%20Part%20I%20by%20Morten%20HJ/Programs/Programs%20for%20Project%201/vmc_para.cpp
http://www.uio.no/studier/emner/matnat/fys/FYS4410/v08/undervisningsmateriale/Material%20for%20Part%20I%20by%20Morten%20HJ/Programs/Programs%20for%20Project%201/vmc_blocking.cpp

Implementation

Parallel file output
The total number of samples from all processes may get
very large
Hence, storing all samples on the master node is not a
scalable solution
Instead we store the samples from each process in
separate files
Must make sure this files have different names

String handling

os t r ings t ream ost ;
os t << "blocks_rank" << my rank << ".dat" ;
b l o c k o f i l e . open (ost . s t r () . c s t r () , i os : : out | i os : :

b ina ry) ;

Computational Physics II FYS4410

Implementation

Parallel file output
Having separated the filenames it’s just a matter of taking
the samples and store them to file
Note that there is no need for communication between the
processes in this procedure

File dumping

a l l e n e r g i e s = new double [number cycles + 1] ;
mc sampling (max var ia t ions , number cycles , cumulat ive e ,

cumulat ive e2 ,
a l l e n e r g i e s) ;

b l o c k o f i l e . w r i t e ((char ∗) (a l l e n e r g i e s +1) ,
number cycles∗sizeof (double)) ;

b l o c k o f i l e . c lose () ;

Computational Physics II FYS4410

Implementation

Reading the files
Reading the files is only about mirroring the output
To make life easier for ourselves we find the filesize, and
hence the number of samples by using the C function stat

File loading

struct s t a t r e s u l t ;
i f (s t a t ("blocks_rank0.dat" , & r e s u l t) == 0){

l o c a l n = r e s u l t . s t s i z e / sizeof (double) ;
n = l o c a l n∗n procs ;

}

double∗ mc resu l ts = new double [n] ;
for (i n t i =0; i<n procs ; i ++){

os t r ings t ream ost ;
os t << "blocks_rank" << i << ".dat" ;
i f s t r eam i n f i l e ;
i n f i l e . open (ost . s t r () . c s t r () , i os : : i n | i os : : b ina ry) ;
i n f i l e . read ((char∗) &(mc resu l t s [i∗ l o c a l n]) , r e s u l t . s t s i z e) ;
i n f i l e . c lose () ;

}

Computational Physics II FYS4410

Implementation

Blocking

Loop over block sizes inb, . . . , (i + 1)nb

Loop over block sizes

for (i n t i =0; i <n block samples ; i ++){
b lock s i ze = min b lock s i ze+ i ∗ b l o c k s t e p l e n g t h ;
b lock ing (mc resu l ts , n , b lock s ize , res) ;
mean = res [0] ;
sigma = res [1] ;
o u t f i l e << b lock s i ze << "\t" << mean << "\t"

<< s q r t (sigma / ((n / b l ock s i ze) −1.0))
<< endl ;

}

Computational Physics II FYS4410

Implementation

Blocking
The blocking itself is now just a matter of finding the
number of blocks (note the integer division) and taking the
mean of each block
Note the pointer aritmetic: Adding a number i to an array
pointer moves the pointer to element i in the array

Blocking function

void b lock ing (double ∗ vals , i n t n vals , i n t
b lock s ize , double ∗ res) {

i n t n b locks = n va ls / b l ock s i ze ;
double∗ b lock va l s = new double [n b locks] ;
for (i n t i =0; i <n b locks ; i ++)

b l ock va l s [i] = mean(va ls+ i ∗ b lock s ize ,
b l ock s i ze) ;

meanvar (b lock va ls , n blocks , res) ;
}

Computational Physics II FYS4410

