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Introduction to Density Functional Theory and
Exchange-Correlation Energy Functionals

R. O. Jones

Institute for Solid State Research
Forschungszentrum Jülich

52425 Jülich, Germany
E-mail: r.jones@fz-juelich.de

Density functional calculations of cohesive and structural properties of molecules and solids
can be performed with less computational effort than by using other methods of comparable
accuracy. We outline the theory and discuss the local density approximations basic to most
applications, and we discuss ways to modify these approximations to yield improved results.

1 Foreword

The NIC Winter School 2006 focuses on Computational Nanoscience, particularly on un-
derstanding the properties of materials so that we can “tailor” new ones with novel prop-
erties. A glance at the program shows the dominant role played by the density functional
(DF) formalism in this area. I have been asked to present an introduction to this theory
and, in a second lecture, to discuss approximations to the exchange and correlation energy.
These lecture notes cover these topics, but the first lecturewill follow a more historical (and
more lively) approach to DF theory. The theory now plays a ubiquitous role in condensed
matter calculationsand in chemistry, but its general acceptance was slow in coming,and
there has been much rewriting of history since its arrival. The following notes are derived
in part from earlier articles1 and provide a background for other talks in this School.

2 Introduction

The description of many-particle systems covers much of physics and chemistry. In com-
putational nanoscience we focus on atoms, molecules, and solids, on their structural and
cohesive properties, and on how they interact with each other. We usually emphasize the
properties of specific materials rather than universal properties of all, and our interest on
structural and binding means that the total energy� of a system and its components is
very important. The density functional (DF) formalism is our main theme here, but we
shall note how its perspective differs from that of other methods used to discuss many-
particle systems.

If we wish to discuss the properties of an interacting system, such as the elec-
trons in a molecule or solid, it is natural to consider the many-electron wave function,� ���� � ��� � ��� ��	 
, where the

��� denote the particle coordinates and spins. This has been
discussed in this School by Prof. V. Staemmler. Hartree2 made one of the earliest approx-
imations for

�
in writing the many-electron wave function as a product of single-particle

functions, i.e.
� ���� � ��� � ���
 � 
 � ���� 
 �������
	 ���	 
 (1)
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Each of the functions
 � ���� 
 satisfies a one-electron Schrödinger equation with a potential
term arising from the average field of the other electrons, i.e.

�� ���� � � � ���	 � 
 � 
 
 � ��� 
 � � �
 � ��� 
 � (2)

where the Coulomb potential

 � is given by Poisson’s equation,

� �
 � � �
 �� 	����� ��� �
� �� � (3)

and
�

ext is the potential due to the nuclei. Fermi statistics can be incorporated by replacing
the product wave function by a single determinantal function.3, 4 This “Hartree-Fock” (HF)
approximation leads to an additional, nonlocal exchange term in the Schrödinger equation,
but does not change the single-particle picture, with the wave function described in terms of
orbitals with particular spins and occupation numbers. Theinclusion of “exchange” effects
improves the total energy, and the HF approximation remainsan indispensable benchmark
in molecular physics.

In 1960 Coulson,5 however, noted that “it is now perfectly clear that a single configu-
ration (Slater determinant) wave function must inevitablylead to a poor energy”. A linear
combination of such determinants would be better, and the inclusion of “correlation ef-
fects” by this approach (“configuration interaction”, CI) improves the many-particle wave
function, from which most properties of interest can be calculated. Some such approaches
will be discussed in this School by Dr. C. Hättig. The explosive increase in the number
of configurations with increasing electron number means, however, that only systems with
relatively few electrons can be calculated with high accuracy. The complexity of the re-
sulting solutions can also hinder a simple interpretation of the results.

Thomas6 and Fermi7 had proposed much earlier a scheme based on the density of
electrons in the system,� ��� 
. The Thomas-Fermi (TF) scheme assumes that the motions of
the electrons are uncorrelated, and that the correspondingkinetic energy can be described
by a local approximation based on the results for free electrons, �� ��� 
� �� . The potential
of the system can be determined from solving Poisson’s equation, and the requirement of
constant chemical potential leads to the TF equation for� ��� 
. This approach gives a poor
description of real systems, but in its focus on thedensity it is a forerunner of later DF
theories, and its mathematical properties have received much attention.8 In general, the
integrated quantity� ��� 
 � � � � ��� �� � � ��	 � � ��� � � � ��� ��	 
� ��� � � � ��� ��	 
 should be easier
to describe than the precise details of the wave function,

�
.

Shortly after the original work, Dirac9 proposed that exchange effects be included by
incorporating a term derived from the exchange energy density in a homogeneous system, Dirac

x
� � !� "!
 # �� � �� � $ ��%&� ' a.u.� (4)

where� ' � �!( ��
� 

�)* is a measure of the average interelectronic distance. The use of
an approximate exchange potential in addition to the Hartree term in Eq. (2) was suggested
by Slater,10 who showed that the exchange potential in a system of variable density could
be approximated by a term with the same density dependence. However, it iscrucial
to appreciate that the argument of Slater does not depend on the exchange energy in a
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homogeneous system. The exchange interaction means that anelectron of a given spin
will be surrounded by a region where the density of electronswith the same spin (say, spin
up) is reduced. The effect of the “exchange hole” can be estimated by replacing it by a
uniform density inside a sphere of radius�� , and zero elsewhere. Since the hole contains
a single electron,10 �� � �!( ��
�� 

�)* , and we obtain an exchange energy with the same
density dependence as that of Dirac.

Gáspár11 adopted the Dirac approximation to the exchange energy, andderived a
slightly different exchange potential by using a variational approach. This method re-
produced the HF eigenfunctions and eigenvalues for the Cu

�
ion very well, showing that

an approximation based on results for a homogeneous system could give a satisfactory
description even if the density is very far from uniform.

The above work has been essential to the development of modern DF theory. As an
approximation to the (nonlocal) exchange potential, the simple local density (LD) approx-
imation provided the basis for much of the work on the electronic structure of solids in the
1950’s and early 1960’s. The calculation of electronic bandstructures and related quan-
tities is, of course, one of the success stories of modern condensed matter physics. The
experience obtained in solving Schrödinger-like equations with local effective potentials
and the improvement in numerical methods and computers during the past decades have
been decisive in carrying out density functional calculations in recent years.

Hohenberg and Kohn12 showed that ground state properties, particularly the total en-
ergy� , of a system of interacting particles could be related to thedensity distribution. For
a nonmagnetic, nondegenerate ground state of a system of electrons in the presence of a
scalar field

���	
, they showed that the density uniquely determines the potential, up to an

arbitrary additive constant. Their proof has been simplified and extended by Levy,13 and
the TF equation may be derived from this formalism as an approximation. Its application
to the total energy of the interacting system results in a minimum principle, and the deter-
mination of the energy of the ground state can be found by the solution of single-particle
equations.14 In practice, total energy calculations require approximations to be made for
the exchange-correlation energy,�

�� , and Kohn and Sham14 showed that the local density
(LD) approximation,

�
���� �

� � �� � ��� 
  �� �� ��� 
� � (5)

could be applied to the limiting cases of a slowly varying density and very high densities.
Here �� �� � is the exchange and correlation energy per particle of a homogeneous electron
gas with density� . The exchange contribution, x, has the same form as that of Gáspár,
and a variety of approximations exist for the correlation term,  �.

The limiting cases noted above are not realized in atoms, molecules or solids, and Kohn
and Sham commented that “we do not expect an accurate description of chemical bonding”
with the LD approximation.14 A decade passed before the first attempts were made to test
its ability to describe the bonds in molecules, and it is remarkable that these showed that
the LD approximation could generally reproduce ground state geometries, vibration and
phonon frequencies, and moments of the density very well. The DF formalism remains
the basis of most of the parameter-free calculations in extended systems, and has found
widespread application to molecules and clusters. Most calculations have used the local
density approximation [Eq. (5)] or modifications of it.
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The practical necessity of approximating�
�� leads to an essential difference in per-

spective between the density functional and CI approaches.The goal of the latter is an
exact numerical solution of the Schrödinger equation, which would yield exact answers
for most quantities of interest, whereas even an exact solution of the density functional
equations will only reflect the accuracy of the approximation for �

�� . We shall discuss
some of the many approximations that have been developed. Inorder to appreciate some
qualitative features of the density in a real system, we showin Figure 1 the spherically
averaged density in the ground state of the carbon atom. The density falls monotonically
from the nucleus, with the radial oscillations often expected. The charge density in small
molecules also tends to be relatively featureless, with maxima at the nuclei, saddle points
along the bonds and a generally monotonic decay away from both. Furthermore, the elec-
tron density in a molecule or solid shows relatively small departures from the overlapped
densities of its atomic constituents. Energy differences result from subtle changes in rel-
atively featureless density distributions, and it is not surprising that it is difficult to find
simple prescriptions for determining them.
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Figure 1. Spherical average of density in ground state of C atom

3 Density Functional Formalism

3.1 The Density as Basic Variable

Ground state (GS) properties of a system, including the energy � , can be expressed as
functionals of the GS electron density, i.e. they are determined by a knowledge of the
density alone. We show that� �� � satisfies a variational principle. The Thomas-Fermi (TF)
is a special case of this formalism.

The basic theorems of the density functional formalism werederived by Hohenberg
and Kohn,12 and Levy13 provided a simpler and more general derivation. We consider�
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electrons moving in an external potential,
���� ��� 
, i.e. the Hamiltonian is

� � � � ��� � 	�
�� �

���	 ���� 
 � (6)

where� and
���

are the kinetic and electron-electron interaction operators, respectively.
For all “� -representable” densities,� ��� 
,� i.e. those obtainable from some antisymmetric
wave function,
 ��� � � ��� � ��� ��	 
, Levy defined the functional,

� �� � � min��	 

 �� � ��� �
 � � (7)

where the minimum is taken over all
 that give the density�.
� �� � is universal in the

sense that it refers neither to a specific system nor to the external potential
���	 ��� 
. If we

denote��
 , 
�
 , and��
 ��� 
 to be the ground state energy, wave function and density,
respectively, then the two basic theorems of DF theory are:

� �� � � � � �� ���	 ��� 
� ��� 
 � � �� � � ��
 (8)

for all � -representable� ��� 
, and
� � �� � ��� 
��
 ��� 
 � � ���
 � � ��
 (9)

To prove the variational principle [Eq. (8)] we introduce the notation
 	� �� ��� 
 for a
wave function that minimizes

� �� � in Eq. (7), so that

� �� � � 

 	� �� �� � ��� �
 	� �� � (10)

Writing
� � � � ���	 ���� 
, we have

� � �� ���	 ��� 
� ��� 
 � � �� � � 

 	� �� �� � � � ��� �
 	� �� � � ��
 � (11)

according to the minimum property of the GS. This proves the inequality (8). Using the
minimum property once more we find

��
 � 

�
 �� � � � ��� �
�
 � � 

 	��� �� �� � � � ��� �
 	��� �� � � (12)

We subtract the interaction with the external potential andobtain


�
 �� � ��� �
�
 � � 

 	��� �� �� � ��� �
 	��� �� � � (13)

On the other hand, the definition of
 	��� �� yields the reverse relation between the two sides
of Eq. (13). This is possible only if



�
 �� � ��� �
�
 � � 

 	��� �� �� � ��� �
 	��� �� � � (14)

�
Hohenberg and Kohn12 worked in the space of� -representable densities, i.e. those that can be realized for

some external potential,���� � ��  . This space is a subspace of! -representable densities.
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Then we have

��
 �
� � �� ���	 ��� 
��
 ��� 
 � 

�
 �� � ��� �
�
 �

�
� � �� ���	 ��� 
��
 ��� 
 � 

 	��� �� �� � ��� �
 	��� �� �

�
� � �� ���	 ��� 
��
 ��� 
 � � ���
 � (15)

These are the basic theorems. An important result also follows from Eq. (14). If the
ground state GS is nondegenerate,
 	��� �� � 
�
 . If the ground state is degenerate,
 	��� ��
is equal to one of the GS wave functions, and the others can also be obtained. The GS
charge density then determines the GS wave function(s), from which all GS properties can
be calculated. These properties are therefore functionalsof the density.

It has been said that Wilson15 gave a shorter, if less general, proof of the definitive role
of the electron density shortly after the DF formalism was first published. It is based on
the “cusp condition”16 satisfied by the density at the nucleus�� �

� �� 
� �$
� �� 
� ��� 
�� �� ����� � (16)

where the brackets

� � �� denote a spherical average. The density� then determines

uniquely the charges
��

as well as the positions of the nuclei and hence the Hamiltonian.
These theorems provide a general method for calculating GS properties. If an approx-

imation can be found for
� �� �, we need to minimize� �� � in Eq. (13) for the potential� ��� 
 of interest. This leads to corresponding approximations for ��
 and��
 ��� 
. The

same procedure applies to a ground state property� if we have an approximation for the
functional� �� �.
3.2 Thomas-Fermi (TF) Approximation

Here the electrons are treated as independent particles, and the electron-electron interaction
energy arises solely from the electrostatic energy,

�
�	 �� � � ��� � � ��

� � �� 
 � ��� 
� � �� 
 
��� � �� 
 � � (17)

Furthermore, we assume that the kinetic energy is given by

� �� � � � � �� � �� ��� 
� � (18)

where� �� � is the kinetic energy density for a system of noninteractingelectrons with den-
sity �. We have � �� � � � �

��
 
* � �
 ��
� � �� ��� ��� � (19)

where
� ��
 (!
�� * ( ��
 
* � �. This gives

� � �� � � �
 � � �� �� ��� 
� �� � (20)
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where�
 � !�� �!
 � 
 �� (�$� �
We now minimize� �� 
 under the condition that the number of electrons is kept con-

stant, � � �� � ��� 
 � � � (21)

Using the method of Lagrange multipliers, we require that

� �� � � �� � � �� � � �
�	 �� � � � � �� � ��� 
����	 ��� 
 � � � (22)

has a minimum. The corresponding Euler equation is the TF equation,%! �
� ��� 
 �� � �� � � �� 
 � � �� 
 
��� � �� 
 � � ���	 ��� 
 � � � $ � (23)

Decades of study have shown that the TF model provides a roughdescription of, for
example, the charge density and the electrostatic potential, but it has severe deficiencies.
The charge density is infinite at the nucleus, and it does not decay exponentially far from
the nucleus of an atom, but as��� . It has also been shown that TF theory does not result
in atoms binding to form molecules or solids. The absence of shell structure in the TF
atom means that the observed periodic variation of many properties with changing atomic
number cannot be reproduced. In fact, the atomsshrink with increasing atomic number

�
(as

� ��)*),17 and the model never predicts ferromagnetism.18

3.3 Single-particle Description of a Many-particle System

Many of the drawbacks of the Thomas-Fermi approach can be traced to the approximate
treatment of the kinetic energy. The task of finding good approximations to the energy
functional is greatly simplified by using a different separation introduced by Kohn and
Sham,14

� �� � � �� �� � � � � �� � ��� 
 ����	 ��� 
 � �� 
 ��� 
� �
�
�� �� � � (24)

�� is the kinetic energy of a system with density� in the absence of electron-electron
interactions,



is the classical Coulomb potential for electrons, and the remainder�

��
defines the exchange-correlation energy.� � differs from the true kinetic energy� , but it
is of comparable magnitude and is treatedexactly in this approach. This removes many of
the deficiencies of the Thomas-Fermi approximation, such asthe lack of a shell structure
of atoms or the absence of chemical bonding in molecules and solids. All terms in Eq. (24)
but the exchange-correlation energy�

�� can be evaluated exactly, so that the (unavoidable)
approximations for�

�� play a central role in the following discussion.
The variational principle applied to Eq. (24) yields�� �� ��� ��� 
 �

����� ��� 

� ���	 ��� 
 � 
 ��� 
 � ���� �� ��� ��� 
 � � � (25)
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where� is the Lagrange multiplier associated with the requirementof constant particle
number.� If we compare this with the corresponding equation for a system with an effective
potential

� ��� 
 butwithout electron-electron interactions,

�� �� ��� ��� 
 �
�� ��� ��� 


� � ��� 
 � � � (26)

we see that the mathematical problems are identical, provided that� ��� 
 � ���	 � 
 ��� 
 � ���� �� ��� ��� 
 � (27)

Where the last term is referred to as the exchange-correlation potential
�

xc. The solution
of Eqs. (26), (27) can be found by solving the Schrödinger equation for noninteracting
particles,

"� �� � � � � ��� 
# 
 � ��� 
 � � �
 � ��� 
 � (28)

yielding

� ��� 
 �
	�
�� �

�
� ��� 
 �� � (29)

The condition (27) can be satisfied in a self-consistent procedure.
The solution of this system of equations leads then to the energy and density of the

lowest state, and all quantities derivable from them. The formalism has also been general-
ized to the lowest state with a given set of quantum numbers.19 In this case�

�� depends
on the values of the quantum numbers, and the density variations must remain within the
space corresponding to the given quantum numbers. Instead of seeking these quantities by
determining the wave function of the system of interacting electrons, the density functional
method reduces the problem to the solution of a single-particle equation of Hartree form.
In contrast to the HF potential,��� 
 ��� 
 �

� � �� 
 ��� ��� � �� 
 

 � �� 
 
 � (30)

the effective potential,
� ��� 
 is local, and the equations are no more complicated to solve

than Hartree’s. The kinetic energy, the electrostatic interaction between core and valence
electrons, and between valence electrons are treated exactly. Only the exchange energy,
�x, and the even smaller correlation contribution require approximation. This is in marked
contrast to the Thomas-Fermi and related methods, where thelarge kinetic energy term is
approximated.

We note here the problem of the “self-interaction correction” (SIC), where the Coulomb
energy of interaction of an electron with itself must be cancelled by a contribution to�xc.

�
The functional derivative�� ���	�� � ��  is defined so that the first order change in the functional due to a change

in its argument� � ��  is:

�� 
 � � �� ���� � ��  �� � ��  
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The importance of SIC is obvious immediately if we consider asingle-electron system
such as the hydrogen atom. We also note the scaling conditionon the exchange energy20

�x ��*� �� �� 
� � �
�x �� ��� 
� � (31)

which has proved to be useful in constructing functional approximations.

3.4 Spin Systems

The generalization of the single-particle equations to spin systems or an external magnetic
field requires the consideration of the spin indices,�, of the one-electron operators
 � ��� 
.
In general, this requires the replacement of

���	
by a spin-dependent potential,

� ����	 ��� 
,
and the charge density� ��� 
 by the density matrix��� ��� 
 � 
� �
�� ��� 

 � ��� 
 �� � (32)

All ground state properties are functionals of the density matrix ���
, and� is stationary

with respect to variations in���
, provided21�� � � �� ��� � � � (33)

The application of the variational principle requires that���
is � -representable, which is

guaranteed for all non-negative, differentiable���
that satisfy Eq. (33).22 The effective

spin-dependent potential in the single-particle equations is� ���� �
�������� ��� 
 � (34)

The original derivation of the Hohenberg-Kohn theorem leads to analytical problems
in the case of spin systems. These authors showed that the ground state density� ��� 
 deter-
mined the ground state wave function

� ���� � ��� � ���
 uniquely, which determines the poten-
tial

� ��� 
 up to an additive constant. For spin DF theory, however, von Barth and Hedin21

showed that the uniqueness of the potential is not guaranteed, and Capelle and Vignale23

found that this is true in general. A similar result was foundby Eschrig and Pickett.24 Kohn
et al.25 estimate that the practical consequences for spin DF calculations are not signifi-
cant. Since the potential and magnetic field are unambiguous, and the kinetic, Coulomb,
and exchange-correlation energies are defined in terms of

�
, but independently of� ��� 


and the spin density. A result that is useful in constructingfunctional approximations is
“spin scaling”,26 which applies to the exchange energy in spin DF theory,

� SDF
x ��� �� � � � �� �� DF

x ���� � � �DF
x ���� �� � (35)

The approximation used most widely in total energy calculations of spin systems is the
local spin density (LSD) approximation,

�
�
��� �

� � �� � ��� 
  �� ��� ��� 
 ��� ��� 
� � (36)

where �� ��� ��� � is the exchange and correlation energy per particle of a homogeneous,
spin-polarized electron gas with spin-up and spin-down densities�� and�� , respectively.
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Numerous electron gas calculations have been performed over the years, and some parame-
terizations of �� ��� � �� � will be discussed below. Different calculations lead to somewhat
different results, but all are free of adjustable parameters. The X�-approximation is ob-
tained if  �� in Eq. (5) is replaced by the exchange energy per electron andmultiplied by!� (�, i.e.

� X
�� � � !� �� � � �� ���� ��� 

�)* � ��� ��� 

�)* � � (37)

where� � ! �!(�
 
�)* . The �-dependence of energy differences for a given atom or
molecule is weak for values near

�(!, the exchange energy value (LSDX). There are sys-
tematic differences between the two sets of calculations, with the latter approximation
leading to overestimates of the relative stability of states with larger spin densities.

3.5 Exchange-Correlation Energy,���
The numerical advantages of the approach described are obvious. Efficient methods exist
for solving single-particle Schrödinger equations with alocal effective potential, and there
is no restriction to small systems. We have noted, however, that �

�� , is defined as the
difference between the exact energy and other contributions that may be evaluated numeri-
cally exactly. In practice, it is necessary to make approximations for this term, and we now
examine it in detail.

The crucial simplification in the density functional schemeis the relationship between
the interacting system, whose energy and density we seek, and the fictitious, noninteracting
system for which we solve Eqs. (28), (29). This can be studiedby considering the interac-
tion

�( ��� � �� 
 � and varying
�

from 0 (noninteracting system) to 1 (physical system). This
is done in the presence of an external potential,

��
,27 such that the ground state of the

Hamiltonian

� � � � �� � � � ���	 ��� 
 � �� � ����
(38)

has density� ��� 
 for all
�
. The exchange-correlation energy of the interacting system can

then be expressed in terms of an integral over the coupling constant
�
.19, 28

�
�� �

�� � � �� � ��� 

� � �� 
 ���� � �� 
 ���� ��� � �� 
 � �� 
 � (39)

with

��� ��� � �� 
 � �� 
 � � � �� 
 
 � �
� �� �� ��� � �� 
 � � 
 � �� � (40)

The function� ��� � �� 
 � � 
 is the pair-correlation function of the system with density� ��� 
 and
Coulomb interaction

����
. The exchange-correlation hole,���, describes the effect of the

interelectronic repulsions, i.e. the fact that an electronpresent at the point
�� reduces the

probability of finding one at
�� 
. The xc-energy may then be viewed as the energy resulting

from the interaction between an electron and its exchange-correlation hole. This picture is,
of course, the same as that used by Slater.10
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We note three points: Firstly, since� ��� � �� 
 
 tends to unity as
��� � �� 
 � � �

, the above
separation into electrostatic and exchange-correlation energies can be viewed as an ap-
proximate separation of the consequences of long- and short-range effects, respectively, of
the Coulomb interaction. We may then expect that the total interaction energy will be less
sensitive to changes in the density, since the long-range part can be calculated exactly.

The second observation19 arises from the isotropic nature of the Coulomb interaction,���
, and has important consequences. A variable substitution

�� � �� 
 � �� in Eq. (39) yields

�
�� �

�� � � �� � ��� 

� �
� �� � � �� � �� ��� ��� �� 
 � (41)

Eq. (41) shows that the xc-energy depends only on the spherical average of��� ��� �� 
,
so that approximations for�

�� can give anexact value, even if the description of the
nonspherical parts of��� is quite inaccurate. Thirdly, from the definition of the pair-
correlation function, there is a sum-rule that requires that the xc-hole contains one electron,
i.e. for all

�� , � � �� 
 ��� ��� � �� 
 � �� 
 � � � � (42)

This means that we can consider
���� ��� � �� 
 � �� 
 as a normalized weight factor, and define

locally the radius of the xc-hole,� �
�� ��� � � � � �� ��� ��� �� 
� �� � � (43)

This leads to

�
�� � � �� � � �� � ��� 
� �

�� � �� � (44)

showing that, provided the sum-rule [Eq. (42)] is satisfied,the exchange-correlation energy
depends only weakly on the details of���.19 In fact, we can say that it is determined by the
first moment of a function whose second moment we know exactly. This argument simply
makes more precise the ideas of Slater concerning the exchange hole and its consequences.

The spin analogy of the exact expression for�
�� [Eqs. (39), (40)] is

�
�� �

�� ��� � � �� �� ��� 
 � � �� 
 �� � �� 
 
��� � �� 
 � � �
� �� ���� ��� � �� 
 � � 
 � �
 � (45)

The atomic density distribution shown in Figure 1 makes it clear that arguments based
on small departures from homogeneity cannot be applied. However, we have seen that a
partial cancellation of errors can be expected provided that the sum-rule [Eq. (42)] is satis-
fied. It is instructive to compare the form of the exchange hole found in LSD calculations
with that determined exactly, i.e. in a Hartree-Fock calculation. This is shown in Figure 2
for two representative values of

�� in the nitrogen atom. The approximate and exact holes
are qualitatively different; the approximate hole is spherically symmetric and centred on�� , while the exact hole is very asymmetric around its centre

�� 
. The spherical averages
are, however, remarkably similar, and the values of the exchange energy differ by only a
few percent. The large differences in the exchange holes arise almost completely from the
nonspherical components, which contribute nothing to the exchange energy.
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Figure 2. Exact (solid line) and approximate (broken line) exchange hole�x � �� � �� � � ��  [Eq. (40)] for a spin up
electron in a nitrogen atom for� 
 � ���

and 0.63 a.u. The top figure shows the hole along a line throughthe
nucleus and the electron. The arrow indicates the nuclear position and�� � �� � 
 �

gives the electron position. The
exact hole has a large weight at the nucleus, while the approximate hole is centered on the electron. The lower
figure shows the spherical average of the hole around the electron. The area under the curve is proportional to the
exchange energy. The figure also shows the value of��	 �� 	 
� defined in Eq. (43).

4 Exchange-Correlation Energy Functionals

The local density (LD) and local spin density (LSD) approximations have played a contin-
uing role in DF calculations, and most functional approximations in current use are based
on them. In this section we discuss these approximations as used in actual calculations, the
reasons for the errors that result, and some of the modifications introduced to correct for
them.

4.1 LD and LSD Approximations

The LD approximation [Eq. (5)] has an exchange component 
x, given by the Dirac formula

[Eq. (4)], and a much more complicated correlation component  c. The latter is commonly
based on the results of quantum Monte Carlo (MC) calculations for a homogeneous elec-
tron gas of different densities.29, 30 The LSD approximation [Eq. (36)] also requires results
for a spin-polarized system and a means of interpolating forone with partial polarization.
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Perdew and Zunger31 proposed the formula ��� �
�� �� � ' � � � � �' �� �' � � �' �' � � �� ( �� � 	 �
�' � 	 � �' 
 �' � � � (46)

For dense electron systems (�' � �
) the random phase approximation provides the parame-

ters for the LD approximation, and the parameters for a fullypolarized gas can be obtained
by scaling arguments. Other parameters were obtained by fitting to the results of Ceperley
and Alder.29

Another form that has find widespread use is due to Vosko et al.32 �
��� � �� " � '� �
�' 
# � ��
�� � �� ������ �
�� � ���
�' � � �
� �� �� �� � 
 ��� "
�' � ��

� �
�' 
 # � � �� � ��� 

�� � �� ������ �
�� � ��
�' � � �� �
(47)

Here
� �� 
 � � � � �� � � and the fitting parameters, which differ for the polarized and

unpolarized cases, are obtained from the data of Ceperley and Alder.29

Interpolation between unpolarized (U) and fully polarized(P) results is usually based
on a formula involving the spin polarization� , 

xc
�� � � 
 � � �� 
 U

xc

� �� � � �� 

  P
xc
�� 
 (48)

where � � �� ��� 
 � �� ��� 
�� ��� 
 � �� ��� 
 � (49)

Functional forms of� �� 
 based on the Hartree-Fock and random phase approximations
have been suggested by von Barth and Hedin21 and Vosko et al.,32 respectively.

4.2 Results of LD and LSD Calculations – General Trends

We have noted above that the electron density in molecules and solids is generally close to
a superposition of atomic densities. These are far from uniform and even have a cusp at the
nucleus. The density is so far from uniform that the use of theLD and LSD approximations
was treated initially by many with great reserve, particularly in the world of chemistry. We
would not be discussing them today, however, if they did not have real value. In fact, they
almost always lead to the correctpicture of binding trends across and down the periodic
table. Structures, bond lengths, and vibration frequencies in many systems are reproduced
satisfactorily, and the deviations from measurements of these and other quantities are often
quite systematic. We now discuss some of the deviations.

Binding energies of molecules and cohesive energies of solids are usually overesti-
mated. In weakly bound systems, e.g. where closed-shell molecules bind, these overesti-
mates are often large, and the bond lengths are too short. In finite systems (atoms, surfaces,
... )

�
XC decays exponentially rather than with the inverse power of distance (the “image

potential”). This is one of the consequences of the incomplete self-interaction correction.
Negative ions (such as H�) are often unbound, although it may be possible to estimate
binding energies in some cases. In semiconductors the energy gap between valence and
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conduction bands is less than the measured values. This topic will be discussed in this
school by Dr. A. Schindlmayr. The so-called strongly correlated systems, such as the in-
sulating 3d-transition metal oxides, are not described well by LSD calculations, which
predicts them to be metallic. Partially filled�- and� -bands, in general, require modifica-
tions of the LD and LSD approximations. Such problems will bediscussed in this school
by Dr. S. Kurth.33 Some calculated energy differences are in spectacular disagreement
with experiment and provide us with a way to understand the defects of the LD and LSD
approximations. We now focus on promotion energies in atoms, i.e. different states of
lowest symmetry of the same atom.

4.3 LSD Calculations – Sources of Error

The above arguments show that the LSD approximation can givea reasonable description
of systems where the density is far from homogeneous. As experience with molecular
calculations developed, however, it became clear that LSD calculations gave rise to some
persistent, occasionally systematic errors for a variety of systems.1 The binding energies
of �� -bonded molecules, for example, is often overestimated by�1 eV per bond, and
discrepancies of this size are simply unacceptable.

When atoms bind to form a molecule or solid, there is generally a change in the relative
�, � , � ... contributions to the wave function. Such energy transfers can be studied directly
in atoms by calculating the energy required to change an�-electron into a� -electron, for
example the�� (

����� *) ground state of N into the�� (
����� �) excited state. Since

these are the lowest lying states of these symmetries, density functional calculations are
justified.19

In Figure 3 we compare experimental�� -transfer energies for first row atoms and ions
with the results of LSD calculations.34 For atoms we define

� '� � � �������� 	��
 � � ������� �� 	�� 
 (50)

with a similar definition for the ions. While the overall trends are given well, the absolute
deviations in

�� '� are of variable quality, with particularly large deviations in the cases
of � and� . Also shown are the HF35, 36 and LSDX (X�) results. The trends are given
fairly well by these calculations, but there are significanterrors, and the comparison with
experiment shows differences between the first and second halves of the row. To obtain
insight into these problems we study some simple model systems, focusing on the exchange
energy, where the presence of explicit formulas simplifies the discussion greatly.

The HF exchange energy can be expressed in terms of exchange integrals,37

� �� � �� � � ��
� � �� 
 
�� ��� 

� ��� 

 � � �� 
 

�� � �� 
 
� �� � �� 
 � � (51)

where

 � and


� are HF orbitals. Such an integral depends strongly on the nodal structure
of


 � and

� . If


 � and

� have different	- and

�
-quantum numbers, for example,

the integrand oscillates and
� �� is reduced. Since the LSD approximations for exchange

(referred to as LSDX) and correlation are expressed only in terms of the charge density,
we cannot expect them to include effects of the nodal structure in a precise way.
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Figure 3. The�� transfer energies��� for the first row atoms and ions. (a) experimental and LSD results, (b)
Hartree-Fock and LSDX (X�) results. The energies are in eV.

As an example, we consider the�� -transfer in an F atom, where an�� electron is
transferred to a� � orbital,34����� ��� 
�� ������ 
 � ��� �� �� 
�� ������� 
 � (52)

The change in the exchange energy due to this process is37

��x
� � ��%� � ��� � �� 
 � �!� � ��� � ��
 � (53)

where the Slater integrals�



are defined by

�

 �	 � 
 
 � �� � �

� �� ��
� �
� �� 
 �� 
 
� � 
�

� 
� ��

 � �� 

� �� 

 � �� 
 

� �� 
 
 � (54)

Here �� (��) is the smaller (larger) of� and � 
, and

 � �� 
 is the radial part of


 � � ��).
The first term in Eq. (53) is the exchange interaction betweena � -electron with

� � � �
and two� -electrons with

� � �
and$. The second term is the interaction between an�-

electron and two� -electrons. The integrand of Eq. (51) corresponding to the� -� interaction
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has two nodal planes as a function of
�� , while there is only a single nodal plane for the�-�

interaction. The latter is larger as a result. Using realistic values for the Slater integrals,
we find that

��x � � eV. The LSDX calculation, however, gives similar radial extents for
the �- and� -orbitals. If we assume that the radial parts areidentical and neglect the small
nonspherical corrections, the LSDX approximation predicts that the exchange energy is
unchanged by the�� -transfer, and the LSDX value for

� '� differs from the HF result by
6 eV. The LSDX and LSD (both exchange and correlation) approximations show similar
trends, although the deviation between the LSD result and experiment is reduced to 2.6 eV,
since the large change in the exchange energy is compensatedin part by a change in

�� �
of opposite sign.

A simple model problem. In order to gain insight into these problems, Gunnarsson
and Jones34 performed extensive LSDX and LSD calculations for atoms andcompared
the results with HF calculations and experiment, respectively. The differences between
the LSDX and HF results are reproduced remarkably well by model calculations where
we isolate the effects of the	-dependence of the orbitals by assuming that the� � � and�
orbitals have the sameradial dependence. With this assumption�



only depends on

�
.

For the!� orbital in calcium, the numerical relations

�
� � �

�

$ ��&$ � �
�

$ �%�� � �
*

$ �� �� � � �$ �!�� (55)

and � � ��  � �� ��� 
 � $� � $ ��% �� �
(56)

were found, where� ��� 
 is the charge density due to a Ca!� electron. Similar coefficients
were obtained for the orbitals of other elements of the iron series. Eq. (56) shows that the
unphysical self-interaction,

�
�
� (�, is cancelled to within about 10%. In Figure 4(a) we

compare the LSDX and HF exchange energies as a function of thenumber� of spin up
electrons. In the HF case, the shells are filled in the order� � � � � and within each shell
in the order

� �� � � � ��� ��
. In the LSDX case the small nonspherical contributions are

neglected. The LSDX and HF results agree remarkably well.
Figure 4(b) shows results for the interelectronic exchangeenergy, for which the self-

interaction has been subtracted. With the filling order� � � � �, the LSDX and HF results are
in rather good agreement, with the magnitude of the LSDX results being somewhat larger.
Figure 4(b) also shows results for occupations where a subshell is left empty. This does
not influence the LSDX results in the present model, but it hasa pronounced effect on the
HF results. For instance, the curve “s-shell empty” is lowerthan the curve corresponding
to the� � � � � filling, since the� -� exchange interaction is smaller than the�-� interaction.
It follows from the orthogonality of the HF orbitals that theexchange hole contains one
electron, and a similar sum rule is also satisfied by the LSD and LSDX approximations.19

Aspects of orthogonality and node formation are then included in all these schemes, al-
though Figure 4(b) shows that the sum rule does notguarantee a good description.

This model calculation illustrates two important conclusions: (i) If we occupy the or-
bitals with the minimum number of nodal planes consistent with the Pauli principle, the
trends in the interelectronic exchange energies are reproduced well by the LSDX approxi-
mation. The absolute value is overestimated in all systems considered by Gunnarsson and
Jones.34 (ii) The energy for the transfer from such a state to a state with one additional
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Figure 4. Exchange energies in model described in text. (a)� LSD
x (dashed curve) and�HF

x (solid curve) as a
function of the number of electrons! (in units of ���); (b) the interelectronic exchange�x,int for these two
approximations. In the HF approximation, we show the dependence for different schemes of occupying the
orbitals.

node is often underestimated substantially in the LSDX approximation. These results were
derived from atomic calculations, but the arguments can be extended to small molecules.34

This shows that the nodal structure of the wave functions cangreatly affect the accuracy
of the LSD approximation, and we have identified classes of problems where the LSD
results must be treated with caution. For states with the minimum number of nodal planes
consistent with the orthogonality of the orbitals, the LSD approximation usually leads to
a moderate overestimate of the exchange-correlation energy. For states with additional
nodal planes the exchange-correlation energy is often greatly overestimated. In atoms, the
depopulation of�-orbitals can lead to large errors, and similar effects may be expected in
bonding situations where�� or �� hybridization reduces the� occupancy.

4.4 A Simplification of LD Calculations: Harris Functional

Before discussing some of the suggestions for overcoming problem with the LD and LSD
approximations, we shall mention one way ofsimplifying LD calculations. In 1972, Kim
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and Gordon38, 39 suggested the following extension of the Thomas-Fermi approach: The
density of a system comprising closed-shell atoms or molecules is approximated by over-
lapping the HF densities of the free atoms (or molecules), and the energy is then calculated
using the TF approximations for the electrostatic [Eq. (17)] and kinetic energy [Eq. (18)]
terms and Eq. (5) for the exchange-correlation energy. The energies of the constituents
are estimated in the same way, and the binding energies of rare gas molecules so obtained
agree remarkably well with experiment.

The same approach has been studied in the DF context by Harris.40 For systems where
the density is close to the overlapped density of the constituents, one can derive an expres-
sion for the binding energy for a given geometry,

�� �
�
	 �	 ��	 � � � �� � � ��� 


��� 
� ��� 
 � � 	 �� � ��� 
� �
�
� � �� � � � � �	 � (57)

where� � is the sum of the densities of the fragments,

 � and

� 	 �� � are the corresponding
Coulomb and exchange-correlation potentials, and�	 is the internuclear repulsion. The
��	 are eigenvalues of the potential

�� ��� 
 � 
 � ��� 

� � 	 �� � ��� 
 � ���	 ��� 
 � (58)

where
���	

is the external potential. This expression has the same formas that of Kim
and Gordon, with the important difference that the change inkinetic energy (for bonding
between atoms

�
and

�
with potentials

��
and

��
) is

�� � � � �
	

� ��	 � � � �� � ��� � 
 � �� ��� 
 � �� ���� 
�
� � � �� � ���� 
 � �� ��� 
 � �� ���� 
� � (59)

instead of the corresponding Thomas-Fermi expression.
The results of this scheme agree satisfactorily with self-consistent DF calculations for

He� , Be�, C� , N� , F� and Cu�.40 It provides a useful alternative in cases where more
detailed calculations would be prohibitive, and it has beenadopted in some molecular
dynamics calculations, where more detailed calculations are performed at regular intervals
to ensure that the trajectories are reliable. It is, however, not self-consistent, and spin plays
no role.

4.5 Modifications of the LSD Approximation: Pair-correlati on Functions

We have seen that the total energy of a system is insensitive to many details of the pair-
correlation function� ��� � �� 
 
, which occurs in Eq. (40). It is nevertheless tempting to
modify the pair-correlation function to remove some of its more unpleasant features. The
expression for the exchange-correlation energy [Eq. (41)]shows that the differences be-
tween the contributions of the exact and approximate exchange holes are largely due to
the non-spherical components of the hole. Since these do notcontribute to�

� �, total en-
ergies and total energy differences can be remarkably good,even in systems where the
density distribution is far from uniform. In the LD approximation, we assume that the xc-
hole�xc

��� � �� � �� 
 
 depends only on the charge density at the electron. It would be more
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appropriate to assume41 that��� depends on a suitable average� ��� 
,�xc
��� � �� 
 � �� 
 � � ��� 


� �� ��� ��� � �� 
 � � � � ��� 

 � �� � (60)

It is possible to choose the weight function which determines � ��� 
 so that the functional
reduces to the exact result in the limit of almost constant density. The approximation
[Eq. (60)] satisfies the sum rule [Eq. (42)]. Other prescriptions for the weight function
have been proposed.

An alternative approximation is obtained if we keep the proper prefactor� � �� 
 
 in
Eq. (40), leading to the so-called “weighted density” (WD) approximation,�xc

��� � �� 
 � �� 
 � � � �� 
 
 �
� ��� � �� 
 
 �� �� ��� 

 � (61)

where �� ��� 
 is chosen to satisfy the sum rule [Eq. (42)]. The WD models provide a link
between ��, the density-density correlation function, and the response function of a homo-
geneous system. As an example, we now discuss an analytic form42 that is computationally
simpler and can be chosen to give exact results in certain limits. We assume that

�
��� �� 
 � � �� 
 �� � ��� ��� �� 
( �� �� �� � (62)

where� and
�

are parameters to be determined. The functional� behaves as
��� ��� for

large distances, which is needed to obtain an image potential. For a homogeneous system
with density�, we require that the model functional should both fulfil the sum rule for
�� ��� 
 � � and give the exact xc-energy. This leads to two equations� � �� �

� ��� �� � 
 � � �
(63)

��� � � ��
���� � � � ��� ��� 
 �  � � �� 
 � (64)

which are sufficient to determine the two parameters� �� 
 and
� �� 
.

This functional is exact in several limiting cases: (i) for ahomogeneous system, (ii)
for one-electron systems such as the hydrogen atom it gives an exact cancellation of the
electron self-interaction, (iii) for an atom it gives the correct behaviour of the xc-energy
density far from the nucleus. xc

��� 
 � ���(��, (iv) far outside the surface it gives the
image potential xc

�� 
 � ���( ��� 
. The LSD approximation gives qualitatively incorrect
answers for (iii) and (iv), and the cancellation in (ii) is only approximate. Since (ii) is
satisfied, this approximation provides a “self-interaction correction” in the sense we discuss
below. The errors in the WD approximation for the total energy of atoms are about an order
of magnitude smaller than those in the LSD approximation, but the �� - and ��-transfer
energies are little improved over LSD results.1

4.6 Self-interaction Corrected (SIC) Approximations

In the DF formalism each electron interacts with itself via the Coulomb electrostatic en-
ergy, and this unphysical interaction would be exactly cancelled by a contribution from
the xc-energy. In the LSD approximation this cancellation is imperfect, but numerically
rather good. The incorrect treatment of the self-interaction in approximate functionals has
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led some workers to consider self-interaction corrected (SIC) functionals. Within the LSD
approximation the SIC functional takes the form

�SIC
� �LSD ��� ��� 
 ��� ��� 
� � �

��
� �� � (65)

where���� is the LSD energy functional and

� �� � ��� � � ��
� � �� 
 � �� ��� 
� �� � �� 
 
��� � �� 
 � �

� LSD
xc

�� �� � $
 (66)

is the self-interaction correction (SIC) for the orbital
	

with spin � and charge density� �� ��� 
. The first term in Eq. (66) is the self-interaction energy, and the second is the LSD
approximation to the xc-energy of a fully spin-polarized system with density� �� ��� 
. This
functional is exact for a one-electron system. It leads to the equation

�� ���� � � � � ��� 
 � �
SIC�� ��� 
�
 �� � �

�
���� 
� � � (67)

where
� ��� 
 is the effective potential (27) entering in a normal LSD calculation, and�

SIC�� ��� 
 is additional potential resulting from the term Eq. (66). This potential is orbital-
dependent and the Lagrange parameters

���� are introduced to ensure that the solutions
 � � �� 
 (referred to as “local orbitals”) are orthogonal. The SIC approximation is not invari-
ant under a unitary transformation of the orbitals, and different basis sets lead to different
total energies.

Unfortunately, ionization and transfer energies of atoms are not generally better in the
LSD-SIC approximation, at least if non-spherical corrections are neglected. The improved
total energies in SIC calculations can, in fact, be traced toa much better treatment of
the innermost core electrons,43 which play a relatively minor role in most chemical and
physical processes of interest.

4.7 Modifications of the LSD Approximation: Gradient Expansions

Hohenberg and Kohn12 introduced the local density approximation in the context of DF
theory, but they also pointed out the need for modifications in systems where the density is
not homogeneous. One such modification was the approximation

�xc
� � LSD

xc
� �� � � ��

� � �� 
 �
xc

��� � �� 
 � � � ��
� �� 
� 
� �� ��� 
 � � � �� 
 
�� � (68)

where the kernel� xc is related to the dielectric function of a homogeneous medium. This
approximation is exact in the limit of weak density variations� ��� 
 � � � � �� ��� 
 � (69)

where
��� ��� 
 � � � � , but the results for real systems were not encouraging. For free atoms

the energy is infinite,41 indicating that the sum-rule [Eq. (42)] is not satisfied. In spite of
this, gradient expansions have played an extremely important role in DF theory and its
applications. We shall now discuss some of the forms used.
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4.7.1 Generalized Gradient Approximations (GGA)

The second-order generalized gradient approximation to the exchange-correlation energy
is written

� GGA
xc

�� 
 �
� � �� 

xc �� � ��� ��� �� � � (70)

Many forms of such functionals have been suggested, and someof the most important (and
all their parameters) are given by Filippi et al.44 These authors also compared these forms
with the exact results for an exactly soluble system of two electrons in an external harmonic
potential. We shall discuss some functionals that are widely used in actual calculations. We
use some standard abbreviations:�� � �!
� 
�)* � �' � "�
 �� # �)� � � �

��� ���� � � � �
��� ���'� � �' � " !�
� # �)*

(71)

For the exchange contribution, Becke45 suggested the following form: 
x
�  LD

x

�� � 	��)*�
x

� �� �
�
	�

arcsinh
�� 
 � � (72)

where
� � � ��
 � 
�)* � � ��)* ��� �(� �)* ��x

� *� �!(
 
�)* , and
	 � $ �$$��. The

parameter
	

was optimized to give exchange energies of noble gas atoms using Hartree-
Fock orbitals). This functional has been coupled with the LYP functional for correlation:46 

c
� ��

�� � �� �)* �� � ����)* ��� � �)* � ��� � �
� "�� � �� � ��#� ��� ������)* 
� �

(73)
where �� �

�& " �� ��� � � ��# (74)

and�� � !(�$ �!
 � 
�)* , � � $ �$�� �& � � � $ ��!� � � � $ ��%!! � � � $ �!��. It surprised
many that the combination of Becke exchange with either the VWN or LYP correlation
functionals outperformed correlatedab initio methods (MP2 and QCSID) in calculations
of atomization energies for 32 molecules.47 The importance of using a non-local exchange
has been underscored by many subsequent calculations.48

The question of ways to improve exchange-correlation functionals has led to a clear
dichotomy of views. The first implies that the search for a functional is so difficult that we
should develop a reasonable form and fit its adjustable parameters to experimental data.
The BLYP and B3LYP functionals are of this type. From this standpoint, DF theory is then
“of semi-empirical nature”.49 Experimental data from up to 407 atomic and molecular
systems have been used,49 in this case with a functional with 15 adjustable parameters.
The second approach seeks to build on the positive features of the LSD approximation
by incorporating exact constraints and hoping that the added features will automatically
improve the description of reality. We shall focus on functionals in the second category.

Perdew, Burke, and Ernzerhof50 have described a functional form (PBE) that has sev-
eral attractive features:

�xc
�

� � �� � ��� 
 LD
x

�� ��� 

�
xc
�� � � � �
 � (75)
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where
�

x
��
 � � � � � �� � � � (� � (76)

� � 	 �
 � (! 
 � $ �� ��% �, and
	 � $ �$����%. The correlation energy has the form
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with

� �� � � � �
 � "��
�� # � 
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The spin-scaling factor

 �� 
 � ��� � � 
�)* � �� � � 
�)* � (�, � � �� � �� �
(
 � �$ �$! �$� �, and � �
	� ���� �� LD

c �� �( �� 
* �� (�� 
� � ���� � (79)

The PBE form has several advantages, including: (1) In the slowly varying limit
(� � $),

�
is given by the second-order gradient expansion, (2) In the rapidly varying

limit ( � � �
),

� � � LD
c , and correlation vanishes, (3) It cancels the logarithmic singu-

larity of  LD
c in the high density limit. The accuracy of the PBE functionalfor atoms and

molecules has been compared with results of LSD, BLYP, and B3LYP functions has been
made by Ernzerhof and Scuseria.51 The PBE functional performed as well as B3LYP for
the properties considered by these authors.

��� ��� ���� ����
X-rays� 1.534�0.006 1.09� 112.0�0.3 109.5�
X-rays� 1.533�0.022 1.07�0.022 111.9�1.8 107.0�1.8
X-rays � 1.527�0.007 1.091� 112�0.8 –
LD 1.512 1.111 114.3 105.2
BP 1.536 1.111 113.8 105.6
PBE 1.523 1.110 113.0 105.8

� Ref. 52, monoclinic
	

-hexatriacontane C�	H
�� Ref. 53, orthorhombic
	

-hexatriacontane C�	H
�� Ref. 54.

Figure 5. Left: Structure of crystalline polyethylene: (a)normal to chain axis, (b) along chain axis. Right:
Structural parameters of crystalline PE from x-ray diffraction, and calculated structures for a single chain. Bond
lengths are in̊A, angles in degrees. Values marked with an asterisk (�) were assumed, and not measured directly.
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Generalized gradient approximations generally lead to improved bond angles, lengths,
and energies. In particular, the strengths of hydrogen bonds and other weak bonds between
closed shell systems are significantly better than local density results. However, the self-
interaction problem remains, and some asymptotic requirements for isolated atoms are not
satisfied (

�
GGA

xc vanishes exponentially far from the nucleus,
�

GGA
xc

��� � $ 
 � ��
).

An example of the differences between LSD and PBE calculations is shown in
Figure 5.55 Polyethylene crystallizes in a structure with parallel chains, and the table shows
that the structure of the individual chains is described rather well, with the C-C bonds being
slightly longer in PBE and BP56 calculations than in those using LD. There are, however,
striking differences in theinterchain separations. The LD calculations lead to a pronounced
minimum with a shortest distance between C atoms in different chains (3.67Å) less than
the measured value (4.59̊A),54 while PBE leads to a modest overestimate (4.66Å).

4.7.2 Meta-GGA

The next step in the development of gradient approximationsis to incorporate the kinetic
energy density (or the Laplacian of the density). A version based on the PBE form was
described by Perdew et al.,57 who added the variables�� and�� , where

��
��� 
 � occ.�

�
�� ��
 �� ��� 
 �� (80)

is the kinetic energy density for the occupied Kohn-Sham orbitals. However, this and other
forms initially developed included parameter(s) found by fitting to experimental data. This
last feature was avoided in the recent work of TPSS,58 whose form satisfied the requirement
that the exchange potential be finite at the nucleus for ground state one- and two-electron
densities. This is a constraint satisfied by LSD, but lost in GGA. Extensive numerical tests
for atoms, molecules, solids, and jellium surfaces showed generally very good results.

4.7.3 Hybrid Schemes: Combination of HF and DF Schemes

In section (4.3) we saw just how poor the exchange energy differences could be between
states whose wave functions have different nodal structures. It has also been noted for
many years (see, for example, Ref. 27) that errors in the LD descriptions of exchange and
correlation tend to balance. This suggests that a combination of Hartree-Fock exchange
and DF calculations could be useful.

� hybrid
xc

� ��HF
x

�
�c

� (81)

where� can be chosen to satisfy particular criteria. A formal justification for such hybrid
schemes was given by Görling and Levy.59 The B3LYP functional,48 which is widely used
in the chemical community, is an example. Here three adjustable parameters are used to fit
calculated values to a molecular data base.

4.7.4 Optimized Effective Potential (OEP)

In the Kohn-Sham implementation of DF theory we describe thekinetic energy functional
for the system of non-interacting electrons in terms of the orbitals
 �� ��� 
. The bestlocal
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effective potential (a requirement of DF theory) can be determined variationally for each
� such that, when substituted into a stationary single-particle equation it leads to a set of
eigenfunctions that minimize� �
 �� ��� 
�. This was first suggested by Sharp and Horton60

following the local density description of exchange,10 and it is referred to as the optimized
effective potential (OEP).61 Its determination requires the solution of an integral equation
for each

�
xc�

� ��� 
, which is a demanding exercise. How this can be done, as well as possible
simplifications, are discussed in this School by Dr. S. Kurth.

5 Concluding Remarks

The density functional theory is the basis of most of the calculations in computational
nanoscience that are free of adjustable parameters. It is clear from the present discus-
sion that “DF calculations” cover a colourful variety of functional approximations, and
not all are “free of adjustable parameters”. The development of approximations to the
exchange-correlation functionals over the past 20 years has improved the performance of
DF calculations, and John Perdew is no doubt not alone in thinking that progress up the
“Jacob’s ladder”62 (Figure 6) will continue until energy differences can be determined to
within � �

kcal/mol (“chemical accuracy”). The numerical cost increases as one climbs,
and this may not necessarily bring more information. Most problems in “computational
nanoscience” are performed part way up the ladder, and this situation will probably remain
true for some time.

DF calculations should always be performed with all critical facilities intact. The fa-
miliar program “packages” will almost always lead to an answer, but it is easy to obtain

Figure 6. “Jacob’s ladder” of DF schemes according to Perdewand collaborators.
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answers void of physical content. It is odd to have to conclude this manuscript on such a
note, but years of refereeing articles in the field suggest that it is necessary.
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