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Introduction to Density Functional Theory and
Exchange-Correlation Energy Functionals

R. O. Jones

Institute for Solid State Research
Forschungszentrum Jillich
52425 Jilich, Germany

E-mail: rjones@fzjuelich.de

Density functional calculations of cohesive and strudtpraperties of molecules and solids
can be performed with less computational effort than by gisither methods of comparable
accuracy. We outline the theory and discuss the local deagpiproximations basic to most
applications, and we discuss ways to modify these apprdiamsato yield improved results.

1 Foreword

The NIC Winter School 2006 focuses on Computational Namo&s, particularly on un-
derstanding the properties of materials so that we caroftailew ones with novel prop-
erties. A glance at the program shows the dominant role dlayehe density functional
(DF) formalism in this area. | have been asked to present@odaction to this theory
and, in a second lecture, to discuss approximations to ttieegige and correlation energy.
These lecture notes cover these topics, but the first leatillfellow a more historical (and
more lively) approach to DF theory. The theory now plays ajuidus role in condensed
matter calculationand in chemistry, but its general acceptance was slow in conang,
there has been much rewriting of history since its arrivdile Tollowing notes are derived
in part from earlier articldsand provide a background for other talks in this School.

2 Introduction

The description of many-particle systems covers much o$jalsyand chemistry. In com-
putational nanoscience we focus on atoms, molecules, dias$,son their structural and
cohesive properties, and on how they interact with eachrotle usually emphasize the
properties of specific materials rather than universal @rigs of all, and our interest on
structural and binding means that the total enefpf a system and its components is
very important. The density functional (DF) formalism isrenain theme here, but we
shall note how its perspective differs from that of other moels used to discuss many-
particle systems.

If we wish to discuss the properties of an interacting systsoch as the elec-
trons in a molecule or solid, it is natural to consider the yrakectron wave function,
U (7,7, ...Fn), where ther; denote the particle coordinates and spins. This has been
discussed in this School by Prof. V. Staemmler. Haftreade one of the earliest approx-
imations for¥ in writing the many-electron wave function as a product afj-particle
functions, i.e.

Ty, 7y ) = Y1 (FL) oot () (1)



Each of the functiong; (7;) satisfies a one-electron Schrodinger equation with a piaten
term arising from the average field of the other electroms, i.

2
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where the Coulomb potentid; is given by Poisson’s equation,

N
V2®; = dme® Y |95/, (3)

e
andVuy is the potential due to the nuclei. Fermi statistics can beriporated by replacing
the product wave function by a single determinantal fumctié This “Hartree-Fock” (HF)
approximation leads to an additional, nonlocal exchange e the Schrédinger equation,
but does not change the single-particle picture, with theeffianction described in terms of
orbitals with particular spins and occupation numbers. ifibkision of “exchange” effects
improves the total energy, and the HF approximation remairiadispensable benchmark
in molecular physics.

In 1960 Coulsort,however, noted that “it is now perfectly clear that a singlefigu-
ration (Slater determinant) wave function must inevitdbhd to a poor energy”. A linear
combination of such determinants would be better, and thkeision of “correlation ef-
fects” by this approach (“configuration interaction”, Qfyproves the many-particle wave
function, from which most properties of interest can be walalied. Some such approaches
will be discussed in this School by Dr. C. Hattig. The explesncrease in the number
of configurations with increasing electron number meanagver, that only systems with
relatively few electrons can be calculated with high accyurd he complexity of the re-
sulting solutions can also hinder a simple interpretatiihe results.

Thoma$ and Fermi had proposed much earlier a scheme based on the density of
electrons in the system(7). The Thomas-Fermi (TF) scheme assumes that the motions of
the electrons are uncorrelated, and that the correspokiirtic energy can be described
by a local approximation based on the results for free eestin(7)]3. The potential
of the system can be determined from solving Poisson’s emyatnd the requirement of
constant chemical potential leads to the TF equatiom{a}. This approach gives a poor
description of real systems, but in its focus on deasity it is a forerunner of later DF
theories, and its mathematical properties have receivezhratientiorf In general, the
integrated quantity(7) = N [ di.. [ diyO*(F,ry...7N ) ¥(F,7,5...Fn) should be easier
to describe than the precise details of the wave funcfion,

Shortly after the original work, Dirdcproposed that exchange effects be included by
incorporating a term derived from the exchange energy teimsa homogeneous system,

, 5. 04
E)IZ()lrac: _§ <§> n3 = 0.458 a.u, (4)

4\ T

wherer, = (3/(4mn))'/? is a measure of the average interelectronic distance. Thefus
an approximate exchange potential in addition to the Hateam in Eq. (2) was suggested
by Slater:® who showed that the exchange potential in a system of vardssity could
be approximated by a term with the same density dependencgeér, it iscrucial

to appreciate that the argument of Slater does not depentdeoaxchange energy in a



homogeneous system. The exchange interaction means tled¢aron of a given spin
will be surrounded by a region where the density of electwittsthe same spin (say, spin
up) is reduced. The effect of the “exchange hole” can be estichby replacing it by a
uniform density inside a sphere of raditgs and zero elsewhere. Since the hole contains
a single electroR® rq = (3/(47rn¢))1/3, and we obtain an exchange energy with the same
density dependence as that of Dirac.

Gaspalt adopted the Dirac approximation to the exchange energy,danigted a
slightly different exchange potential by using a variatibapproach. This method re-
produced the HF eigenfunctions and eigenvalues for the iGn very well, showing that
an approximation based on results for a homogeneous sysiald give a satisfactory
description even if the density is very far from uniform.

The above work has been essential to the development of m@fetheory. As an
approximation to the (nonlocal) exchange potential, thgp#e local density (LD) approx-
imation provided the basis for much of the work on the eledtrstructure of solids in the
1950'’s and early 1960’s. The calculation of electronic baindctures and related quan-
tities is, of course, one of the success stories of moderdertsed matter physics. The
experience obtained in solving Schrodinger-like equestiovith local effective potentials
and the improvement in numerical methods and computersgltine past decades have
been decisive in carrying out density functional calcwolasiin recent years.

Hohenberg and KoH#A showed that ground state properties, particularly the tata
ergy E, of a system of interacting particles could be related taféesity distribution. For
a nonmagnetic, nondegenerate ground state of a systemctifoele in the presence of a
scalar fieldV.,¢, they showed that the density uniquely determines the fiatenp to an
arbitrary additive constant. Their proof has been simglified extended by Lew, and
the TF equation may be derived from this formalism as an agipration. Its application
to the total energy of the interacting system results in amim principle, and the deter-
mination of the energy of the ground state can be found bydhsisn of single-particle
equations? In practice, total energy calculations require approxioret to be made for
the exchange-correlation enerdy,., and Kohn and Shatfishowed that the local density
(LD) approximation,

FLD — / 07 () exeln(P)], (5)

could be applied to the limiting cases of a slowly varyingslgnand very high densities.
Hereey.[n] is the exchange and correlation energy per particle of a lgemeous electron
gas with density:. The exchange contributiony, has the same form as that of Gaspar,
and a variety of approximations exist for the correlatiomtes...

The limiting cases noted above are notrealized in atomscot#s or solids, and Kohn
and Sham commented that “we do not expect an accurate dastopchemical bonding”
with the LD approximatiort* A decade passed before the first attempts were made to test
its ability to describe the bonds in molecules, and it is ndwble that these showed that
the LD approximation could generally reproduce groundestgometries, vibration and
phonon frequencies, and moments of the density very wele DR formalism remains
the basis of most of the parameter-free calculations inneldd systems, and has found
widespread application to molecules and clusters. Mosutaions have used the local
density approximation [EqQ. (5)] or modifications of it.



The practical necessity of approximatifig. leads to an essential difference in per-
spective between the density functional and Cl approachbs. goal of the latter is an
exact numerical solution of the Schrodinger equation,cwhiiould yield exact answers
for most quantities of interest, whereas even an exactieolaff the density functional
equations will only reflect the accuracy of the approximafior E,.. We shall discuss
some of the many approximations that have been developeatdér to appreciate some
qualitative features of the density in a real system, we shmofsigure 1 the spherically
averaged density in the ground state of the carbon atom. &hsitgl falls monotonically
from the nucleus, with the radial oscillations often expdctThe charge density in small
molecules also tends to be relatively featureless, withimaat the nuclei, saddle points
along the bonds and a generally monotonic decay away from Batrthermore, the elec-
tron density in a molecule or solid shows relatively smapaigures from the overlapped
densities of its atomic constituents. Energy differenessiit from subtle changes in rel-
atively featureless density distributions, and it is nafpsising that it is difficult to find
simple prescriptions for determining them.

log n(r)

r(a.u.)

Figure 1. Spherical average of density in ground state ob&at

3 Density Functional Formalism

3.1 The Density as Basic Variable

Ground state (GS) properties of a system, including theggngr can be expressed as
functionals of the GS electron density, i.e. they are deiteethby a knowledge of the
density alone. We show th&t[n] satisfies a variational principle. The Thomas-Fermi (TF)
is a special case of this formalism.

The basic theorems of the density functional formalism wi¥gved by Hohenberg
and Kohn!? and Levy provided a simpler and more general derivation. We consier



electrons moving in an external potentiél,; (7), i.e. the Hamiltonian is

N
H=T+Vee+ Y Ve (), 6)

i=1

whereT andV,, are the kinetic and electron-electron interaction opesat@spectively.
For all “N-representable” densities(7),* i.e. those obtainable from some antisymmetric
wave functiong) (7, 7, ...Fv ), Levy defined the functional,

Fln] = (WIT + Veelth), (7)

min
Y—n
where the minimum is taken over all that give the density.. F[n] is universal in the
sense that it refers neither to a specific system nor to thereadtpotentiaVex (7). If we
denoteEgs, Yas, andngs(7) to be the ground state energy, wave function and density,
respectively, then the two basic theorems of DF theory are:

Eln] = / dF Vst (A7) + Fln] > Bas ®)
for all N-representable(7), and

/d’lz”l)(f')n(;s (¥) + Fngs] = Egs 9)

To prove the variational principle [Eq. (8)] we introducesthotationy?, . (7) for a
wave function that minimizeg'[n] in Eq. (7), so that

Fln] = ($minlT + Vee|¥min) (10)
Writing V- =~ Vext (7i), we have

/ 47 Vst (A7) + Fln] = (W [V + T + Vet ) > s, (11)

according to the minimum property of the GS. This proves tteguality (8). Using the
minimum property once more we find

Egs = (Yas|V + T + Veel[thas) < (Unia |V + T + Veelthin )- (12)
We subtract the interaction with the external potential albigin
(Vas|T + Veelthas) < (s 1T + Vee i )- (13)

On the other hand, the definition 9f'$$ yields the reverse relation between the two sides
of Eq. (13). This is possible only if

(Yas|T + Veelhas) = (Y IT + Vee | tmin )- (14)

aHohenberg and KoHR worked in the space of -representable densities, i.e. those that can be realired f
some external potentialext (7). This space is a subspace/@frepresentable densities.



Then we have

Eos = / A7 Vexe(Fncs(7) + (Was|T + Veolthcs)
- / A7 Veses(F)nass (7) + (7S5 |T + Vo |155)

- / dF Vst (Fmass (7) + Flnes) (15)

These are the basic theorems. An important result alsowslfoom Eq. (14). If the
ground state GS is nondegeneraif$s = ¢gg. If the ground state is degeneragé,ss
is equal to one of the GS wave functions, and the others canb&lbtained. The GS
charge density then determines the GS wave function(s) Which all GS properties can
be calculated. These properties are therefore functiafidie density.

It has been said that Wilséhgave a shorter, if less general, proof of the definitive role
of the electron density shortly after the DF formalism wastfpublished. It is based on
the “cusp condition'® satisfied by the density at the nucleus

-1 O{n(ry))
Za = 2(n(0)) [ Orq ]ra_o’ (16)

where the bracket$...) denote a spherical average. The densityhen determines
uniguely the chargeg,, as well as the positions of the nuclei and hence the Hamétoni

These theorems provide a general method for calculatingrGsepties. If an approx-
imation can be found foF[n], we need to minimizeZ[n] in Eq. (13) for the potential
v(7) of interest. This leads to corresponding approximatiomsHgs andngs(7). The
same procedure applies to a ground state properifywe have an approximation for the
functional X [n].

3.2 Thomas-Fermi (TF) Approximation

Here the electrons are treated as independent particeth@electron-electron interaction
energy arises solely from the electrostatic energy,

r)n\r
Ees[n] = / / dr' :) = 17)
|7 —r |
Furthermore, we assume that the kinetic energy is given by
Tln) = [ drtn(r), 18)

wheret[n] is the kinetic energy density for a system of noninteractiegtrons with den-
sity n. We have

1 ~ R2k?
tn] = 2755 /llek e (19)
where2(4x /3)kr® /(2n)® = n. This gives
Tofn] = G [ dF (n()}, (20)
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whereCy, = 3h2(372)3 /10m.
We now minimizeE(n) under the condition that the number of electrons is kept con-
stant,

/ dFn() = N. (21)
Using the method of Lagrange multipliers, we require that
Blin] + AN = T{n] + Buln] + [ a7 n(@){Vest(7) + X} 22)

has a minimum. The corresponding Euler equation is the Thtéru

)

=7

-
!

n(r

gckn(m§ + e2/dﬁ + Vext(7) + A = 0. (23)

Decades of study have shown that the TF model provides a rdesgription of, for
example, the charge density and the electrostatic potebtitit has severe deficiencies.
The charge density is infinite at the nucleus, and it does ecaylexponentially far from
the nucleus of an atom, but as®. It has also been shown that TF theory does not result
in atoms binding to form molecules or solids. The absencenhefl structure in the TF
atom means that the observed periodic variation of manyautigs with changing atomic
number cannot be reproduced. In fact, the atamnik with increasing atomic numbef
(asZ~1/3),'" and the model never predicts ferromagneti§m.

3.3 Single-particle Description of a Many-particle System

Many of the drawbacks of the Thomas-Fermi approach can bedrép the approximate
treatment of the kinetic energy. The task of finding good egipnations to the energy
functional is greatly simplified by using a different sepama introduced by Kohn and
Sham!4

Bl = T + [ () (Ve () + 57 + Bxcl (24

To is the kinetic energy of a system with densityin the absence of electron-electron
interactions,® is the classical Coulomb potential for electrons, and theaiaderE,
defines the exchange-correlation energy.differs from the true kinetic enerdy, but it
is of comparable magnitude and is treaggdctly in this approach. This removes many of
the deficiencies of the Thomas-Fermi approximation, sudheasack of a shell structure
of atoms or the absence of chemical bonding in moleculesalidssAll terms in Eq. (24)
but the exchange-correlation eneifgy. can be evaluated exactly, so that the (unavoidable)
approximations fol. play a central role in the following discussion.

The variational principle applied to Eq. (24) yields

0By c[n]

on(® M

() = W + Vext (7)) + @(7) +

(25)



wherey is the Lagrange multiplier associated with the requirenoérdonstant particle
number If we compare this with the corresponding equation for agsyswith an effective
potentiall/ (7) butwithout electron-electron interactions,

e = s £ V() = 26)
we see that the mathematical problems are identical, pedwiaiat
6Exc[n]
on() ’
Where the last term is referred to as the exchange-cowelptitentiall,.. The solution
of Egs. (26), (27) can be found by solving the Schrodingeragiqn for noninteracting
particles,

V(T_') = V;xt + q>(,’:’) + (27)

<—%v2 + V(r")) $i(P) = i), (28)
yielding
N
n() =3I (29)

The condition (27) can be satisfied in a self-consistentgutace.

The solution of this system of equations leads then to theggrend density of the
lowest state, and all quantities derivable from them. The&dism has also been general-
ized to the lowest state with a given set of quantum numbens.this caseE,. depends
on the values of the quantum numbers, and the density \@rg@athust remain within the
space corresponding to the given quantum numbers. Insteagking these quantities by
determining the wave function of the system of interactilegteons, the density functional
method reduces the problem to the solution of a single-glartiquation of Hartree form.
In contrast to the HF potential,

- -
! !

Ve () = / 4 Ve (7, Py (), (30)

the effective potentiall/ (7) is local, and the equations are no more complicated to solve
than Hartree’s. The kinetic energy, the electrostaticrattton between core and valence
electrons, and between valence electrons are treatedyex@ctly the exchange energy,
E, and the even smaller correlation contribution requireragimation. This is in marked
contrast to the Thomas-Fermi and related methods, whetarte kinetic energy term is
approximated.

We note here the problem of the “self-interaction corrett{&IC), where the Coulomb
energy of interaction of an electron with itself must be @dled by a contribution tdyc.

bThe functional derivativé F'[n]/dn () is defined so that the first order change in the functional deechange
in its argument(7) is:

L 0F
JF:/drm(Sn(F)



The importance of SIC is obvious immediately if we considesirgyle-electron system
such as the hydrogen atom. We also note the scaling conditidie exchange energy

By [N*n(\)] = ABx [n(#], (31)

which has proved to be useful in constructing functionalragimations.

3.4 Spin Systems

The generalization of the single-particle equations ta sgstems or an external magnetic
field requires the consideration of the spin indiegspf the one-electron operatas, (7).

In general, this requires the replacementff; by a spin-dependent potentia{e‘;‘f(rf),
and the charge density(7) by the density matrix

nap(7) = (T|yg (M (7| T) (32)

All ground state properties are functionals of the densiétrir n, 5, andE is stationary
with respect to variations in, s, provided*

> / dF Nige = N. (33)

The application of the variational principle requires thag is IN-representable, which is
guaranteed for all non-negative, differentiablg; that satisfy Eq. (335 The effective
spin-dependent potential in the single-patrticle equatisn

(34)

The original derivation of the Hohenberg-Kohn theorem tetianalytical problems
in the case of spin systems. These authors showed that thedystate density () deter-
mined the ground state wave functid{s; , 7>, ...) uniquely, which determines the poten-
tial V() up to an additive constant. For spin DF theory, however, varttBand Hedift
showed that the uniqueness of the potential is not guardy4ee Capelle and Vignaie
found that this is true in general. A similar result was fotwydEschrig and Pickeft Kohn
et al?® estimate that the practical consequences for spin DF @dionk are not signifi-
cant. Since the potential and magnetic field are unambigwoeksthe kinetic, Coulomb,
and exchange-correlation energies are defined in ternds @t independently of ()
and the spin density. A result that is useful in construcfingctional approximations is
“spin scaling”?® which applies to the exchange energy in spin DF theory,

ES%ne,n 1] = 3 (EX7[2nq] + B¥(2n,]) (35)

The approximation used most widely in total energy calcoifest of spin systems is the
local spin density (LSD) approximation,

ELSD = / 47 () exe [14(7),my ()] (36)

whereeyc[n+,n,] is the exchange and correlation energy per particle of a lgemeous,
spin-polarized electron gas with spin-up and spin-dowrsiiesn+ andn , respectively.



Numerous electron gas calculations have been performed/gears, and some parame-
terizations oky.[n¢, ny | will be discussed below. Different calculations lead to serhat
different results, but all are free of adjustable paransetdihe Xx-approximation is ob-
tained ifex. in Eq. (5) is replaced by the exchange energy per electromaittiplied by
3a/2,i.e.

B = =3aC [ a7 (@) + @)}, (37)

whereC' = 3(3/471')1/3. The a-dependence of energy differences for a given atom or
molecule is weak for values ne2y3, the exchange energy value (LSDX). There are sys-
tematic differences between the two sets of calculationth) the latter approximation
leading to overestimates of the relative stability of Satéth larger spin densities.

3.5 Exchange-Correlation Energy,Ey.

The numerical advantages of the approach described areush\Efficient methods exist
for solving single-particle Schrodinger equations witlheal effective potential, and there
is no restriction to small systems. We have noted, howehat,A,., is defined as the
difference between the exact energy and other contribsitiet may be evaluated numeri-
cally exactly. In practice, it is necessary to make apprations for this term, and we now
examine it in detail.

The crucial simplification in the density functional scheimthe relationship between
the interacting system, whose energy and density we seékhalffictitious, noninteracting
system for which we solve Egs. (28), (29). This can be studieconsidering the interac-
tion A/ |7 — r_;| and varying\ from O (noninteracting system) to 1 (physical system). This
is done in the presence of an external potenfial?’ such that the ground state of the
Hamiltonian

1
Hy = —§V2 + Vext (7) + Va + AVee (38)

has density: () for all A. The exchange-correlation energy of the interacting systen
then be expressed in terms of an integral over the couplingtaat).1®:28

-
!

1 - 1
By = —/an(F)/dr’ (P — ), (39)
2 |7 — 7!
with
- - 1 -
el =) =) [ A (970 - 1), (40)
0

The functiong(7, 7/, A) is the pair-correlation function of the system with density) and
Coulomb interactiol\V,.. The exchange-correlation hole,., describes the effect of the
interelectronic repulsions, i.e. the fact that an elecfymesent at the point reduces the
probability of finding one at’. The xc-energy may then be viewed as the energy resulting
from the interaction between an electron and its exchaogesiation hole. This picture is,

of course, the same as that used by Sker.

10



We note three points: Firstly, singé7, ') tends to unity as — 7:;| — o0, the above
separation into electrostatic and exchange-correlati@ngies can be viewed as an ap-
proximate separation of the consequences of long- and-sluge effects, respectively, of
the Coulomb interaction. We may then expect that the totataction energy will be less
sensitive to changes in the density, since the long-randgepa be calculated exactly.

The second observatitharises from the isotropic nature of the Coulomb interagtion
Vee, and has important consequences. A variable substitiisnr’ — 7in Eq. (39) yields

By = %/dm(m/ dR R* %/dﬂ Nxe(7, R). (41)
0

Eqg. (41) shows that the xc-energy depends only on the spihenerage ofiy. (7, R),
so that approximations foE,. can give anexact value, even if the description of the
nonspherical parts ofiy. is quite inaccurate. Thirdly, from the definition of the pair
correlation function, there is a sum-rule that requirestiaxc-hole contains one electron,
i.e. forall 7,

/dﬁ Nxe (7,7 — 7) = —1. (42)

—

This means that we can consider. (7, 7’ — 7) as a normalized weight factor, and define
locally the radius of the xc-hole,

]' X -‘3
()= —/dr‘-’in (T F) (43)
RI7 |R|
This leads to
1 1
Be=—3 /dr n(r*)<§>le (44)

showing that, provided the sum-rule [Eq. (42)] is satisfied,exchange-correlation energy

depends only weakly on the detailsrgf..2° In fact, we can say that it is determined by the

first moment of a function whose second moment we know exattiis argument simply

makes more precise the ideas of Slater concerning the egetiente and its consequences.
The spin analogy of the exact expressionfy. [Egs. (39), (40)]is

1 S ng(r) [ 5
Ee=3 2 [ drna) [ d%/ dA (gap (77 N) = 1), (45)
af - 0

The atomic density distribution shown in Figure 1 makesetacithat arguments based
on small departures from homogeneity cannot be applied. ederywe have seen that a
partial cancellation of errors can be expected providetttieasum-rule [Eq. (42)] is satis-
fied. It is instructive to compare the form of the exchangetiolnd in LSD calculations
with that determined exactly, i.e. in a Hartree-Fock catioh. This is shown in Figure 2
for two representative values &fin the nitrogen atom. The approximate and exact holes
are qualitatively different; the approximate hole is sjptaly symmetric and centred on
7, while the exact hole is very asymmetric around its centreThe spherical averages
are, however, remarkably similar, and the values of the @xgh energy differ by only a
few percent. The large differences in the exchange holes atinost completely from the
nonspherical components, which contribute nothing to kohange energy.

11
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Figure 2. Exact (solid line) and approximate (broken linghange holeuw(7, - 7) [Eq. (40)] for a spin up
electron in a nitrogen atom far = 0.13 and 0.63 a.u. The top figure shows the hole along a line thrthegh
nucleus and the electron. The arrow indicates the nuclesitipoand?—r = 0 gives the electron position. The
exact hole has a large weight at the nucleus, while the appet& hole is centered on the electron. The lower
figure shows the spherical average of the hole around the@led he area under the curve is proportional to the
exchange energy. The figure also shows the vaIL(e,bﬁ); defined in Eq. (43).

4 Exchange-Correlation Energy Functionals

The local density (LD) and local spin density (LSD) approatians have played a contin-
uing role in DF calculations, and most functional approxiows in current use are based
on them. In this section we discuss these approximationsexbin actual calculations, the
reasons for the errors that result, and some of the modgitaiintroduced to correct for

them.

4.1 LD and LSD Approximations

The LD approximation [Eq. (5)] has an exchange composgemfiven by the Dirac formula
[Eq. (4)], and a much more complicated correlation compoagrThe latter is commonly
based on the results of quantum Monte Carlo (MC) calculatfona homogeneous elec-
tron gas of different densitie8:%° The LSD approximation [Eq. (36)] also requires results
for a spin-polarized system and a means of interpolatingfi@rwith partial polarization.

12



Perdew and Zungérproposed the formula

<
PZ_{Alnrs+B+Crslnrs+Drs re <1, (46)

© /U Bu/Fs 4 Bors) re > 1.
For dense electron systems K 1) the random phase approximation provides the parame-
ters for the LD approximation, and the parameters for a fudllarized gas can be obtained
by scaling arguments. Other parameters were obtained imgfit the results of Ceperley

and Alder?®
Another form that has find widespread use is due to Vosko®t al.

e WN Ts 2b Ve — b2
=In + arctan [ —
A F(/rs) Vic — b2 2./rs +b

47
_ _bao In (\/T_S 7 wo) * 20 — 2a0) arctan | Y——— de— b2 0
F(z0) F(y/rs) Vac—b? Vs +b )|

Here F(z) = z? + bz + ¢ and the fitting parameters, which differ for the polarized an
unpolarized cases, are obtained from the data of Cepertbplaier?®

Interpolation between unpolarized (U) and fully polariZ&) results is usually based
on a formula involving the spin polarizatian

exc(; ) = f(Qere + (1 = f(Q)) () (48)
where
na (%) = ny (1)
=~ (49)
ny(7) + ny (7)
Functional forms off({) based on the Hartree-Fock and random phase approximations
have been suggested by von Barth and H&dind Vosko et al®? respectively.

4.2 Results of LD and LSD Calculations — General Trends

We have noted above that the electron density in moleculsalids is generally close to
a superposition of atomic densities. These are far fromoamifand even have a cusp at the
nucleus. The density is so far from uniform that the use of.the@nd LSD approximations
was treated initially by many with great reserve, partidylan the world of chemistry. We
would not be discussing them today, however, if they did meetreal value. In fact, they
almost always lead to the corrgatture of binding trends across and down the periodic
table. Structures, bond lengths, and vibration frequerioienany systems are reproduced
satisfactorily, and the deviations from measurementsexdland other quantities are often
quite systematic. We now discuss some of the deviations.

Binding energies of molecules and cohesive energies odsalie usually overesti-
mated. In weakly bound systems, e.g. where closed-she#icutds bind, these overesti-
mates are often large, and the bond lengths are too shonitindiystems (atoms, surfaces,
... )Wxc decays exponentially rather than with the inverse powerigifdce (the “image
potential). This is one of the consequences of the incotedelf-interaction correction.
Negative ions (such asH are often unbound, although it may be possible to estimate
binding energies in some cases. In semiconductors theyegambetween valence and

13



conduction bands is less than the measured values. Thiswslbibe discussed in this
school by Dr. A. Schindlmayr. The so-called strongly catetl systems, such as the in-
sulating 3d-transition metal oxides, are not described el SD calculations, which
predicts them to be metallic. Partially fillel and f-bands, in general, require modifica-
tions of the LD and LSD approximations. Such problems wilbigeussed in this school
by Dr. S. Kurth®® Some calculated energy differences are in spectaculagréisment
with experiment and provide us with a way to understand tHeate of the LD and LSD
approximations. We now focus on promotion energies in ataras different states of
lowest symmetry of the same atom.

4.3 LSD Calculations — Sources of Error

The above arguments show that the LSD approximation canegieasonable description
of systems where the density is far from homogeneous. Asriexe with molecular
calculations developed, however, it became clear that L&Butations gave rise to some
persistent, occasionally systematic errors for a variégystems. The binding energies
of sp-bonded molecules, for example, is often overestimated-byeV per bond, and
discrepancies of this size are simply unacceptable.

When atoms bind to form a molecule or solid, there is genesathange in the relative
s, p, d ... contributions to the wave function. Such energy transstan be studied directly
in atoms by calculating the energy required to change-alectron into g-electron, for
example thetS (2s22p®) ground state of N into théP (2s'2p*) excited state. Since
these are the lowest lying states of these symmetries, tydaaictional calculations are
justified *°

In Figure 3 we compare experimensattransfer energies for first row atoms and ions
with the results of LSD calculatior’.For atoms we define

A,, = B(1s2252p"™1) — B(15°25°2p"2) (50)

with a similar definition for the ions. While the overall tdsare given well, the absolute
deviations inA E,, are of variable quality, with particularly large deviat®im the cases
of O andN. Also shown are the Hi236 and LSDX (Xx) results. The trends are given
fairly well by these calculations, but there are significambrs, and the comparison with
experiment shows differences between the first and secdudshaf the row. To obtain
insightinto these problems we study some simple modelsystcusing on the exchange
energy, where the presence of explicit formulas simplifiesdiscussion greatly.
The HF exchange energy can be expressed in terms of exchaagesis®’

LX) B, (F) D (r)®* ('
Iij:eQ/dF/dr, ;1 (M, (F) #r) J(r)’ 51)

7=

where®; and®; are HF orbitals. Such an integral depends strongly on thalrsbdicture

of ®; and ®;. If &; and ®; have different- and m-quantum numbers, for example,
the integrand oscillates arfg; is reduced. Since the LSD approximations for exchange
(referred to as LSDX) and correlation are expressed onlgrims of the charge density,
we cannot expect them to include effects of the nodal stradtua precise way.
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Figure 3. Thesp transfer energied s, for the first row atoms and ions. (a) experimental and LSDIt&s(b)
Hartree-Fock and LSDX (X) results. The energies are in eV.

As an example, we consider thg-transfer in an F atom, where af electron is
transferred to @, orbital 3*

15225(11)2p(111 1) = 1525(1)2p(11114) - (52)

The change in the exchange energy due to this procgss is
AFEy, = —29—5G2(2p, 2p) + §G1 (2p, 2s) , (53)
where the Slater integrafs® are defined by
G*(i,j) = & /0 Zdr e /0 h dr'(r')Q%@(mﬁj ey . (54)
Herer. (rs) is the smaller (larger) of andr’, and ¢;(r) is the radial part of®;(7).
The first term in Eq. (53) is the exchange interaction betwaeptelectron withm = —1

and twop-electrons withm = 1 and0. The second term is the interaction betweers-an
electron and tw@-electrons. The integrand of Eq. (51) corresponding tgthénteraction
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has two nodal planes as a functionfvhile there is only a single nodal plane for the
interaction. The latter is larger as a result. Using realiglues for the Slater integrals,
we find thatAEy ~ 6 eV. The LSDX calculation, however, gives similar radialexs for
the s- andp-orbitals. If we assume that the radial parts igemtical and neglect the small
nonspherical corrections, the LSDX approximation predtbat the exchange energy is
unchanged by thesp-transfer, and the LSDX value fak,, differs from the HF result by
6 eV. The LSDX and LSD (both exchange and correlation) agprations show similar
trends, although the deviation between the LSD result apdréxent is reduced to 2.6 eV,
since the large change in the exchange energy is comperisated by a change iAE,

of opposite sign.

A simple model problem. In order to gain insight into these problems, Gunnarsson
and Jone¥ performed extensive LSDX and LSD calculations for atoms emmipared
the results with HF calculations and experiment, respelstivThe differences between
the LSDX and HF results are reproduced remarkably well by ehodlculations where
we isolate the effects of thedependence of the orbitals by assuming thatsthg andd
orbitals have the sammadial dependence. With this assumptiG only depends ork.
For the3s orbital in calcium, the numerical relations

G* G? G? G*

GOZ = = =
0.680 0.516 0.414 0.344

(55)
and
/ di” ex[n(7), 0] = 0.451G° (56)

were found, where(7) is the charge density due to a @aelectron. Similar coefficients
were obtained for the orbitals of other elements of the ines. Eq. (56) shows that the
unphysical self-interaction; G°/2, is cancelled to within about 10%. In Figure 4(a) we
compare the LSDX and HF exchange energies as a function ofutiierN of spin up
electrons. In the HF case, the shells are filled in the osder, d and within each shell

in the ordemm, m — 1, .., —m. In the LSDX case the small nonspherical contributions are
neglected. The LSDX and HF results agree remarkably well.

Figure 4(b) shows results for the interelectronic exchamgrgy, for which the self-
interaction has been subtracted. With the filling ordep, d, the LSDX and HF results are
in rather good agreement, with the magnitude of the LSDXItedeing somewhat larger.
Figure 4(b) also shows results for occupations where a slilisHeft empty. This does
not influence the LSDX results in the present model, but ithpsonounced effect on the
HF results. For instance, the curve “s-shell empty” is lotha@n the curve corresponding
to thes, p, d filling, since thep-p exchange interaction is smaller than thg interaction.

It follows from the orthogonality of the HF orbitals that te&change hole contains one
electron, and a similar sum rule is also satisfied by the LSDLBDX approximations?
Aspects of orthogonality and node formation are then inetloh all these schemes, al-
though Figure 4(b) shows that the sum rule doeggnatantee a good description.

This model calculation illustrates two important conctuss: (i) If we occupy the or-
bitals with the minimum number of nodal planes consistenbwhie Pauli principle, the
trends in the interelectronic exchange energies are repeabwell by the LSDX approxi-
mation. The absolute value is overestimated in all systemsidered by Gunnarsson and
Jones* (ii) The energy for the transfer from such a state to a stath wme additional
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Figure 4. Exchange energies in model described in textF{&P (dashed curve) an&HF (solid curve) as a
function of the number of electron® (in units of —GY); (b) the interelectronic exchang8, in: for these two
approximations. In the HF approximation, we show the depeae for different schemes of occupying the
orbitals.

node is often underestimated substantially in the LSDX axipration. These results were
derived from atomic calculations, but the arguments carxteneed to small molecul€d.

This shows that the nodal structure of the wave functiongiceatly affect the accuracy
of the LSD approximation, and we have identified classes oblpms where the LSD
results must be treated with caution. For states with thémmim number of nodal planes
consistent with the orthogonality of the orbitals, the LSipeoximation usually leads to
a moderate overestimate of the exchange-correlation gnérgr states with additional
nodal planes the exchange-correlation energy is oftertlgr@zerestimated. In atoms, the
depopulation ok-orbitals can lead to large errors, and similar effects magipected in
bonding situations where or sd hybridization reduces theoccupancy.

4.4 A Simplification of LD Calculations: Harris Functional

Before discussing some of the suggestions for overcomiolgl@m with the LD and LSD
approximations, we shall mention one waysofiplifying LD calculations. In 1972, Kim
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and Gordof® 3 suggested the following extension of the Thomas-Fermi@agr. The
density of a system comprising closed-shell atoms or médsds approximated by over-
lapping the HF densities of the free atoms (or molecules) tha energy is then calculated
using the TF approximations for the electrostatic [Eq. [BRd kinetic energy [Eq. (18)]
terms and Eq. (5) for the exchange-correlation energy. Teegies of the constituents
are estimated in the same way, and the binding energiesefjear molecules so obtained
agree remarkably well with experiment.

The same approach has been studied in the DF context by FfaFis systems where
the density is close to the overlapped density of the carsits, one can derive an expres-
sion for the binding energy for a given geometry,

B~ e~ [ dn0) |50+ V)] + Bulng] + B, (67

wheren; is the sum of the densities of the fragments,andVi.’ are the corresponding
Coulomb and exchange-correlation potentials, &Rdis the internuclear repulsion. The
€, are eigenvalues of the potential

V(7) = ¢7(7) + Vil (7) + Vet (7), (58)

whereV,,; is the external potential. This expression has the same é&arthat of Kim
and Gordon, with the important difference that the chandériatic energy (for bonding
between atomd and B with potentialsi’4 andV3p) is

T, =23 66, — [ dn@) (V@) - Va ()

- / 4 () [V (7) — Vis (7)), (59)

instead of the corresponding Thomas-Fermi expression.

The results of this scheme agree satisfactorily with seifststent DF calculations for
He,, Bey, Cy, Ny, F» and Cuy.*° It provides a useful alternative in cases where more
detailed calculations would be prohibitive, and it has badopted in some molecular
dynamics calculations, where more detailed calculatioaparformed at regular intervals
to ensure that the trajectories are reliable. It is, howewarself-consistent, and spin plays
norole.

4.5 Modifications of the LSD Approximation: Pair-correlati on Functions

We have seen that the total energy of a system is insensitiveaty details of the pair-
correlation functiong(F,f’), which occurs in Eq. (40). It is nevertheless tempting to
modify the pair-correlation function to remove some of itsremunpleasant features. The
expression for the exchange-correlation energy [Eq. (d@i9jvs that the differences be-
tween the contributions of the exact and approximate exgdhdioles are largely due to
the non-spherical components of the hole. Since these dcombtibute toE,., total en-
ergies and total energy differences can be remarkably gogsh in systems where the
density distribution is far from uniform. In the LD approxation, we assume that the xc-
hole ny(7, 7 — r_;) depends only on the charge density at the electron. It woallchbre
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appropriate to assurfiethatn,. depends on a suitable averagé),
ol = 7) =7 [ AN lgn (7~ 7,2, 0 ) - 1. (60)

It is possible to choose the weight function which deterrming?) so that the functional
reduces to the exact result in the limit of almost constamisie The approximation
[Eq. (60)] satisfies the sum rule [Eq. (42)]. Other presaipg for the weight function
have been proposed.

An alternative approximation is obtained if we keep the proprefactorn(r’) in
Eq. (40), leading to the so-called “weighted density” (WRpeoximation,

el 7 = 7) = n(r') G = 1), (7)), (61)

where7i(7) is chosen to satisfy the sum rule [Eq. (42)]. The WD modelwvigdea link
betweerz,., the density-density correlation function, and the respdonction of a homo-
geneous system. As an example, we now discuss an analytit’fiivat is computationally
simpler and can be chosen to give exact results in certaitsliwe assume that

G(F,n) = C(n) (1—exp[=A(n)/Ir[]), (62)

whereC and )\ are parameters to be determined. The functiéhélehaves ag =5 for
large distances, which is needed to obtain an image poteRtiaa homogeneous system
with densityn, we require that the model functional should both fulfil thensrule for
n(7) = n and give the exact xc-energy. This leads to two equations

[ Gqit.m = -1 (63)
e? L1 _
) /d’l‘ W G(|F],n) = €ge(n), (64)

which are sufficient to determine the two parame&fs) andA(n).

This functional is exact in several limiting cases: (i) foh@amogeneous system, (ii)
for one-electron systems such as the hydrogen atom it givexact cancellation of the
electron self-interaction, (iii) for an atom it gives thereet behaviour of the xc-energy
density far from the nucleusex(7) = —e2/2r, (iv) far outside the surface it gives the
image potentiady(2) = —e?/(4z). The LSD approximation gives qualitatively incorrect
answers for (iii) and (iv), and the cancellation in (ii) islprapproximate. Since (ii) is
satisfied, this approximation provides a “self-interagtiorrection” in the sense we discuss
below. The errors in the WD approximation for the total eyerbatoms are about an order
of magnitude smaller than those in the LSD approximation,tihe sp- and sd-transfer
energies are little improved over LSD resuits.

4.6 Self-interaction Corrected (SIC) Approximations

In the DF formalism each electron interacts with itself \nia Coulomb electrostatic en-
ergy, and this unphysical interaction would be exactly eflad by a contribution from

the xc-energy. In the LSD approximation this cancellat®miperfect, but numerically
rather good. The incorrect treatment of the self-intecacin approximate functionals has
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led some workers to consider self-interaction correcté@)&inctionals. Within the LSD
approximation the SIC functional takes the form

Esic = Eysp[n4(7),ny (F)] — Z dic (65)
whereE sp is the LSD energy functional and

/ /d_’ Nig F)nw T) +ELSD(ni070) (66)

7=

is the self-interaction correction (SIC) for the orbitalith spin ¢ and charge density
nis (7). The first term in Eq. (66) is the self-interaction energy #re second is the LSD
approximation to the xc-energy of a fully spin-polarizedtgyn with density:;, (7). This
functional is exact for a one-electron system. It leads ¢cettpuation

2
[_;_mvz +V(7) + VS (Mioc = Z A Djos (67)

where V(7) is the effective potential (27) entering in a normal LSD aédtion, and
VSIC(7) is additional potential resulting from the term Eq. (66).isThotential is orbital-
dependent and the Lagrange parame¢fsare introduced to ensure that the solutions
¢;(7) (referred to as “local orbitals”) are orthogonal. The SI@@gximation is not invari-
ant under a unitary transformation of the orbitals, andedéht basis sets lead to different
total energies.

Unfortunately, ionization and transfer energies of atonesret generally better in the
LSD-SIC approximation, at least if non-spherical cormeusi are neglected. The improved
total energies in SIC calculations can, in fact, be traced tauch better treatment of
the innermost core electrofi$which play a relatively minor role in most chemical and
physical processes of interest.

4.7 Modifications of the LSD Approximation: Gradient Expansions

Hohenberg and KoHA introduced the local density approximation in the contéxDb
theory, but they also pointed out the need for modificatiarsy/stems where the density is
not homogeneous. One such modification was the approximatio

1 o o g W 2 12
Ey. = E-P — Z/df’/dr’ Ky <F—r’,n(r-;T )) {n(F’) —n(r’)} , (68)

where the kernek is related to the dielectric function of a homogeneous maditihis
approximation is exact in the limit of weak density variato

n(F) =no + An(F), (69)

where|An(7)| < ng, but the results for real systems were not encouraging.reermftoms
the energy is infinité}! indicating that the sum-rule [Eq. (42)] is not satisfied. pites of
this, gradient expansions have played an extremely impbrtde in DF theory and its
applications. We shall now discuss some of the forms used.
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4.7.1 Generalized Gradient Approximations (GGA)

The second-order generalized gradient approximationge@xthange-correlation energy
is written

ESCA(n) = /dFexc (n,|Vn|,V?n). (70)

Many forms of such functionals have been suggested, and gbtine most important (and

all their parameters) are given by Filippi et*alThese authors also compared these forms
with the exact results for an exactly soluble system of tvegtebns in an external harmonic
potential. We shall discuss some functionals that are widsdd in actual calculations. We
use some standard abbreviations:

1/2 1/3
kF = (371”[1)1/3; ks = (ékF> y 8= |VTL| st = |Vn|; re = ( 3 ) (71)
m

" 2%kgn’ 2ksn 47n,
For the exchange contribution, BeéRsuggested the following form:
2
LY P G 72
B [ 21/3 A, 1 + 68z arcsini{z) | (72)

wherez = 2(672)'/3s = 2'/3|Vn|/n*/3, A = 3(3/m)'/3, andp = 0.0042. The
parametef was optimized to give exchange energies of noble gas atoimg Hiartree-
Fock orbitals). This functional has been coupled with th@lf¥nctional for correlatiort®

exp(—cnl/g)} ,
(73)

w = & (@ _ v%) (74)

1 1
€c = {n +bn 23 [C’Fn5/3 — 2tw + = <tW + §V2n>

9

T dn'/3

where

n

andCr = 3/10(37%)%/3, a = 0.04918, b = 0.132, ¢ = 0.2533, d = 0.349. It surprised
many that the combination of Becke exchange with either tidé\Vor LYP correlation
functionals outperformed correlated initio methods (MP2 and QCSID) in calculations
of atomization energies for 32 molecul€sThe importance of using a non-local exchange
has been underscored by many subsequent calculdfions.

The question of ways to improve exchange-correlation fonels has led to a clear
dichotomy of views. The first implies that the search for actional is so difficult that we
should develop a reasonable form and fit its adjustable peteasito experimental data.
The BLYP and B3LYP functionals are of this type. From thiswshgoint, DF theory is then
“of semi-empirical nature*® Experimental data from up to 407 atomic and molecular
systems have been us&din this case with a functional with 15 adjustable parameters
The second approach seeks to build on the positive feattirde d SD approximation
by incorporating exact constraints and hoping that the éddatures will automatically
improve the description of reality. We shall focus on fuantls in the second category.

Perdew, Burke, and Ernzeri8have described a functional form (PBE) that has sev-
eral attractive features:

Ey. = /an(f’)E)IZD (n(F))Fxc("; ¢, 3)7 (75)
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where

E(s)=1+«k (76)

__ 5
1+ p?/K’
= B(7?/3) = 0.21951, andB = 0.066725. The correlation energy has the form

E. = / di' n(7) [e53P(n, ¢) + H(n, (,t)] (77)
with
2 2 A 2
H(n,(,t) = (Z—()) ~¢ In {1 + ’8% [H;ﬁ] } : (78)

The spin-scaling factop(¢) = [(1+)*° +(1—-¢)?*?] /2, v = (1 — In2)/n® =
0.031091, and

4= § [exp (—etPln)/(v8%e/ag)) —1] " (79)

The PBE form has several advantages, including: (1) In tbevlglvarying limit
(t — 0), H is given by the second-order gradient expansion, (2) In éipédty varying
limit (¢t — 00), H — —¢LP, and correlation vanishes, (3) It cancels the logarithrinigis-
larity of £L° in the high density limit. The accuracy of the PBE functiofwlatoms and
molecules has been compared with results of LSD, BLYP, arld/B3unctions has been
made by Ernzerhof and ScusetaThe PBE functional performed as well as B3LYP for
the properties considered by these authors.

rce TCH acce QHCH
X-rays® 1.534+0.006 1.09 112.0+£0.3 109.5
X-rays" 1.533£0.022 1.0&0.022 111.9-1.8 107.6:1.8
X-rays® 1.5270.007 1.091 1124+0.8 -
LD 1.512 1.111 114.3 105.2
BP 1.536 1.111 113.8 105.6
PBE 1.523 1.110 113.0 105.8

2 Ref. 52, monoclinim-hexatriacontane §gHr4
b Ref. 53, orthorhombig:-hexatriacontane $5H7a
¢ Ref. 54.

¢ (b)

Figure 5. Left: Structure of crystalline polyethylene: ¢@rmal to chain axis, (b) along chain axis. Right:
Structural parameters of crystalline PE from x-ray diffiae, and calculated structures for a single chain. Bond
lengths are i, angles in degrees. Values marked with an astefi3kvere assumed, and not measured directly.
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Generalized gradient approximations generally lead todwgd bond angles, lengths,
and energies. In particular, the strengths of hydrogen®and other weak bonds between
closed shell systems are significantly better than locasitheresults. However, the self-
interaction problem remains, and some asymptotic req@irésfor isolated atoms are not
satisfied V;SCA vanishes exponentially far from the nuclet§CA(# — 0) — —o0).

An example of the differences between LSD and PBE calculatis shown in
Figure 5% Polyethylene crystallizes in a structure with parallelinosaand the table shows
that the structure of the individual chains is describelaeatvell, with the C-C bonds being
slightly longer in PBE and B® calculations than in those using LD. There are, however,
striking differences in thinterchain separations. The LD calculations lead to a pronounced
minimum with a shortest distance between C atoms in difteskains (3.67&) less than
the measured value (4.%9,5* while PBE leads to a modest overestimate (4$6

4.7.2 Meta-GGA

The next step in the development of gradient approximai®is incorporate the kinetic
energy density (or the Laplacian of the density). A versiasdu on the PBE form was
described by Perdew et &.who added the variables andr, where

occ.

() = Y 51V ()P (80)

is the kinetic energy density for the occupied Kohn-Shanitald However, this and other
forms initially developed included parameter(s) found iy to experimental data. This
last feature was avoided in the recent work of TPS8hose form satisfied the requirement
that the exchange potential be finite at the nucleus for gi@tate one- and two-electron
densities. This is a constraint satisfied by LSD, but lost BAGExtensive numerical tests
for atoms, molecules, solids, and jellium surfaces shovesrerally very good results.

4.7.3 Hybrid Schemes: Combination of HF and DF Schemes

In section (4.3) we saw just how poor the exchange energgrdifices could be between
states whose wave functions have different nodal strustutehas also been noted for
many years (see, for example, Ref. 27) that errors in the Ldarifgions of exchange and
correlation tend to balance. This suggests that a combimafi Hartree-Fock exchange
and DF calculations could be useful.

ERP = oEF + B, (81)

wherea can be chosen to satisfy particular criteria. A formal firsttion for such hybrid
schemes was given by Gorling and LéWyThe B3LYP functionaf® which is widely used
in the chemical community, is an example. Here three adjlsfzarameters are used to fit
calculated values to a molecular data base.

4.7.4 Optimized Effective Potential (OEP)

In the Kohn-Sham implementation of DF theory we describethetic energy functional
for the system of non-interacting electrons in terms of th#tals ;. (). The bestocal
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effective potential (a requirement of DF theory) can be oheieed variationally for each
o such that, when substituted into a stationary single-glaréquation it leads to a set of
eigenfunctions that minimiz&[«;, (7)]. This was first suggested by Sharp and Hotfon
following the local density description of exchanend it is referred to as the optimized
effective potential (OEP)! Its determination requires the solution of an integral d¢igua
for eachVic . (7), which is a demanding exercise. How this can be done, as sptissible
simplifications, are discussed in this School by Dr. S. Kurth

5 Concluding Remarks

The density functional theory is the basis of most of the walions in computational
nanoscience that are free of adjustable parameters. le& @lom the present discus-
sion that “DF calculations” cover a colourful variety of fttional approximations, and
not all are “free of adjustable parameters”. The develogroémpproximations to the
exchange-correlation functionals over the past 20 yeagsrhproved the performance of
DF calculations, and John Perdew is no doubt not alone ikithgnthat progress up the
“Jacob’s ladder® (Figure 6) will continue until energy differences can beedetined to
within ~ 1 kcal/mol (“*chemical accuracy”). The numerical cost in@esas one climbs,
and this may not necessarily bring more information. MostpgFms in “computational
nanoscience” are performed part way up the ladder, andith&tisn will probably remain
true for some time.

DF calculations should always be performed with all critieailities intact. The fa-
miliar program “packages” will almost always lead to an aesviout it is easy to obtain

unoccupied {V; }

€y Exact exchange
T/ Vin meta-GGA
Vn GGA
n LSD

Figure 6. “Jacob’s ladder” of DF schemes according to Peraigvcollaborators.
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answers void of physical content. It is odd to have to corelilis manuscript on such a
note, but years of refereeing articles in the field suggestittis necessary.
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