
Engineering mechanics provides excel-
lent theoretical descriptions for the ra-
tional design of materials and accurate
lifetime prediction of mechanical struc-

tures. This approach deals with continuous quan-
tities such as strain field that are functions of both
space and time. Constitutive relations such as
Hooke’s law for deformation and Coulomb’s law
for friction describe the relationships between
these macroscopic fields. These constitutive
equations contain material-specific parameters
such as elastic moduli and friction coefficients,

which are often size dependent. For example, the
mechanical strength of materials is inversely pro-
portional to the square root of the grain size, ac-
cording to the Hall-Petch relationship.

Such scaling laws are usually validated experi-
mentally at length scales above a micron, but in-
terest is growing in extending constitutive rela-
tions and scaling laws down to a few nanometers.
This is because many experts believe that by re-
ducing the structural scale (such as grain sizes)
to the nanometer range, we can extend material
properties such as strength and toughness be-
yond the current engineering-materials limit.1

In addition, widespread use of nanoelectro-
mechanical systems (NEMS) is making their
durability a critical issue, to which scaling down
engineering-mechanics concepts is essential.
Because of the large surface-to-volume ratios in
these nanoscale systems, new engineering-
mechanics concepts reflecting the enhanced role
of interfacial processes might even be necessary.

Atomistic simulations will likely play an im-
portant role in scaling down engineering-
mechanics concepts to nanometer scales. Recent
advances in computational methodologies and
massively parallel computers have let re-
searchers carry out 10- to 100-million-atom
atomistic simulations (the typical linear dimen-
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sion ranges from 50 to 100 nanometers) of real
materials.2 To successfully design and fabricate
novel nanoscale systems, we must bridge the gap
in our understanding of mechanical properties
and processes at length scales ranging from 100
nanometers (where atomistic simulations are
currently possible) to a micron (where contin-
uum mechanics is experimentally validated). To
achieve this goal, scientists are combining con-
tinuum mechanics and atomistic simulations
through integrated multidisciplinary efforts so
that a single simulation couples diverse length
scales. However, the complexity of these hybrid
schemes poses an unprecedented challenge, and
developments in scalable parallel algorithms as
well as interactive and immersive visualization
are crucial for their success. This article de-
scribes such multiscale simulation approaches
and associated computational issues using our
recent work as an example.

The multiscale-simulation approach

Processes such as crack propagation and frac-
ture in real materials involve structures on many
different length scales. They occur on a macro-
scopic scale but require atomic-level resolution
in highly nonlinear regions. To study such multi-
scale materials processes, we need a multiscale-
simulation approach that can describe physical
and mechanical processes over several decades
of length scales. Farid Abraham and his col-
leagues have developed a hybrid simulation ap-
proach that combines quantum-mechanical cal-
culations with large-scale molecular-dynamics
simulations embedded in a continuum, which
they handle with the finite-element approach
based on linear elasticity.3,4

Figure 1 illustrates such a multiscale FE–
MD–QM simulation approach for a material
with a crack. Let’s denote the total system to be
simulated as S0. A subregion S1 (⊂ S0) near the
crack exhibits significant nonlinearity, so we sim-
ulate it atomistically, whereas the FE approach
accurately describes the rest of the system, S0 −
S1. In the region S2 (⊂ S1) near the crack sur-
faces, bond breakage during fracture and chem-
ical reactions due to environmental effects are
important. To handle such chemical processes,
we must perform QM calculations in S2, while
we can simulate the subsystem, S1 − S2, with
the classical MD method. Figure 1 also shows
typical length scales covered by the FE, MD,
and QM methods. In the following, we describe
how an FE calculation can seamlessly embed an

MD simulation, which in turn embeds a QM
calculation.

Hybrid FE–MD schemes
Continuum elasticity theory associates a dis-

placement vector, u(r), with each point, r, in a
deformed medium. The FE method tessellates
space with a mesh. It discretizes the displace-
ment field, u, on the mesh points (nodes) while
interpolating the field’s values within the mesh
cells (elements) from its nodal values. Equations
of motion govern the time evolution of u(r);
these equations are a set of coupled ordinary dif-
ferential equations subjected to forces from sur-
rounding nodes. This method derives the nodal
forces from the potential energy, EFE[u(r)],
which encodes how the system responds me-
chanically in the framework of elasticity theory.

To study how atomistic processes determine
macroscopic-materials properties, we can employ
the MD method, in which we obtain the system’s
phase-space trajectories (the positions and velocities

Figure 1. A hybrid finite-element, molecular-dynamics, quantum-
mechanical simulation. The FE, MD, and QM approaches compute
forces on particles (either FE nodes or atoms) in subsystems, S0 − S1

(represented by meshes), S1 − S2 (blue and red spheres), and S2

(yellow and green), respectively. The simulation then uses these
forces in a time-stepping algorithm to update the positions and 
velocities of the particles. The figure also shows typical length
scales covered by the FE, MD, and QM methods.
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of all atoms at all times). Accurate atomic-force
laws are essential for describing how atoms in-
teract with each other in realistic simulations of
materials. Mathematically, a force law is encoded
in the interatomic potential energy, EMD(rN),
which is a function of the positions of all N
atoms, rN = {r1, r2, ..., rN}, in the system.

In the past years, we have developed reliable
interatomic-potential models for a number of
materials, including ceramics and semiconduc-
tors.5 Our many-body interatomic potential
scheme expresses EMD(rN) as an analytic func-
tion that depends on relative positions of atomic
pairs and triples. The pair terms represent steric
repulsion between atoms, electrostatic interac-
tion due to charge transfer, and induced
charge–dipole and dipole–dipole interactions
that take into account the large electronic polar-

izability of negative ions. The triple terms take
into account covalent effects through the bend-
ing and stretching of atomic bonds. We validate
the interatomic potentials by comparing various
calculated quantities with experiments. These
include lattice constants, cohesive energy, elas-
tic constants, melting temperatures, phonon dis-
persion, structural transformation pressures, and
amorphous structures. A set of coupled ordinary
differential equations, similar to those for FE
nodes, govern the time evolution of rN.

Hybrid FE–MD schemes spatially divide the
physical system into FE, MD, and handshake re-
gions.3,4 In the FE region, these schemes solve
equations for continuum elastic dynamics on an
FE mesh. To make a seamless transition from
the FE to MD regions, these schemes refine the
FE mesh in the HS region down to the atomic
scale near the FE–MD interface such that each
FE node coincides with an MD atom.3,4 The FE
and MD regions are made to overlap over the
HS region, establishing a one-to-one corre-
spondence between the atoms and the nodes.

Figure 2 illustrates an FE–MD scheme. On
the top is the atomistic region (crystalline sili-
con in this example), and on the bottom is the
FE region. The red box marks the HS region, in
which particles are hybrid nodes/atoms, and the
blue dotted line in the HS region marks the
FE–MD interface. These hybrid nodes/atoms
follow hybrid dynamics to ensure a smooth tran-
sition between the FE and MD regions.

The scheme by Abraham and his colleagues
defines an explicit energy function, or Hamil-
tonian, for the transition zone to ensure energy-
conserving dynamics.3,4 All finite elements that
cross the interface contribute one-half of their
weight to the potential energy. Similarly, any
MD interaction between atomic pairs and triples
that cross the FE–MD interface contributes one-
half of its value to the potential energy. We use a
lumped-mass scheme in the FE region; that is,
we assign the mass on nodes instead of distrib-
uting it continuously within an element.3,4 This
reduces to the correct description in the atomic
limit, where nodes coincide with atoms.

To rapidly develop an FE–MD code by reusing
an existing MD code, we exploited formal simi-
larities between the FE and MD dynamics. In
our FE–MD program, particles are either FE
nodes or MD atoms, and a single array stores
their positions and velocities. The FE method re-
quires additional bookkeeping, because each ele-
ment must be associated with its corresponding
nodes. Our program efficiently performs this by

Figure 2. A hybrid FE–MD scheme for a silicon crystal. On the top is
the MD region, where spheres represent atoms and lines represent
atomic bonds. On the bottom is the FE region, where spheres 
represent FE nodes and FE cells are bounded by lines. The red box
marks the handshake region, in which particles are hybrid
nodes/atoms; the blue dotted line in the HS region marks the
FE–MD interface. The left and right figures are views of the 3D
crystalline system from two different crystallographic orientations,
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using the linked cell list in the MD code.
Parallel computing requires decomposing the

computation into subtasks and mapping them
onto multiple processors. For FE–MD simula-
tions, a divide-and-conquer strategy based on
spatial decomposition is possible.6,7 (Task de-
composition has previously been used between
FE and MD tasks.3,4) This strategy divides the
system’s total volume into P subsystems of equal
volume and assigns each subsystem to a proces-
sor in an array of P processors. It then assigns
the data associated with a subsystem’s particles
(either FE nodes or MD atoms) to the corre-
sponding processor. For this strategy to calcu-
late the force on a particle in a subsystem, the
coordinates of the particles in the boundaries of
neighbor subsystems must be “cached” from the
corresponding processors. After an updating of
the particle positions due to a time-stepping pro-
cedure, some particles might have moved out of
the subsystem. These particles “migrate” to the
proper neighbor processors.

With the spatial decomposition, the compu-
tation scales as N/P while communication scales
in proportion to (N/P)2/3 for an N-particle sys-
tem. The communication overhead thus be-
comes less significant when N (typically 106 to
109) is much larger than P (102 to 103)—that is,
for coarse-grained applications. The unified
treatment of atoms and nodes with regular spa-
tial decomposition could cause load imbalance
among processors. However, load-balancing
schemes developed for MD simulations can eas-
ily solve this problem.6,7

To validate our FE–MD scheme, we simulated
a projectile impact on a 3D block of crystalline
silicon (see Figure 3). The block has dimensions
of 10.5 nanometers and 6.1 nanometers along the
[2
–
11] and [01

–
1] and crystallographic orientations,

respectively, and we impose periodic boundary
conditions in these directions. Along the [111]
direction, the system consists of a 11.5-nanome-
ter-thick MD region, a 0.63-nanometer-thick HS
region, and a 19.6-nanometer-thick FE region.
The top surface in the MD region is free, and the
nodes at the bottom surface in the FE region are
fixed. The fully 3D FE scheme uses 20-node
brick elements for the region far from the HS re-
gion, which provide a quadratic approximation
for the displacement field and are adequate for
continuum. In the scaled-down region close to
the FE–MD interface, we switch to eight-node
brick elements, which provide a linear approxi-
mation for the displacement field. In the HS re-
gion, we distort the elements to exhibit the same

lattice structure as crystalline silicon.
In addition to these elements, we use prism-like

elements for coarsening the FE mesh from the
atomic to larger scales. We approximate the pro-
jectile with an infinite-mass hard sphere with a
1.7-nanometer radius, from which the silicon
atoms scatter elastically. A harmonic motion of the
projectile along the [111] direction creates small-
amplitude waves in the silicon crystal. Figure 3
presents snapshots at three different times, show-
ing only a thin slice for clarity of presentation. The
color denotes the absolute displacement from the
equilibrium positions measured in Å. The induced
waves in the MD region propagate into the FE re-
gion without reflection, demonstrating seamless
handshaking between MD and FE.

In the hybrid FE–MD schemes we just de-
scribed, a small number of elastic constants rep-
resent linear elastic properties of materials. Such
a macroscopic approach does not necessarily
connect with atomistics seamlessly when the size
of finite elements is comparable to atomic spac-
ing. For example, the FE analysis assumes that
the energy density spreads smoothly throughout
each element, but at the atomic scale, discrete-
ness of atoms comes into play.

Recent, more accurate methods construct con-
stitutive relations from underlying atomistic cal-
culations; they recover the correct atomic forces
when the mesh is collapsed to the atomic spac-
ing. The quasicontinuum method of Ellad Tad-
mor, Michael Ortiz, and Rob Phillips derives
each element’s potential energy from microscopic

Figure 3. Time evolution of FE nodes and MD atoms in a hybrid
FE–MD simulation of a projectile impact on a silicon crystal.
Absolute displacement of each particle from its equilibrium
position is color-coded. The figure shows a thin slice of the crystal
for clarity of presentation.
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interatomic potentials.8 This method assigns a
representative crystallite in each element. It then
deforms the crystallite according to the local de-
formation inside the element and assigns the
crystallite’s total energy to the element. Robert
Rudd and Jeremy Broughton’s coarse-grained
MD method derives constitutive relations for
continuum directly from the interatomic poten-
tial by means of a statistical coarse graining pro-
cedure.4 For the actual atomic configuration
within the elements, their method calculates the
dynamical matrix and transforms it to an equiv-
alent dynamical matrix for the nodes. For
atomic-size elements, the atomic and nodal de-
grees of freedom are equal in number and they
obtain the MD dynamics. For large elements,
they recover the continuum elasticity equations
of motion. This method constitutes a perfectly
seamless coupling of length scales but has high
computational complexity.

Hybrid MD–QM schemes
Empirical interatomic potentials used in MD

simulations fail to describe chemical processes.
Instead, to calculate interatomic interaction in
reactive regions, we need a QM method that can
describe bond breakage and formation. Interest
has grown in developing hybrid MD–QM simu-
lation schemes in which a reactive region treated
by a QM method is embedded in a classical sys-
tem of atoms interacting through an empirical
interatomic potential.

An atom consists of a nucleus and surround-
ing electrons, and QM methods treat electronic
degrees of freedom explicitly, thereby describ-
ing the wave-mechanical nature of electrons.
One of the simplest QM methods is based on
tight binding.3,4 TB does not involve electronic
wave functions explicitly but solves an eigenvalue
problem for the matrix that represents interfer-
ence between electronic orbitals. The spectrum
of the eigenvalues gives the information on elec-
tronic density of states. TB derives the electronic
contribution to interatomic forces through the
Helmann-Feynman theorem, which states that
only partial derivatives of the matrix elements
with respect to rN contribute to forces.

A more accurate but compute-intensive QM
method deals explicitly with electronic wave
functions, 

(Nwf is the number of independent wave func-
tions, or electronic bands, in the QM calcula-

tion), and their mutual interaction in the frame-
work of the density functional theory9,10 and elec-
tron–ion interaction using pseudopotentials.11

The DFT (for the development of which Walter
Kohn received a 1998 Nobel chemistry prize)
reduces the exponentially complex quantum
many-body problem to a self-consistent eigen-
value problem that can be solved with O(N 3

wf)
operations. With DFT, we can not only obtain
accurate interatomic forces from the Helmann-
Feynman theorem, but also calculate electronic
information such as charge distribution.

The quantum-chemistry community has ex-
tensively developed hybrid MD–QM schemes.12

Various hybrid schemes combining both a mol-
ecular orbital method with varying degrees of
quantum accuracy and a classical molecular me-
chanics method simulate chemical and biological
processes in solution. The hybrid MO–MM
schemes usually terminate a dangling-bond arti-
fact at the MO–MM boundary by introducing a
hydrogen (H) atom in the MO calculation. The
hybrid simulation approach of Abraham and his
colleagues uses a semiempirical TB method as a
QM method and introduces an HS Hamiltonian
to link the MD–TB boundary.3,4

Markus Eichinger and his colleagues have de-
veloped a hybrid MD–QM scheme based on the
DFT for simulating biological molecules in a
complex solvent.13 This scheme uses plane
waves11 as the basis to solve the Kohn-Sham
equations9 in the DFT. Such a plane-wave-based
scheme, however, is difficult to implement for
thousands of atoms on massively parallel com-
puters, because it uses the fast Fourier transform,
which involves considerable communication
overhead.

Recent efficient parallel implementations of
DFT calculations represent wave functions and
pseudopotentials on uniform real-space mesh
points in Cartesian coordinates.14,15 These im-
plementations perform the calculations in real
space using orthogonal basis functions and a
high-order finite difference method. The multi-
grid method can further accelerate real-space
DFT calculations.15 Spatial-decomposition-
based parallel implementation of the real-space
methods is straightforward; systems containing a
few thousand atoms can be simulated quantum-
mechanically on 100 to 1,000 processors.

We have developed a hybrid scheme for dy-
namic simulations of materials on parallel com-
puters that embeds a QM region in an atomistic
region.16 A real-space multigrid-based DFT14,15

describes the motion of atoms in the QM region,

    
Ψ Ψ Ψ ΨN

N
wf

wf
r r r r( ) = ( ) ( ) ( ){ }1 2, , ,K
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and the MD method describes it in the sur-
rounding region. To partition the total system
into the cluster and its environmental regions,
we use a modular approach based on a linear
combination of QM and MD potential energies.

This approach consequently requires minimal
modification of existing QM and MD codes:12

where ECL
system is the classical semiempirical po-

tential energy for the whole system and the last
two terms encompass the QM correction to that
energy. EQM

cluster is the QM energy for an atomic
cluster cut out of the total system (its dangling
bonds are terminated by hydrogen atoms—
handshake H’s). ECL

cluster is the semiempirical po-
tential energy of a classical cluster that replaces
handshake H’s with appropriate atoms.

This approach requires calculating both QM
and MD potential energies for the cluster. It in-
troduces termination atoms in both calculations
for the cluster. A unique scaled-position method
treats HS atoms linking the cluster and the en-
vironment. This method determines the posi-
tions of HS atoms as functions of the original
atomic positions in the system. Different scaling
parameters in the QM and classical clusters re-
late the HS atoms to the termination atoms.

We implement our hybrid scheme on mas-
sively parallel computers by first dividing proces-
sors into the QM and the MD calculations (task
decomposition) and then using spatial decom-
position in each task. The parallel program is
based on message passing and follows the Mes-
sage Passing Interface standard.17 We first place
processors into MD and QM groups by defin-
ing two MPI communicators. (A communicator is
an MPI data structure that represents a dynamic
group of processes with a unique ID called con-
text.) We write the code in the single-program,
multiple-data (SPMD) programming style, so
that each processor executes an identical pro-
gram. We use selection statements for the QM
and the MD processors to execute only the QM
and the MD code segments, respectively. To re-
duce the memory size, we use dynamic memory
allocation and deallocation operations in For-
tran 90 for all the array variables.

Figure 4 shows a flowchart of the parallel
computations. First, spatial decomposition de-
composes the total system into subdomains, each
of which is mapped onto an MD processor. The
MD processors calculate the classical potential
energy, ECL

system, and corresponding atomic forces,

using an empirical interatomic potential. Sec-
ond, atomic data for the cluster and the HS
atoms that are necessary to create the H-termi-
nated cluster are transferred to the QM proces-
sors. Third, the QM processors perform DFT
calculations to obtain EQM

cluster and atomic forces
for the H-terminated cluster, while the MD
processors calculate ECL

cluster and atomic forces for
the classically terminated cluster, using the em-
pirical interatomic potential. The real-space
multigrid-based DFT code is parallelized by de-
composing the mesh points to subdomains and
then distributing them into the QM processors.
The MD processors collect the energy and forces
from QM and MD calculations. Finally, the MD
processors calculate the total potential energy, E,
and atomic forces, which in turn are used for time
integration of the motion equations to update
atomic positions and velocities.

We applied the hybrid MD–QM simulation
code to oxidation of a silicon surface. Figure 5
shows snapshots of the atomic configuration at
50 and 250 femtoseconds; atomic kinetic ener-
gies are color-coded. We see that dissociation
energy released at the reaction of an oxygen
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Figure 4. A flowchart of the parallel computations in our hybrid
FE–MD–QM simulation algorithm.
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molecule with silicon atoms in the cluster region
transfers seamlessly to silicon atoms in the envi-
ronment region.

Owing to the formal similarity between par-
allel MD and FE–MD codes and the modular-
ity of the MD–QM scheme, embedding a QM
subroutine in a parallel FE–MD code to develop
a parallel FE–MD–QM program is straightfor-
ward, as Figure 4 shows.

Scalable FE–MD–QM algorithms
The FE scheme calculates the force element-

by-element. And, with the lumped-mass approx-
imation, it performs temporal propagation node-
by-node with O(Nnode) operations in a highly
scalable manner (Nnode is the number of FE
nodes). Atomistic study of process zones includ-
ing mesoscale processes (dislocations and grains)
requires that the MD region covers length scales

on the order of a micron ( N ~ 109 atoms); such
large-scale MD simulations require highly scal-
able algorithms. Currently, the most serious bot-
tleneck for large-scale FE–MD–QM simulations
is the computational complexity of QM calcula-
tions. To investigate collective chemical reactions
at oxidation fronts or at frictional interfaces, the
QM region must cover length scales of 1 to 10
nanometers (approximately 103 to 104 atoms).
Embedding a 104-atom QM calculation in 109-
atom MD is only possible with scalable algo-
rithms for both MD and QM simulations.

We have developed a suite of scalable MD and
QM algorithms for materials simulations.18 Our
scalable parallel MD algorithms employ multi-
resolutions in both space and time.6 We formu-
late the DFT calculation as a minimization of
the energy, EQM(rN, ψNwf) with respect to ψNwf,
with orthonormalization constraints among the
electron wave functions, which is conventionally
solved by O(N 3

wf) operations.
Researchers have proposed several O(Nwf)

DFT methods based on a real-space grid.19

These methods constrain each one-electron wave
function in a local region and avoid orthogonal-
ization of wave functions. We use the energy-
functional minimization approach, which re-
quires neither explicit orthogonalization nor
inversion of an overlap matrix but instead in-
volves unconstrained minimization of a modified
energy function. Because the wave functions are
localized in this approach, each wave function in-
teracts with only those in the overlapping local
regions. In each MD step, the conjugate-gradient
(CG) method iteratively minimizes the energy
function. Because the energy-minimization loop
contains neither a subspace diagonalization nor
the Gram-Schmidt orthonormalization, the
computation time scales as O(Nwf/P) on P proces-
sors. The communication data size between
neighboring nodes to calculate the kinetic-energy
operator scales as O((Nwf/P)2/3) in the linear-
scaling DFT algorithm, which is in contrast to
the O(Nwf(Nwf/P)2/3) communication in the con-
ventional DFT algorithm. Global communica-
tion for calculating overlap integrals of the wave
functions, which scales as N 2

wf logP in the con-
ventional DFT algorithm, is unnecessary in the
linear-scaling algorithm.

Figure 6 shows the computation time as a
function of the number of simulated atoms for
our linear-scaling MD and DFT algorithms on
1,024 IBM SP3 processors at the Naval Oceano-
graphic Office Major Shared Resource Center.
(For the DFT algorithm, we assume that each

Figure 5. A hybrid MD–QM simulation of oxidation of a silicon
(100) surface. In the (a) initial configuration, magenta spheres are
the cluster silicon atoms, gray spheres are the environment silicon
atoms, yellow spheres are termination hydrogen atoms for QM 
calculations, blue spheres are termination silicon atoms for MD 
calculations, and green spheres are cluster oxygen atoms. In the
snapshots at (b) 50 and (c) 250 femtoseconds, colors represent 
the kinetic energies of atoms in Kelvin.

(a)

(b) (c)
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MD step requires three self-consistent iterations
of the Kohn-Sham equations9 with 40 CG iter-
ations per self-consistent iteration. To simulate
gallium arsenide systems, the DFT calculations
include two independent electron wave func-
tions per atom.) The figure shows that the com-
putation involved in both the MD and DFT al-
gorithms scales linearly with the number of
atoms. The largest simulations include an 6.44-
billion-atom silica system for MD and a
111,000-atom gallium arsenide system for QM.
Communication time in these calculations is
negligible compared with computation time.

Figure 6 also shows computation time for a
variable-charge MD algorithm.20,21 This semi-
empirical approach allows the study of certain
chemical reactions such as oxidation with much
less computational complexity than with the
DFT. This approach determines atomic charges
at every MD step to equalize electronegativities
of all the atoms. Considering the long compu-
tation time of the DFT algorithm compared
with MD in Figure 6, such computationally less
demanding semiempirical approaches to incor-
porating chemical reactions in multiscale simu-
lations continue to be important.

Immersive and interactive
visualization

The large-scale multiscale simulations we’ve
discussed will generate enormous quantities of
data. For example, a billion-atom MD simulation
produces 100 Gbytes of data per frame including
atomic species, positions, velocities, and stresses.
Interactive exploration of such large datasets is
important for identifying and tracking atomic
features that cause macroscopic phenomena. Im-
mersive and interactive virtual environments are
an ideal platform for such explorative visualiza-
tion. We are designing algorithms to visualize
large-scale atomistic simulations in 3D immer-
sive and interactive virtual environments. Our
approach employs adaptive and hierarchical data
structures for efficient visibility culling and 
levels-of-detail control for fast rendering.

To achieve interactive-walkthrough speed and
low access times in billion-atom systems, we em-
ploy an octree data structure and extract the re-
gions of interest at runtime, thereby minimizing
the size of the data sent to the rendering system
(see Figure 7).22 We obtain the octree data struc-
ture by recursively dividing the physical system
into smaller cells. We use standard visibility-
culling algorithms to extract only the atoms that

fit in the viewer’s field of view.
The rendering algorithm uses a configurable

multiresolution scheme to improve the walk-
through experience’s performance and visual ap-
peal. This scheme individually draws each
atomic entity at resolutions ranging from a point
to a sphere, using from eight to 1,000 polygons
for each entity. An OpenGL display list (a fast
and convenient way to organize a set of
OpenGL commands) for each type of atom is
generated at all possible resolutions, because it
is more efficient than individual function calls.
At runtime, a particular resolution is called for
each atom on the basis of the distance between
the viewer and object.

To accelerate the rendering and scene update,
we use textures. We employ

• billboarding for displaying the atoms and
• large texture maps to increase the depth.

Theoretically, these techniques will decrease the
number of polygons to be displayed. However,
accounting for the user perspective requires ad-
ditional calculations. This can involve situations
where slight changes in the user view make cer-
tain objects visible.

Figure 6. The computation time of MD and QM
algorithms on 1,024 IBM SP3 processors. The 
figure shows wall clock time as a function of the
number of atoms for three linear-scaling
schemes: classical MD of silica based on many-
body interatomic potentials (circles);
environment-dependant, variable-charge MD of
alumina (squares); and a self-consistent QM
scheme based on the DFT (triangles). Lines show
ideal linear-scaling behaviors.
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We have implemented this system in an Imm-
ersaDesk virtual environment (see Figure 8).
The ImmersaDesk consists of a pivotal screen,
an Electrohome Marquee stereoscopic projec-
tor, a head-tracking system, an eyewear kit, in-
frared emitters, a wand with a tracking sensor,
and a wand-tracking I/O subsystem. A pro-
grammable wand with three buttons and a joy-
stick allows interactions between the viewer and
simulated objects. The rendering system is an
SGI Onyx with two R10000 processors, 4
Gbytes of system RAM, and an InfinityReality2
graphics pipeline; it can render walkthroughs of
multimillion-atom systems. However, it cannot
handle multibillion-atom systems. For visualiza-
tion at such large scales, we are exploring paral-
lel processing on a cluster of PCs for data man-
agement and dedicating the SGI system to
rendering. A scheme that predicts the user’s next
movement and prefetches data from the cluster
would also be advantageous.

Modern MD simulations of materi-
als started in 1964 when Aneesur
Rahman simulated 864 argon
atoms on a CDC 3600 com-

puter.23 Assuming a simple exponential growth,
the number of atoms that classical MD simula-
tions can handle has doubled every 19 months
to reach 6.44 billion atoms. Similarly, the num-
ber of atoms in DF–MD simulations (started by
Roberto Car and Michelle Parrinello in 1985 for
eight silicon atoms) has doubled every 12
months to 111,000.

In the next 10 years, petaflop computers will
maintain the growth rates in these “MD Moore’s
laws,” and we will be able to perform 1012-atom
classical and 107-atom quantum MD simula-
tions. Multiresolution approaches, combined
with cache-conscious techniques, will be essen-
tial to achieve scalability on petaflop architec-
tures. Ingenious use of multiscale FE–MD–QM
simulations implemented with such scalable al-

Figure 7. An octree data structure for culling. Octree cells (bounded by white lines) dynamically approximate the current
visible region (the arrow represents the viewer’s position and viewing direction). Only the visible atoms are processed
for rendering.
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gorithms will play a significant role in nanoscale
materials research.

However, many problems remain. For exam-
ple, ill-conditioned minimization prohibits the
practical application of current linear-scaling
DFT algorithms.19 This is due to the localiza-
tion approximation that destroys the invariance
of the energy under unitary transformations of
the wave functions. Designing a scalable library
of well-conditioned, fast FE–MD–QM algo-
rithms that work for a wide range of applications
will be one of the most exciting challenges in
computational science and engineering in the
next 10 years.
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