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The Lieb formulation of density-functional theory is briefly reviewed and its straightforward
generalization to arbitrary electron-electron interaction strengths discussed, leading to the
introduction of density-fixed and potential-fixed adiabatic connections. An iterative scheme for the
calculation of the Lieb functionals under the appropriate constraints is outlined following the direct
optimization approach of Wu and Yang �J. Chem. Phys. 118, 2498 �2003��. First- and second-order
optimization schemes for the calculation of accurate adiabatic-connection integrands are
investigated and compared; the latter is preferred both in terms of computational efficiency and
accuracy. The scheme is applicable to systems of any number of electrons. However, to determine
the accuracy that may be achieved, the present work focuses on two-electron systems for which a
number of simplifications may be exploited. The procedure is applied to the helium isoelectronic
series and the H2 molecule. The resulting adiabatic-connection curves yield the full
configuration-interaction exchange-correlation energies extrapolated to the basis-set limit. The
relationship between the Kohn–Sham and natural orbitals as functions of the electron-electron
interaction strength is explored in detail for H2. The accuracy with which the exchange-correlation
contributions to the modified local potential can be determined is discussed. The new accurate
adiabatic-connection curves are then compared with some recently investigated approximate forms
calculated using accurate full configuration-interaction input data. This study demonstrates that the
adiabatic-connection integrand may be determined accurately and efficiently, providing important
insights into the link between the Kohn–Sham and traditional quantum-chemical treatments of the
exchange-correlation problem in electronic-structure theory. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3082285�

I. INTRODUCTION

In the past two decades, density-functional theory �DFT�
has become established as the most widely used method in
computational chemistry. The theory has been put on its most
rigorous grounds by Lieb1 using convex functional analysis
�see also Ref. 2�. In practice, the success of the theory is
reliant on the accurate representation of the unknown
exchange-correlation energy Exc. Several classes of approxi-
mations exist. Ordered in terms of increasing nonlocality
these are: the local density approximation �LDA�, the gener-
alized gradient approximations �GGAs�, meta-GGAs, �hy-
brid� functionals dependent on occupied orbitals, and finally
�hybrid� functionals dependent on all orbitals. The most
widely used functionals at present fall into the GGA and
occupied-orbital-dependent hybrid-functional categories. The
construction of the latter has been motivated by the study of
the adiabatic-connection formula for the exchange-
correlation energy,3–7 which arises from consideration of the
link between the Kohn–Sham noninteracting and physical
interacting systems as a function of the electronic interaction
strength.

A number of studies have examined the adiabatic con-
nection using approximate methods,8–16 and some high-
accuracy studies have been carried out for few-electron
atomic systems.17–21 The purpose of the present paper is to
describe the implementation of an iterative procedure for the
accurate calculation of the adiabatic connection via the opti-
mization of the Lieb convex conjugate functionals under ap-
propriate constraints. The methodology and implementation
are generally applicable, although the present study focuses
on two-electron systems �both atomic and molecular� to al-
low the use of highly accurate calculations for the �partially�
interacting systems and a detailed assessment of the accuracy
achieved.

In Sec. II, we briefly review the Lieb formulation of
DFT, introducing the key functionals to be optimized. The
generalization of these functionals to arbitrary interaction
strength is then examined and the theory of the adiabatic
connection is outlined. An alternative adiabatic connection
based on a fixed potential rather than a fixed density is also
introduced, arising naturally from the Lieb formulation. The
relationship of these connections to perturbation theory is
also discussed. In Sec. III, an iterative scheme for the calcu-
lation of the adiabatic connection in a finite basis set is given
as proposed in Ref. 22. In addition, we pay specific attentiona�Electronic mail: a.m.teale@kjemi.uio.no. FAX: �47 228 55441.
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to the implementation of a second-order optimization
scheme. In Sec. IV, we compare the first- and second-order
iterative optimization schemes and examine their conver-
gence with respect to choice of basis set. The application of
an extrapolation scheme for estimation of basis-set-limit
adiabatic-connection curves is also presented. In Sec. V, the
procedure is applied to the helium isoelectronic series and to
the H2 molecule, the relationship between the Kohn–Sham
and natural orbitals is explored in some detail, and the varia-
tion in the effective potential with interaction strength is ex-
amined. The accurate curves obtained are then compared
with those from some recently studied23,24 approximate
forms. Finally, some comparisons are drawn between the
density-fixed and potential-fixed adiabatic connections. Con-
cluding remarks and directions for future work are discussed
in Sec. VI.

II. THEORETICAL BACKGROUND

A. Lieb’s convex conjugate density functional

We now briefly review Lieb’s convex-conjugate density
functional introducing from the outset the coupling-strength
parameter �. Consider an N-electron system described by the
Hamiltonian �in atomic units�

Ĥ��v� = T̂ + �Ŵ + �
i

v�ri�

= −
1

2�
i

�i
2 + ��

i�j

1

rij
+ �

i
v�ri� , �1�

where v is the external potential and where the two-electron
interactions depend linearly on �. For a fully interacting sys-
tem, �=1; for a noninteracting system, �=0. We note that
parametrizations connecting the interacting and noninteract-
ing systems in a different manner are also possible. However,
we only consider here the linear parametrization given in Eq.
�1�.

The ground-state energy in the external potential v is
given by

E��v� = inf
�̂→N

Tr Ĥ��v��̂ , �2�

where the minimization is over all ensemble density matrices
�̂ containing N electrons. Since E��v� is continuous and con-
cave in v, it may be represented by a convex conjugate func-
tional F���� of the conjugate variable �, the electron density,
as first discussed by Lieb.1 The conjugate functionals E��v�
and F���� are mutual Legendre–Fenchel transforms

F���� = sup
v�X�

�E��v� −� ��r�v�r�dr� , �3�

E��v� = inf
��X

�F���� +� ��r�v�r�dr� . �4�

The domains X and X� are reflexive Banach spaces such that
	��r�v�r�dr is finite for all ��X and v�X�. As shown by
Lieb, the density functional in Eq. �3� may be expressed as a
density-matrix constrained-search functional

F���� = inf
�̂→�

Tr Ĥ��0��̂ , �5�

where the minimization is now over all density matrices �̂
that yield �.

The basic relation between the two conjugate functionals
of Eqs. �3� and �4� is Fenchel’s inequality, which in the case
of E��v� and F���� takes the form

E��v� � F���� +� ��r�v�r�dr �6�

and is valid for all pairs of densities ��X and potentials v
�X�. If a given potential v supports an N-electron ground
state, this inequality may be sharpened into an equality by
minimizing the right-hand side with respect to �, which is
equivalent to satisfying the stationary condition �for varia-
tions that do not change the particle number�

�F����
���r�

= − v�r� . �7�

Alternatively, for a given density � that is ensemble
v-representable, we may instead begin with Fenchel’s in-
equality �Eq. �6�� in the equivalent form

F���� � E��v� −� ��r�v�r�dr �8�

and arrive at an equality by maximizing the right-hand side
with respect to v, which �in the absence of degeneracies� is
equivalent to satisfying the stationary condition

�E��v�
�v�r�

= ��r� . �9�

Since E��v� and F���� are concave and convex functionals,
respectively, they have at most one stationary point, implying
that the conditions in Eqs. �7� and �9� uniquely determine the
solution if it exists. Note that at a stationary point, the func-
tional derivatives that appear in the left-hand sides of Eqs.
�7� and �9� are each other’s inverses, relating ground-state
potentials and densities. The two stationary conditions are
therefore equivalent and are sometimes known as the recip-
rocal relations.

B. The adiabatic connection

Let us now consider E��v� and F���� of Eqs. �2� and �5�
for a given external potential v and for a given electron den-
sity � �not necessarily a conjugate pair� and denote the mini-
mizing density matrices at a given interaction strength
0���1 by ��

v and ��
�, respectively,

E��v� = inf
�̂→N

Tr Ĥ��v��̂ = Tr Ĥ��v��̂�
v , �10�

F���� = inf
�̂→�

Tr Ĥ��0��̂ = Tr Ĥ��0��̂�
� . �11�

Whereas the minimizer �̂�
� always exists, for all � and all �,

this is not so for �̂�
v, which exists only for those potentials v

that can bind N electrons with interaction strength �. In the
following, however, we assume that the minimizer �̂�

v exists
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for all �. Moreover, we assume that �̂�
v and �̂�

� are both
differentiable with respect to � in the interval 0���1.

In the interacting case ��0, the minimizations of Eqs.
�10� and �11� are difficult many-body problems; in contrast,
the noninteracting case �=0 can be solved exactly by ex-
pressing �̂0

v and �̂0
� in terms of orbitals. Let us therefore con-

sider the relationships of E��v� and F���� to their noninter-
acting limits E0�v� and F0���,

E��v� = E0�v� + �
0

� dE��v�
d�

d� , �12�

F���� = F0��� + �
0

� dF����
d�

d� . �13�

Applying the Hellmann–Feynman theorem to Eqs. �10� and
�11�,

dE��v�
d�

= Tr Ŵ�̂�
v = W��v� , �14�

dF����
d�

= Tr Ŵ�̂�
� = W���� , �15�

and introducing explicit expressions for E0�v� and F0���, we
obtain

E��v� = Tr Ĥ0�v��̂0
v + �

0

�

W��v�d� , �16�

F���� = Tr Ĥ0�0��̂0
� + �

0

�

W����d� , �17�

which may also be expressed in the form

E��v� = Tr Ĥ��v��̂0
v + �

0

�

Wc,��v�d� ,

�18�
Wc,��v� = W��v� − W0�v� ,

F���� = Tr Ĥ��0��̂0
� + �

0

�

Wc,����d� ,

�19�
Wc,���� = W���� − W0��� .

In these expressions, the first terms are equal to the exact
energies of Eqs. �2� and �5� except that we have replaced the
interacting density matrices �̂�

� and �̂�
v by the corresponding

noninteracting matrices �̂0
� and �̂0

v, respectively. These terms
thus represent uncorrelated approximations to the true ener-
gies and may be explicitly computed from orbitals. The sec-
ond terms in Eqs. �18� and �19� are correlation corrections,
requiring a knowledge of �̂�

� and �̂�
v for ��0 for their evalu-

ation, as discussed below. For simplicity, we use the same
notation for the density- and potential-fixed functionals
W��v� and W����, respectively, distinguishing these by their
arguments v and �.

Whereas the energy expression in Eq. �18� is the starting
point for a potential-fixed adiabatic connection and for bare-

nucleus �BN� perturbation theory25 with zero-order term

Tr Ĥ��v��̂0
v, the expression in Eq. �19� is the basis for the

density-fixed adiabatic connection and for Görling–Levy
�GL� perturbation theory26,27 with zero-order term

Tr Ĥ��0��̂0
�. In the potential-fixed adiabatic connection, we

determine ���v� by minimizing the right-hand side of Fench-
el’s inequality �Eq. �6�� with respect to � for a fixed external
potential v and for 0���1; conversely, in the density-fixed
adiabatic connection, we determine v���� by maximizing
Fenchel’s inequality in the form of Eq. �8� with respect to v,
for a fixed physical density �, and for 0���1. Although
our focus in this paper is on the usual density-fixed adiabatic
connection and its relationship to the construction of Kohn–
Sham density functionals, the development of the adiabatic
connection in terms of Lieb’s theory, where E��v� and F����
appear as conjugate functionals in Eqs. �3� and �4�, leads
naturally to the consideration of the alternative adiabatic
connection based on a fixed potential v. We therefore also
give here some attention to this potential-fixed adiabatic con-
nection, comparing it with the density-fixed connection for
some selected systems.

1. Decomposition of the universal density functional
F�†�‡

The universal density functional F���� is decomposed in
the manner

F���� = Ts��� + �J��� + �Ex��� + Ec,���� , �20�

where the noninteracting kinetic-energy functional Ts���, the
Coulomb functional J���, the exchange functional Ex���, and
correlation functional Ec,���� are given by

Ts��� = Tr Ĥ0�0��̂0
� = Tr T̂�̂0

� = min
�̂→�

Tr T̂�̂ , �21�

J��� =� � ��r1���r2�r12
−1dr1dr2, �22�

Ex��� = W0��� − J��� , �23�

Ec,���� = �
0

�

Wc,����d� . �24�

Only the Coulomb term J��� depends on the density � in an
explicit manner; the remaining three terms depend on � im-
plicitly through their dependence on �̂�

�. Since the noninter-
acting kinetic-energy functional Ts��� and the exchange
functional Ex��� depend explicitly only on the noninteracting
density matrix �̂0

�, they are calculated exactly in terms of
orbitals in Kohn–Sham theory. The only term that depends
explicitly on �̂�

� for ��0 is the correlation functional, which
is also the only term that depends in a nontrivial manner on
�, noting that the Coulomb and exchange contributions to
F���� depend linearly on �. Indeed, it is the dependence of
Ec,���� on � that constitutes the main interest of this paper.

At this point it is interesting to compare and contrast the
Hartree–Fock and Kohn–Sham theories in the present con-
text. Both theories employ a single determinant and because
of this their kinetic and exchange energy functionals take the
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same form. In Hartree–Fock theory the single determinant is
used to approximate the physical wave function 	1, and the
correlation contribution of Eq. �24� is neglected. The orbitals
used in the calculation of the exchange and kinetic energies
are then those which arise from the variational optimization

of Tr Ĥ1�v��̂0
v. In contrast, Kohn–Sham theory uses the

single determinant to construct the physical density � and
includes the correlation contribution of Eq. �24�. The orbitals
used to construct the Kohn–Sham noninteracting wave
function 	0 arise from the minimization of EKS���
=	��r�vs�r�dr+F1���, where F1��� is defined as in Eq. �20�
and vs is the external potential entering the �=0 Hamil-
tonian.

From Eq. �19�, we see that Wc,���� provides the corre-
lation contribution to the two-electron interaction of the elec-
tronic system at interaction strength � and therefore vanishes
for the noninteracting system Wc,0���=0. The corresponding
representation of the exchange-correlation energy Exc,���� in-
volves

Wxc,���� = Ex��� + Wc,���� = W���� − J��� , �25�

which reduces to the exchange energy in the noninteracting
limit. The correlation correction to the kinetic energy is ob-
tained by subtracting the correlation contribution to the two-
electron energy from the total correlation energy

Tc,���� = Ec,���� − Wc,���� = �
0

�

�Wc,
��� − Wc,�����d


�26�

and is thus also easily extracted from W����.
In the case of degeneracy, the noninteracting density ma-

trix �̂0
v obtained as the minimizer of Tr Ĥ0�0��̂0

� �the nonin-
teracting kinetic energy� is not uniquely defined—that is,
there may exist several minimizing noninteracting density
matrices, all giving the same density and noninteracting ki-
netic energy �Eq. �21��. In such cases, the exchange and cor-
relation functionals of Eqs. �23� and �24� are separately not
uniquely defined, although the combined exchange-
correlation energy is in all cases well defined �since the ki-
netic and Coulomb energies are well defined�. Of course, the
separation between the exchange and correlation energies
may be made unique by minimizing, for example, the ex-
change energy of Eq. �23� with respect to all density matrices
that minimize the noninteracting kinetic energy in Eq. �21�.

2. Görling–Levy perturbation theory

We are here interested in the dependence of Ec,���� on �,
which may be expressed in a power series about �=0 as

Ec,���� = �
n=2

�

�nEGL
�n� ��� , �27�

which may or may not converge. The zero-order term van-
ishes by the definition of Eq. �24� and the first-order term by
the Hellmann–Feynman theorem applied to Eq. �19�. The
nonvanishing second- and higher-order terms are evaluated
from GL perturbation theory.26,27 From the expansion of

Ec,���� in Eq. �27�, we immediately obtain an expansion of
Wc,���� by differentiation with respect to �,

Wc,���� = �
n=1

�

�nWGL
�n� ��� = �

n=1

�

�n�n + 1�EGL
�n+1���� . �28�

In particular, the slope of Wc,���� at �=0 �which will be of
interest later� is given by WGL

�1� ���=2EGL
�2� ���, whose compu-

tation is discussed below.
In GL theory, we set up a Hamiltonian whose external

potential v� depends on � in such a way that the density
remains fixed,

Ĥ��v�� = �
n=0

�

�nĤGL
�n� . �29�

Let v1=vext be the external potential due to the nuclei. To
determine v� at ��1, we differentiate Eq. �20� with respect
to the density and obtain

�F����
���r�

=
�Ts���
���r�

+ �vJ�r� + �vx�r� + vc,��r� , �30�

where we have introduced the potentials

vJ�r� =
�J���
���r�

, vx�r� =
�Ex���
���r�

, vc,��r� =
�Ec,����

���r�
.

�31�

The stationary conditions

�F����
���r�

= − v��r� �� � 0� , �32�

�Ts���
���r�

= − vs�r� �� = 0� �33�

now yield the following relation between the effective poten-
tials of the interacting and noninteracting systems

v��r� = vs�r� − �vJ�r� − �vx�r� − vc,��r� , �34�

where we note that vs�r�=vext�r�+vJ�r�+vx�r�+vc�r� by set-
ting �=1. The asymptotic behavior of v� is dominated by the
Coulomb and exchange contributions so that

v���� = − Z/r − �1 − ���N − 1�/r �35�

for an atom of nuclear charge Z and N electrons.
Having determined v�, we may now set up the Hamil-

tonian operators to order n in GL theory

ĤGL
�0� = T̂ + �i

vs�ri� , �36�

ĤGL
�1� = Ŵ − �i

vJ�ri� − �i
vx�ri� , �37�

ĤGL
�n� = − �i

vc
�n��ri�, n � 2. �38�

The solution of the zero-order system yields the Kohn–Sham
eigenvalue problem

104111-4 Teale, Coriani, and Helgaker J. Chem. Phys. 130, 104111 �2009�

Downloaded 31 Mar 2009 to 193.157.195.90. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�T̂ + vs�r���p�r� = p�p�r� �39�

and is equivalent to the solution of Eq. �33�. The lowest-
order term in the GL expansion of the correlation energy is
given by

EGL
�2� ��� = − �

ai


�a
vx
i� − � j�aj
ji�
2

a − i

−
1

4 �
abij


�ij

ab�
2

a + b − i −  j
, �40�

where �pq 
rs�=		�p
��r1��q

��r2�r12
−1�r�r1��s�r2�dr1dr2,

�pq

rs�= �pq 
rs�− �pq 
sr�, and where the first term contains
the difference between the local and exact exchange expres-
sions.

3. Bare-nucleus perturbation theory

In the case of the potential-fixed adiabatic connection,
we likewise expand the energy in orders of �,

E��v� = �
n=0

�

�nEBN
�n� �v� , �41�

which by differentiation with respect to � simultaneously
gives an expansion of the adiabatic-connection integrand and
therefore

W��v� = �
n=2

�

�nWBN
�n� �v� = �

n=2

�

�n�n + 1�EBN
�n+1��v� . �42�

The Hamiltonian is separated into a zero-order BN contribu-
tion and a first-order electron-repulsion contribution25

Ĥ��v� = ĤBN
�0� + �ĤBN

�1� , �43�

ĤBN
�0� = T̂ + �i

vext�ri� , �44�

ĤBN
�1� = �i�j

rij
−1. �45�

The solution of the zero-order system is given by solving a
set of one-electron equations

�T̂ + vext�r���p�r� = p�p�r� , �46�

which unlike those in Eq. �39� are noniterative since vext

does not depend on the solution. The zeroth order problems
in the GL and BN perturbation theories thus differ only in
their choice of local potential. The first- and second-order
energies are then given by

EBN
�1� �v� =

1

2�
ij

�ij

ij� , �47�

EBN
�2� �v� = − �

ai


� j�aj

ij�
2

a − i
−

1

4 �
abij


�ij

ab�
2

a + b − i −  j
, �48�

where the second-order term differs from the corresponding
GL term in that the single-excitation contribution only in-
volves exact exchange and the summations are over BN
rather than Kohn–Sham orbitals. The BN perturbation theory

then plays the same role for the potential-fixed adiabatic con-
nection as GL theory plays for the density-fixed adiabatic
connection.

III. CALCULATION OF THE DENSITY-FIXED
ADIABATIC-CONNECTION INTEGRAND

We now turn our attention to the question of how to
compute Wc,���� of Eq. �19� for arbitrary � values. One
approach is to determine the minimizing density matrix �̂�

� of
the constrained-search functional in Eq. �5�. Alternatively, as
pointed out by Wu and Yang,22 we may determine �̂�

� by
determining the maximizing potential v� in the Legendre–
Fenchel transform in Eq. �3� and then extract the density
matrix from E��v��. To see the equivalence of the two
schemes, assume that � is ensemble v-representable and that
the search is over ground-state potentials. We may then write
the Lieb functional in the form

F���� = max
v

min
�
�Tr Ĥ��v��̂ −� ��r�v�r�dr�

= min
�
�Tr Ĥ��0��̂ −� ���r� − ���r��v��r�dr� ,

�49�

where v� is the maximizing potential and where �� is the
density associated with �̂. For this expression to be station-
ary with respect to variations in v around v�, we must have
��=�. Clearly, therefore, v plays the role of the Lagrange
multipliers in a constrained minimization over �̂, yielding the
constrained-search formula in Eq. �5�.

To utilize the Legendre–Fenchel transform of Eq. �3� in
practical calculations, we require a method to determine ac-
curately the ground-state energy E��v�� for a given � and for
a given modified external potential v�. Also required are the
physical density to be used as input and the density for a
specific value of � in some modified external potential. For
this purpose, we use the coupled-cluster singles-and-doubles
�CCSD� method, which for the two-electron systems dis-
cussed in the present paper is equivalent to the full
configuration-interaction �FCI� model. We begin by introduc-
ing the following expansion for the unknown effective po-
tential

v�,b�r� = vext�r� + �1 − ��vref�r� + �t
btgt�r� , �50�

where vext is the usual external potential due to the nuclei,
vref is a fixed reference potential, and the final term is a linear
combination of Gaussian functions whose coefficients bt are
to be determined. The role of the reference potential is pri-
marily to provide the correct asymptotic behavior of the
modifying potential, as shown in Eq. �35�, which would oth-
erwise be determined by the most diffuse function in the set
gt�r�. The universal Lieb functional may then be written as

F���� = max
b

F�,b��� , �51�
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F�,b��� = E��v�,b� −� ��r�v�,b�r�dr . �52�

The elements of the gradient G of F�,b��� with respect to
variations in the coefficients are then given by

Gt =
�F�,b���

�bt
=� ���,b�r� − ��r��gt�r�dr , �53�

where ��,b is the density corresponding to the energy
E��v�,b�.

It is possible to set up an iterative procedure based on
the quasi-Newton maximization of F�,b���. The calculations
use a modified version of the DALTON quantum chemistry
program28 and proceed as follows. First, we run a coupled-
cluster calculation for a relaxed �Lagrangian� density matrix
with the usual �=1 electronic Hamiltonian. This provides a
well-defined approximation to the physical interacting den-
sity � of Eq. �52� to be used in the evaluation of the first
derivative in Eq. �53�. Second, the coupled-cluster code has
been modified so that the two-electron integrals may be
scaled by � and the modifying potential contribution
�1−��vref�r�+�tbtgt�r� is added to the one-electron integrals,
allowing us to perform coupled-cluster calculations with

general Hamiltonians of the type Ĥ��v�,b� to generate
E��v�,b� in Eq. �52�. Initially, the coefficients bt are chosen to
be zero and the relaxed density matrix is calculated; from
this and the input density matrix, the derivative of Eq. �53� is
calculated. A Broyden–Fletcher–Goldfarb–Shanno �BFGS�
update of the Hessian H �taken initially as the identity ma-
trix� is then performed. At each iteration �n�, a new set of
coefficients for the next iteration �n+1� is determined from

bn+1 = bn − H−1G . �54�

The resulting modifying potential is then added to the one-
electron integrals and the procedure is iterated until conver-
gence. This approach assumes a quadratic model for the
maximization procedure, thus while −H−1G is guaranteed to
be an ascent direction �since H is negative definite�, the step
length must be adjusted in regions far from the global maxi-
mum in order to give an increase in the functional. To ac-
complish this, an approximate line-search algorithm is used,
in which the full Newton step is taken initially and, if the
functional F�,b��� does not increase, the step is reduced until
there is a satisfactory change.

While the BFGS update provides a practical way to per-
form the optimization procedure, the number of iterations
required to achieve reasonable convergence can often be
quite large. Since at each iteration we perform at least one
coupled-cluster calculation �more if backtracking is required
in the line search procedure�, it is of paramount importance
to attempt to reduce the number of iterations. The most ef-
fective way to do this is by providing a more accurate ap-
proximation to the Hessian by direct calculation rather than
using the iterative BFGS update.

The Hessian, which is the second derivative of F�,b���
with respect to the coefficients bt, can be written as22

Htu =� � gt�r��gu�r�
���r�
�v�r��

drdr�, �55�

where ���r� /�v�r�� is the time-independent linear response
of the many-electron density. This may be written in the
spectral representation as29–31,22

���r�
�v�r��

= �
m

�	0
�̂�r�
	m��	m
�̂�r��
	0�
E0 − Em

+ c . c. �56�

We introduce the density operator in second quantization

�̂�r� = �pq
�p

��r��q�r�Epq �57�

with Epq defined as

Epq = ap�
† aq� + ap�

† aq�, �58�

where ap�
† and aq� are the creation and annihilation operators

acting on spin orbitals with spatial parts p and q,
respectively32 �a similar definition applies for �̂�r���. Then
defining the one-electron operators

ĝt�r� = �pq
gt,pq�r�Epq �59�

whose matrix elements are

gt,pq�r� =� �p
��r��q�r�gt�r�dr , �60�

we obtain each element of the approximate Hessian as a
static linear response function with the perturbation operators
ĝt�r� and ĝu�r��,

Htu = �
m

�	0
ĝt�r�
	m��	m
ĝu�r��
	0�
E0 − Em

+ c . c. �61�

In practice, we have modified the CCSD linear response
code in DALTON

28 such that a static linear response function
is computed for each given pair t ,u� of operators in Eq. �59�
to obtain the Htu matrix element. Note that the CCSD linear
response function is unrelaxed—that is, orbital relaxation is
not taken into account.33 In this sense, the second derivative
above is generally an approximate Hessian, although it is
exact in the present two-electron study, where the CCSD
approach is equivalent to FCI theory. In the spirit of the
optimized-effective-potential �OEP� scheme of Ref. 34, we
use this Hessian directly in the quasi-Newton procedure.

At convergence, we calculate the expectation value

W����=Tr Ŵ�̂�
�. Subtraction of the Coulomb energy corre-

sponding to the relaxed density gives Wxc,����, while further
subtraction of Wxc,0��� �i.e., Ex���� gives the correlation con-
tribution Wc,����. The convergence properties of these pro-
cedures are considered in detail in Sec. IV A, where we also
consider how the choice of auxiliary basis gt, reference po-
tential vref, and regularization procedure in the second-order
scheme affect the results.

IV. THE CALCULATION OF ACCURATE ADIABATIC-
CONNECTION CURVES

In this section, we present the results for two-electron
systems using the scheme outlined in Sec III. By focusing on
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two-electron systems, we can accurately assess the quality of
the results obtained by comparison with FCI results in the
same basis set. We begin by considering calculations for the
helium atom in a series of basis sets.

A. Convergence and comparison of the iterative
procedures

As outlined in Sec. III, the iterative procedure may be
carried out using either a BFGS iterative approach requiring
only the evaluation of the derivative in Eq. �53� or by use of
an approximate Newton scheme, which in addition requires
the more involved calculation of the second derivative in Eq.
�55�. It is important to establish if the extra effort required in
the evaluation of the Hessian is worthwhile in terms of both
the time taken to run the calculations and the accuracy with
which the maximum of Eq. �51� can be obtained. Further-
more, it is useful to know how sensitive the calculation of
the adiabatic-connection integrand is to the choice of basis
sets. Since, in the present study, we only consider two-
electron systems, we will begin with the previously studied
helium atom.17–19

Extensive preliminary studies indicated the importance
of augmenting the basis set with diffuse functions to obtain
accurate FCI results and so Dunning’s aug-cc-pVXZ family
of basis sets35–37 was chosen. In Table I, we present the re-

sults for 2�X�6. The values of the maximized target func-
tional F�,b��� are presented and represent our best estimates
of the functional F���� in Eq. �3� for the ground-state physi-
cal density along the adiabatic connection. Also presented
are the results for the two-electron energy �W�����, the dif-
ference between the Coulomb energies of the target FCI den-
sity and the optimized density returned from the iterative
procedure ��J�, the computed value of the adiabatic-
connection exchange-correlation integral �	Wxc,����d��, the
minimum value of the gradient in Eq. �53� obtained ��G��,
and the number of iterations in which convergence is
achieved �Niter�. Three values of � are shown corresponding
to the Kohn–Sham system ��=0�, the partially interacting
system in the middle of the connection ��=1 /2�, and the
physical system ��=1�.

Our calculations were considered converged when either
the gradient fell below 10−6 a.u. or the change in F�,b���
between iterations was less than 10−8 a.u. In all cases, the
primary orbital basis set was also used as the auxiliary ex-
pansion set gt. We have confirmed that changing the auxil-
iary set gt to a very large uncontracted set of even-tempered
s-type functions containing exponents 2n with −4�n�15
changes the computed F�,b��� values by less than 10−4 a.u.
for the two largest orbital basis sets employed. The changes
for the smaller basis sets are larger at 5�10−4 and

TABLE I. Comparison of first- and second-order iterative procedures for the calculation of adiabatic-connection
curves. Basis set aug-cc-pVXZ. See text for details �atomic units�.

Method � X F�,b��� W���� �J�105 	Wxc,�d� �G��105 Niter

BFGS 0 2 2.8248 1.0157 5.6 �1.0157 1.58 13
3 2.8610 1.0230 �2.7 �1.0231 1.58 12
4 2.8646 1.0239 �0.5 �1.0239 3.55 22
5 2.8661 1.0243 0.6 �1.0243 1.10 10
6 2.8666 1.0245 16.6 �1.0244 4.47 4

1/2 2 3.3238 0.9811 6.0 �1.0503 1.10 12
3 3.3621 0.9824 �2.7 �1.0636 1.41 12
4 3.3657 0.9816 �1.1 �1.0662 3.42 22
5 3.3671 0.9814 �1.5 �1.0673 1.08 9
6 3.3677 0.9814 10.7 �1.0676 4.83 6

1 2 3.8065 0.9506 0.0 �1.0808 0.00 1
3 3.8445 0.9484 0.0 �1.0977 0.00 1
4 3.8475 0.9467 0.0 �1.1011 0.00 1
5 3.8488 0.9463 0.0 �1.1024 0.00 1
6 3.8493 0.9461 0.0 �1.1029 0.00 1

Newton 0 2 2.8248 1.0158 7.0 �1.0157 1.43 4
3 2.8610 1.0231 3.9 �1.0230 0.17 4
4 2.8646 1.0239 0.2 �1.0239 0.04 4
5 2.8661 1.0243 �0.2 �1.0243 0.04 3
6 2.8666 1.0245 �0.2 �1.0245 0.08 2

1/2 2 3.3238 0.9811 5.1 �1.0503 0.11 4
3 3.3621 0.9825 2.9 �1.0636 0.13 4
4 3.3657 0.9816 0.2 �1.0662 0.03 3
5 3.3671 0.9814 �0.2 �1.0673 0.03 3
6 3.3677 0.9813 0.0 �1.0676 0.05 3

1 2 3.8065 0.9506 0.0 �1.0808 0.00 1
3 3.8445 0.9484 0.0 �1.0977 0.00 1
4 3.8475 0.9467 0.0 �1.1011 0.00 1
5 3.8488 0.9463 0.0 �1.1024 0.00 1
6 3.8493 0.9461 0.0 �1.1029 0.00 1
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2�10−4 a.u. for the X=2 and X=3 basis sets, respectively.
In the present work, we have used a Fermi–Amaldi reference
potential38 in the expansion of Eq. �50�. However, we have
confirmed that the use of a scaled version of this potential, as
proposed in Ref. 39, or the potential proposed in Ref. 40,
changes the calculated F�,b��� values also by less than
10−4 a.u. In the second-order optimization scheme we em-
ploy a truncated singular-value decomposition �TSVD� to
regularize the Hessian of Eq. �55� with a cutoff of 10−6 on
the singular values. Again lower values change F�,b��� by
less than the accuracy quoted in Table I.

Comparing the two minimization schemes, it is clear that
the BFGS approach did not reach the required gradient tol-
erance, instead converging on the energy criterion. The num-
ber of iterations required to achieve this is variable, but typi-
cally between 10 and 20 iterations for the systems here. We
have confirmed that for larger systems, this number increases
rapidly. Indeed, it is possible to invoke much more stringent
convergence criteria on the calculations here—for example,
by removing the energy criterion. While this allows one to
achieve very low values of the gradient, the number of itera-
tions required becomes excessive, often on the order of 200
even for these simple systems. Given that at each iteration,
we must perform a FCI calculation and determine a relaxed
density, this can make the first-order scheme impractical.

This behavior led us to consider the implementation of
the Hessian discussed in Sec. III. As in the OEP scheme of
Ref. 34, the use of a directly computed Hessian significantly
reduced the number of iterations, typically by a factor of 3.
As was observed for the BFGS case, the gradient criterion
was only achieved for aug-cc-pVQZ and larger basis sets.
Notably, the values of F�,b���, W����, and 	Wxc,����d� are
relatively insensitive to the choice of minimization scheme.
As an alternative check, we present the difference between
the Coulomb energies of the FCI density and that returned by
the iterative procedure. These values give an indication of
the degree of success with which the density is held fixed
along the connection. It is noteworthy that the second-order
scheme achieved substantially higher accuracy for the larger

basis sets since the first-order scheme converged slowly to-
ward the input density with very small changes in F�,b��� at
each iteration.

B. Accuracy of coupling-strength integration

In Table II, we present the Hartree–Fock and FCI total
energies. The components of the FCI energy are presented
along with the components of the Kohn–Sham energy calcu-
lated from the same density. The exchange-correlation en-
ergy is obtained in two ways: first, by subtraction of the other
Kohn–Sham energy components from the FCI energy to
yield an exact value; second, by integration of the Wxc,����
curves of Eq. �25� plotted in Fig. 1 as a test of the accuracy
of the iterative procedure.

One advantage of studying two-electron systems is that
we are able to calculate accurately many Kohn–Sham energy
components as simple density functionals directly from the
FCI electronic density. Specifically, we take advantage of the
following simplifications: the noninteracting kinetic energy
Ts��� is for a two-electron system equal to the von
Weizsäcker energy Tw���= 1

2	
��1/2�r�
2dr, whereas the ex-
change energy is related to the Coulomb energy as Ex���=
− 1

2J���. These energy components are easily extracted from
the FCI calculations at the physical coupling strength. The
FCI exchange-correlation energy may then be obtained from
the FCI energy directly via

Exc
FCI = EFCI − Ts��� − J��� − Ene��� − Enn, �62�

the latter term being zero for atoms.
If our iterative procedure has been sufficiently accurate

in computing the maximum of the functional in Eq. �52�,
then integration of the curves in Fig. 1 should yield this
value. The integration of the curves was carried out using the
MATHEMATICA program.41 A number of interpolation and in-
tegration schemes were investigated and the results were
found to be insensitive to this choice owing to the rather
dense spread of points calculated. Integration of the curves

TABLE II. Components of the FCI and Kohn–Sham energies for the helium atom calculated in the aug-cc-pVXZ basis sets with and without extrapolation
�atomic units�.

−EHF
a −EFCI

b TFCI
c Ts

d Tc
e −Ene

f Jg −Ex
h −Exc

FCIi −	Wxc,�d�

DZ 2.8557 2.8896 2.8559 2.8248 0.0311 6.6961 2.0314 1.0157 1.0497 1.0496
TZ 2.8612 2.9006 2.8961 2.8610 0.0351 6.7451 2.0461 1.0230 1.0625 1.0625
QZ 2.8615 2.9025 2.9008 2.8646 0.0361 6.7500 2.0478 1.0239 1.0650 1.0650
5Z 2.8616 2.9032 2.9025 2.8661 0.0365 6.7520 2.0487 1.0243 1.0660 1.0660
6Z 2.8617 2.9035 2.9032 2.8666 0.0365 6.7527 2.0489 1.0245 1.0663 1.0663
�56�j 2.8617 2.9038 2.9041 2.8674 0.0367 6.7537 2.0493 1.0246 1.0668 1.0668

aCalculated from the Hartree–Fock wave function.
bCalculated from the FCI wave function.
cCalculated as FCI expectation value of the kinetic-energy operator.
dCalculated as Tw��FCI�.
eCalculated as TFCI−Ts.
fCalculated as 	�FCI�r�v�r�dr.
gCalculated as J��FCI�.
hCalculated as − 1

2J��FCI�.
iCalculated as EFCI−Ts−J−Ene−Enn
jAll energies except EHF have been obtained with a two-point aug-cc-pV�56�Z extrapolation.
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for all basis sets shows excellent agreement of better than
10−4 a.u. with the accurate Exc

FCI values calculated using
Eq. �62�. The results are presented in Table II.

C. Basis-set convergence of the adiabatic-connection
curves

In the FCI calculations, the accuracy obtained depends
critically on the quality of the one-electron basis sets in
which the wave function is expanded. Moreover, since the
basis-set convergence is slow, high accuracy requires the use
of large basis sets, combined with extrapolations to the basis-
set limit. Here we consider application of the extrapolation
scheme presented in Ref. 42 to Wxc,���� and the energy com-
ponents presented in Table II. Specifically, we apply the ex-
trapolation

EXY =
X3EX − Y3EY

X3 − Y3 , �63�

where X and Y are the cardinal numbers of the two largest
basis sets with energies EX and EY, respectively. In Table II,
the application of this formula to the FCI expectation values
EFCI and TFCI is standard and its efficacy well documented.
Its application to Ts���, Ene���, J���, and Ex���=− 1

2J��� is
less standard since these terms depend explicitly on the elec-
tron density. However, noting that the electron density rep-
resents a FCI expectation value of the density operator, it
follows that its convergence at each point in space follows
the usual X−3 expression; it is therefore reasonable to expect
that all density functionals should depend in the same man-
ner on the basis set used for the FCI evaluation of the energy.
Consequently, we have applied the usual two-point basis-set
extrapolation formula in Eq. �63� to these terms. The only
term in Table II that does not follow this convergence is the
Hartree–Fock energy EHF that converges exponentially; the
basis-set limit result of EHF given in the table is based on the
assumption of exponential convergence, which incidentally

gives here the same result as the �unjustified� application of
Eq. �63�.

While Tables I and II give an indication of the accuracy
achieved numerically, it is interesting to examine visually the
behavior of the adiabatic-connection integrand for various
values of � and choices of basis set. Plots of Wxc,���� along
the connection are presented in Fig. 1. The calculations were
carried out on a dense grid of points between �=0 and �
=1. From Fig. 1, it is clear that the aug-cc-pVDZ basis set is
inadequate for the accurate computation of the adiabatic-
connection curve. From Eq. �25�, we see that Wxc,0���
=Ex��� for the noninteracting system. At all � values the
basis-set convergence is slow. This reflects the slow FCI
basis-set convergence of the input physical density matrix. In
principle, it would have been possible to use also a different
choice of basis set in the calculation of E��v� and the calcu-
lation of the input physical density � of Eq. �52�. However,
in the present work we choose the same basis set for the
input physical density, the potential expansion, and the cal-
culation of E��v�.

V. APPLICATION TO THE He ISOELECTRONIC
SERIES AND TO H2

In this section, the iterative procedure is applied to the
helium isoelectronic series and the H2 molecule. The rela-
tionship between the Kohn–Sham and natural orbitals is ex-
plored and the exchange-correlation contributions to the ex-
ternal potential are investigated.

A. The helium isoelectronic series: H− to Ne8+

The helium isoelectronic series has been extensively
studied and poses a significant challenge for approximate
exchange-correlation functionals, particularly as Z
increases.17,18,43–47 To be consistent across the series, the un-
contracted aug-cc-pCVXZ basis sets35–37,48 are employed,

FIG. 1. �Color online� FCI adiabatic-connection curves Wxc,���� of helium in aug-cc-pVXZ basis sets with 2�X�6. The curves become more negative as
X increases.
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noting that uncontraction is essential to describe accurately
the compact densities as Z increases. Basis-set extrapolated
Wc,���� curves are presented in Fig. 2 �For easier compari-
son of curves with different Z, we consider here Wc,����
which does not contain the exchange contribution present in
Wxc,���� plotted in Fig. 1�. The energy components including
exchange-correlation energies obtained by integration of the
curves are presented in Table III.

The extrapolated curves presented in Fig. 2 are visually
indistinguishable from the best approximate curves presented
in our recent work on the adiabatic connection.24 Notably the
H− ion stands out as having far greater curvature than the
other members of the series. To understand this behavior, let
��r� be the density of H−. To a reasonably good approxima-
tion, the density of the isoelectronic series is then given by
�Z�r��Z3��Zr�, which is equivalent to a scaling of the den-
sity of H−. From the general scaling relationship Ec,����
=�2Ec��1/��,49 it then follows that Ec��Z��Z2Ec,1/Z���. For
larger and larger Z, therefore, the adiabatic connection effec-
tively explores a smaller and smaller � interval of some ap-
proximately universal adiabatic-connection curve valid for
all Z. Consequently, these curves become more linear with
increasing charge as the system approaches the high-density
limit where the electron-electron interaction is a weak
perturbation.8,15,26,27,47,50–52 The trend toward this linearity
and the rate at which it occurs are clear in Fig. 2.

In Table III, we present the numerical values of each
component and our extrapolated estimates of the basis-set
limit. The first two columns show the Hartree–Fock and FCI
energies. The rapid convergence of the former and the slower
convergence of the latter are clearly evident. The extrapo-
lated energies all agree to better than 5�10−4 a.u. with the
accurate values in Ref. 44. The next three columns display
the components of the FCI energy EFCI=TFCI���+W1���
+Ene���; the slow basis-set convergence is again clear for the
kinetic term TFCI���, the electron-nuclear term Ene, and two-

electron term W1���. The next three columns give Kohn–
Sham energy components: the noninteracting kinetic-energy
contribution Ts���, the Coulomb energy J���, and the ex-
change energy Ex���, all calculated as described in Sec.
IV B. Basis-set extrapolation has been applied in the same
manner as discussed previously in Table II. The accurate
exchange-correlation energies are presented in the penulti-
mate column. The integration of the basis-set extrapolated
curves compared with the similarly extrapolated Exc

FCI��� val-
ues leads to errors on the same order as those observed for
the total energies. All values agree to better than 5
�10−4 a.u. except for Li+ and Be2+. The larger errors for
these two species result from the fact that the largest basis
sets available were for cardinal numbers 3 and 4, and so only
less accurate extrapolations could be performed. We stress,
however, that the iterative procedure provides adiabatic-
connection curves that reproduce the FCI energy to better
than 10−4 a.u. in all basis sets. We can now be confident that
our calculated curves represent accurate approximations to
the true adiabatic-connection curves and that the extrapolated
curves are reasonable estimates of the basis-set limit curves
�to an error less than 10−3 a.u.�. Moreover, the curves repro-
duce the rapid progression toward the linearity expected as
we approach the high-density regime.

B. The H2 molecule

The H2 molecule is a prototypical system which can be
considered as representative for the dissociation of electron-
pair bonds in general. However, the accurate calculation of
the H2 dissociation curve is a substantial challenge within
DFT. The dilemma for Kohn–Sham calculations is whether
or not to employ a spin-restricted formalism. For the true
interacting system, the ground-state wave function 	1 is al-
ways a singlet.53 In Kohn–Sham calculations, we may
choose whether to enforce spin symmetry by working in a

FIG. 2. �Color online� Basis-set limit adiabatic-connection curves of Wc,���� for the helium isoelectronic series. The curves may be distinguished by noting
that Wc,1��� becomes more negative with increasing nuclear charge 1�Z�10.
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restricted formalism. In the restricted case, we determine a
self-consistent solution for which ���r�=���r�=��r� /2. This
is consistent with the physical picture for a singlet wave
function. However, the requirement of spin symmetry leads
to an unsatisfactory dissociation curve. In Fig. 3, we present
the FCI, Hartree–Fock, and Becke–3–Lee–Yang–Parr
�B3LYP� potential-energy curves calculated using a re-
stricted formalism. At equilibrium and short internuclear
separations R, the B3LYP potential is an improvement over

the Hartree–Fock potential and agrees well with the FCI po-
tential. However, as R increases, the accuracy rapidly dete-
riorates, resulting in a poor molecular dissociation energy.
For the restricted Hartree–Fock �RHF� wave function, this
may be understood in terms of unphysical ionic contributions
�H+. . .H−� that are not present in the Heitler–London wave
function.

The alternative is to relax the spin-symmetry constraint
in Kohn–Sham calculations by utilizing an unrestricted for-

TABLE III. FCI and Kohn–Sham energy components for the helium isoelectronic series in the uncontracted aug-cc-pCVXZ basis sets with and without
extrapolation �atomic units�; for explanations of terms, see Table II.

Basis −EHF −EFCI TFCI��� −Ene��� W1��� Ts��� J��� −Ex��� −Exc
FCI��� −	Wxc,����d�

H− DZ 0.4872 0.5245 0.5300 1.3774 0.3229 0.5020 0.7794 0.3897 0.4285 0.4285
TZ 0.4877 0.5266 0.5301 1.3751 0.3184 0.5020 0.7740 0.3870 0.4276 0.4276
QZ 0.4878 0.5271 0.5300 1.3744 0.3173 0.5020 0.7726 0.3863 0.4273 0.4273
5Z 0.4879 0.5274 0.5293 1.3720 0.3153 0.5013 0.7692 0.3846 0.4260 0.4260

�Q5� 0.4880 0.5277 0.5286 1.3695 0.3132 0.5007 0.7657 0.3828 0.4246 0.4241
He DZ 2.8557 2.8910 2.8666 6.7076 0.9499 2.8343 2.0354 1.0177 1.0531 1.0531

TZ 2.8612 2.9011 2.8967 6.7455 0.9477 2.8611 2.0464 1.0232 1.0632 1.0632
QZ 2.8615 2.9027 2.9012 6.7505 0.9466 2.8650 2.0482 1.0241 1.0653 1.0653
5Z 2.8616 2.9032 2.9027 6.7521 0.9462 2.8662 2.0487 1.0244 1.0660 1.0660

�Q5� 2.8617 2.9038 2.9042 6.7538 0.9459 2.8675 2.0493 1.0246 1.0668 1.0670
Li+ DZ 7.2361 7.2723 7.2609 16.1121 1.5788 7.2267 3.2986 1.6493 1.6855 1.6855

TZ 7.2364 7.2774 7.2751 16.1240 1.5715 7.2369 3.3014 1.6507 1.6917 1.6917
QZ 7.2364 7.2787 7.2775 16.1257 1.5695 7.2384 3.3018 1.6509 1.6932 1.6932

�TQ� 7.2364 7.2796 7.2793 16.1269 1.5680 7.2395 3.3020 1.6510 1.6943 1.6952
Be2+ DZ 13.6108 13.6474 13.6370 29.4882 2.2038 13.6019 4.5510 2.2755 2.3121 2.3121

TZ 13.6112 13.6527 13.6506 29.4987 2.1953 13.6111 4.5528 2.2764 2.3180 2.3180
QZ 13.6113 13.6543 13.6537 29.5009 2.1929 13.6131 4.5530 2.2765 2.3195 2.3195

�TQ� 13.6113 13.6554 13.6560 29.5025 2.1912 13.6146 4.5532 2.2766 2.3207 2.3217
B3+ DZ 21.9855 22.0222 22.0112 46.8622 2.8287 21.9756 5.8021 2.9010 2.9378 2.9378

TZ 21.9857 22.0275 22.0239 46.8711 2.8197 21.9838 5.8033 2.9017 2.9435 2.9435
QZ 21.9862 22.0296 22.0283 46.8748 2.8170 21.9868 5.8036 2.9018 2.9452 2.9452
5Z 21.9862 22.0303 22.0298 46.8760 2.8158 21.9879 5.8038 2.9019 2.9459 2.9460

�Q5� 21.9863 22.0311 22.0315 46.8772 2.8146 21.9889 5.8039 2.9020 2.9467 2.9470
C4+ DZ 32.3602 32.3971 32.3854 68.2360 3.4535 32.3495 7.0527 3.5264 3.5633 3.5633

TZ 32.3604 32.4022 32.3969 68.2436 3.4445 32.3564 7.0536 3.5268 3.5686 3.5687
QZ 32.3611 32.4047 32.4030 68.2491 3.4414 32.3610 7.0540 3.5270 3.5706 3.5706
5Z 32.3612 32.4055 32.4048 68.2505 3.4402 32.3623 7.0541 3.5271 3.5714 3.5714

�Q5� 32.3613 32.4063 32.4068 68.2520 3.4389 32.3636 7.0543 3.5271 3.5722 3.5725
N5+ DZ 44.7348 44.7717 44.7591 93.6092 4.0784 44.7229 8.3031 4.1516 4.1886 4.1886

TZ 44.7351 44.7765 44.7694 93.6161 4.0702 44.7291 8.3037 4.1519 4.1933 4.1933
QZ 44.7360 44.7798 44.7776 93.6234 4.0660 44.7353 8.3042 4.1521 4.1959 4.1959
5Z 44.7361 44.7806 44.7799 93.6252 4.0647 44.7369 8.3044 4.1522 4.1967 4.1967

�Q5� 44.7362 44.7815 44.7822 93.6270 4.0633 44.7385 8.3046 4.1523 4.1976 4.1979
O6+ DZ 59.1093 59.1463 59.1319 122.9816 4.7034 59.0957 9.5534 4.7767 4.8137 4.8137

TZ 59.1098 59.1509 59.1432 122.9898 4.6956 59.1030 9.5540 4.7770 4.8181 4.8182
QZ 59.1110 59.1547 59.1520 122.9976 4.6910 59.1095 9.5544 4.7772 4.8209 4.8209
5Z 59.1111 59.1557 59.1548 122.9999 4.6894 59.1115 9.5546 4.7773 4.8219 4.8219

�Q5� 59.1112 59.1568 59.1578 123.0023 4.6877 59.1136 9.5548 4.7774 4.8230 4.8233
F7+ DZ 75.4838 75.5207 75.5046 156.3538 5.3285 75.4683 10.8035 5.4018 5.4387 5.4387

TZ 75.4844 75.5255 75.5172 156.3634 5.3208 75.4769 10.8042 5.4021 5.4432 5.4432
QZ 75.4859 75.5296 75.5266 156.3722 5.3160 75.4840 10.8046 5.4023 5.4460 5.4460
5Z 75.4861 75.5308 75.5297 156.3746 5.3141 75.4862 10.8047 5.4024 5.4471 5.4471

�Q5� 75.4863 75.5321 75.5330 156.3772 5.3121 75.4884 10.8049 5.4025 5.4483 5.4486
Ne8+ DZ 93.8582 93.8951 93.8769 193.7255 5.9535 93.8405 12.0537 6.0268 6.0638 6.0638

TZ 93.8590 93.9001 93.8912 193.7370 5.9458 93.8509 12.0543 6.0272 6.0683 6.0683
QZ 93.8608 93.9046 93.9015 193.7469 5.9408 93.8587 12.0547 6.0274 6.0711 6.0711
5Z 93.8611 93.9058 93.9046 193.7494 5.9390 93.8609 12.0549 6.0274 6.0722 6.0722

�Q5� 93.8613 93.9071 93.9079 193.7520 5.9370 93.8633 12.0550 6.0275 6.0733 6.0737
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malism �not presented�. In this case, as R increases, the
potential-energy curves can be in excellent agreement with
the FCI results. However, this success comes at a price. In
unrestricted Hartree–Fock �UHF� theory, the wave function
agrees with the RHF one at short and equilibrium bond
lengths; as R increases, they begin to differ and the previ-
ously mentioned ionic contributions raise the RHF energy.
Meanwhile, the UHF energy begins to become accurate com-
pared with the FCI values. However, the wave function be-
comes spin contaminated—that is, it is no longer a pure sin-
glet state. In unrestricted Kohn–Sham calculations, the focus
is on the density and spin densities. Here the problem mani-
fests itself as a localization of �� on one hydrogen atom and
�� on the other �the same is observed for the UHF densities�.
Whereas the total energy is reasonable, the spin densities are
inconsistent with a singlet ground state �although the total
density may be remarkably accurate, a fact exploited in
Ref. 10�.

In fact, as R→�, we should obtain two spin-unpolarized
hydrogen atoms, the energy of which is degenerate with two
infinitely separated spin-polarized hydrogen atoms. While
some recent progress has been made in developing
exchange-correlation functionals to address this long stand-
ing problem,54–56 significant challenges remain. One route to
further understanding the role of DFT exchange and correla-
tion in the H2 molecule is through investigation of the adia-
batic connection, linking the singlet spin-unpolarized exact
ground state system to the noninteracting Kohn–Sham single
determinant. Following recent work in this direction,10,23,24

we now apply the iterative procedure of Sec. III to the cal-
culation of accurate adiabatic-connection curves at R
=0.7,1.4,3.0,5.0,7.0 and 10.0 bohr. Again, basis-set ex-
trapolation is applied and the resulting Wc,���� curves are
presented in Fig. 4. The components of the FCI and Kohn–
Sham energies are presented in Table IV. For these singlet
ground-state H2 calculations, the standard aug-cc-pVXZ ba-
sis sets of Dunning and co-workers35–37 were employed. A

restricted formalism was used throughout. The extrapolated
FCI energies in Table IV may be compared with the accurate
values in Refs. 57 and 58 and agree to better than 2.5
�10−4 a.u. �although the values in the present work are con-
sistently lower�.

We now make some comments on the shapes of the ex-
trapolated Wc,���� curves in Fig. 4. Consistent with the he-
lium curves presented in the Sec. IV C, the curvature for the
R=0.7 bohr plot is subtle. Only a slight increase is observed
in moving to the near equilibrium geometry of R=1.4 bohr.
For the remaining curves as R increases, the curvature in-
creases quite rapidly. In fact, as R→�, the curve would be-
come a horizontal line at the exchange energy of an isolated
hydrogen atom. The integrals of the curves presented are the
Kohn–Sham correlation energies at each geometry. The
exchange-correlation energy of the H2 molecule at dissocia-
tion is thus twice the exchange energy of an isolated hydro-
gen atom and exactly cancels the Coulomb-energy contribu-
tion as required. This happens since the H2 molecule
dissociates into one-electron fragments for which there is no
correlation energy and the kinetic-correlation energy contri-
bution Tc is zero. In this respect, the H2 molecule is a special
case since for typical molecules the dissociated fragments
will contain correlation in either one or both parts, and there-
fore Tc will not be zero. Qualitatively, the shape of the curves
is consistent with those resulting from the most accurate ap-
proximate Wxc,���� forms presented in our previous
works.23,24 Explicit comparisons with these forms are pre-
sented in Sec. V E.

In terms of basis-set convergence of the Wxc,���� curves,
the behavior at R=0.7 and 1.4 bohr is similar to that ob-
served for helium in Sec. IV C. However, as the bond is
stretched, the dynamic correlation becomes negligible and
only static correlation remains. Interestingly then, on the
scale of Fig. 4, the curves for the three largest basis sets at
3.0, 5.0, 7.0, and 10.0 bohr are essentially indistinguishable

FIG. 3. �Color online� Potential-energy curves for the dissociation of H2. The curves presented are extrapolated from aug-cc-pVQZ and aug-cc-pV5Z results.
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from the extrapolated curves. This may be expected as the
slow basis-set convergence of correlated calculations is asso-
ciated with the description of the electron-electron cusp.

C. The relationship between Kohn–Sham and natural
orbitals

One may be interested in the relationship between the
Kohn–Sham orbitals and the natural orbitals of the FCI den-
sity for a given coupling strength. Figure 5 presents the
natural-orbital occupations for the 1�g and 1�u orbitals along
the adiabatic connection for the six geometries of H2 consid-
ered with the largest basis set employed. These natural orbit-
als are the dominant ones in H2 and are responsible for the
left-right correlation, which is of interest to us here; the
higher occupation numbers refine the picture but are of less
importance and are therefore omitted. The change in the den-
sity matrix along the adiabatic connection reflects the change
in the nature of the wave function and the increasing nonlo-
cality of the potential contribution in the Hamiltonian of Eq.
�1�. The extension of the Hohenberg–Kohn theorem to non-
local potentials was given by Gilbert59 and the electronic
energy as a functional of the reduced one-electron density
matrix was discussed in Ref. 60.

The resemblance of these curves to those of the adiabatic
connection is striking. At short and equilibrium geometries,
the natural occupation numbers deviate little from the values
of two and zero as the coupling strength is increased, indi-
cating the absence of static correlation at these distances.
However, as the bond is stretched, the occupation numbers at
full coupling strength fall below two and rise above zero
considerably; by R=10.0 bohr, they are approaching one in
each orbital, consistent with the fact that at dissociation we
must have two degenerate hydrogen atoms each with a one
electron density, the square root of which will be the singly
occupied orbital. This behavior is well known. The new in-
formation in Fig. 5 is the rate at which the occupation num-

bers deviate from the Kohn–Sham values toward those of the
FCI calculation as the electron-electron interaction is
switched on. Not only does the deviation from the Kohn–
Sham occupation increase as the bond is stretched and static
correlation dominates, so too does the rate at which the final
values are approached.

It is instructive to consider the effect of employing a
finite basis set. In the iterative procedure of Sec. III, we
minimize the norm of the derivative in Eq. �53�. In a com-
plete basis set, minimization of this expression would ensure
that ��,b�r�−��r�=0, where the densities in each case are the
diagonal element of the one-electron density matrix from the
iterative procedure with a given coupling strength and that at
the physical value. In a finite basis set, however, we may
rewrite Eq. �53� as

Gt =� �D��
�,b − D������r����r�gt�r�dr , �64�

where D��
�,b is the density matrix at some iteration of the

procedure, D�� is the input physical density matrix, �� and
�� are the atomic basis functions, and gt are the auxiliary
potential-expansion functions.

Let us now consider the �=0 case in a finite basis. When
no electron-electron interactions are present, the Hamiltonian
in Eq. �1� becomes the Kohn–Sham Hamiltonian. The effec-
tive potential is purely local and the density matrix D��

�,b will
be that of a Kohn–Sham calculation yielding the physical
density. The occupation numbers will be two and zero for
occupied and unoccupied orbitals, respectively. The FCI den-
sity matrix, on the other hand, has nonintegral occupation
numbers as discussed above. As shown by Harriman,61,62 the
density uniquely determines the density matrix provided the

FIG. 4. �Color online� Adiabatic-connection curves for the H2 molecule at a range of internuclear separations. R=0.7, 1.4, 3.0, 5.0, 7.0, and 10.0 bohr from
top to bottom.
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products of the orbital basis functions constitute a linearly
independent set. In such a basis, the FCI density can never be
reproduced by a single determinant. In order to reproduce the
FCI density the product basis ���� must be linearly depen-
dent, as is the case for a complete one-electron basis set. In
practice, for finite basis sets, this is not achieved, although
the product linear dependence will occur more rapidly than
the linear dependence of the individual functions. This can
have some consequences for practical calculations.

First, as observed in Table I for the helium atom with the
aug-cc-pVDZ basis set, the gradient tolerance requested may
not be achievable when the basis set is small; consequently,
we expect the accuracy with which the maximum is obtained
to increase with basis-set size. Second, since we introduce
the electron-electron interaction as we move along the adia-
batic connection, we may expect that obtaining the maxi-
mum should become easier with increasing �. Again this
effect is visible in Table I for double- and triple-zeta basis

sets, where although the gradient convergence criterion is not
quite obtained, the final gradient is lower with increasing �

and is of course trivially obtained when �=1. Our observa-
tions suggest that a gradient tolerance of 10−6 a.u. requires
basis sets of cardinal number four or larger, even for these
relatively simple two-electron systems.

The iterative procedure in Sec. III provides a method for
the determination of the modified external potential v� that in
combination with the scaled electron-electron interaction op-

erator �Ŵ yields the physical density �. The way in which
the corresponding density matrices evolve from the Kohn–
Sham to the FCI ones is then clearly illustrated in Fig. 5,
since the natural-orbital occupation numbers are the eigen-
values of the density matrices obtained at each coupling
strength. The maximization of the generalized Lieb func-
tional of Eq. �3� in a finite basis via the procedure in Sec. III
provides the link between the noninteracting and physical
systems through a series of partially interacting systems.
While the maximum may only be precisely obtained in a

TABLE IV. FCI and Kohn–Sham energy components for the H2 molecule at a range of internuclear separations in the aug-cc-pVXZ basis sets. All quantities
are in atomic units.

Basis −EHF −EFCI T��� Ene��� W1��� Ts��� J��� −Ex��� −Exc
FCI��� −	Wxc,����d�

R=0.7
DZ 0.8514 0.8806 1.5824 4.6415 0.7499 1.5567 1.6099 0.8049 0.8343 0.8342
TZ 0.8793 0.9165 1.7446 4.8456 0.7559 1.7123 1.6508 0.8254 0.8626 0.8626
QZ 0.8821 0.9208 1.7646 4.8690 0.7550 1.7315 1.6535 0.8267 0.8654 0.8654
5Z 0.8825 0.9216 1.7675 4.8725 0.7548 1.7342 1.6544 0.8272 0.8663 0.8663
�Q5� 0.8829 0.9225 1.7705 4.8762 0.7546 1.7370 1.6553 0.8277 0.8673 0.8672
R=1.4
DZ 1.1288 1.1646 1.1338 3.6044 0.5917 1.1032 1.3163 0.6582 0.6941 0.6943
TZ 1.1330 1.1726 1.1707 3.6459 0.5882 1.1380 1.3216 0.6608 0.7006 0.7006
QZ 1.1335 1.1739 1.1738 3.6496 0.5876 1.1408 1.3225 0.6613 0.7019 0.7019
5Z 1.1336 1.1743 1.1747 3.6507 0.5875 1.1416 1.3230 0.6615 0.7024 0.7024
�Q5� 1.1337 1.1747 1.1756 3.6519 0.5874 1.1424 1.3234 0.6617 0.7028 0.7028
R=3.0
DZ 0.9880 1.0533 0.8675 2.6143 0.3601 0.8272 0.9520 0.4760 0.5515 0.5512
TZ 0.9890 1.0563 0.8694 2.6176 0.3585 0.8276 0.9538 0.4769 0.5535 0.5535
QZ 0.9893 1.0570 0.8705 2.6193 0.3585 0.8285 0.9546 0.4773 0.5541 0.5541
5Z 0.9893 1.0572 0.8707 2.6197 0.3585 0.8287 0.9548 0.4774 0.5543 0.5543
�Q5� 0.9893 1.0574 0.8710 2.6202 0.3584 0.8289 0.9550 0.4775 0.5545 0.5545
R=5.0
DZ 0.8580 1.0021 0.9723 2.3777 0.2033 0.9504 0.8182 0.4091 0.5930 0.5918
TZ 0.8591 1.0033 0.9744 2.3810 0.2033 0.9522 0.8193 0.4096 0.5938 0.5936
QZ 0.8593 1.0036 0.9750 2.3819 0.2033 0.9527 0.8195 0.4098 0.5940 0.5940
5Z 0.8594 1.0038 0.9753 2.3823 0.2033 0.9529 0.8196 0.4098 0.5940 0.5940
�Q5� 0.8595 1.0039 0.9755 2.3826 0.2033 0.9532 0.8197 0.4099 0.5941 0.5941
R=7.0
DZ 0.8003 0.9988 0.9942 2.2789 0.1429 0.9892 0.7656 0.3828 0.6177 0.6166
TZ 0.8015 0.9998 0.9970 2.2826 0.1429 0.9922 0.7669 0.3835 0.6192 0.6188
QZ 0.8018 1.0001 0.9980 2.2838 0.1429 0.9932 0.7672 0.3836 0.6195 0.6193
5Z 0.8019 1.0002 0.9983 2.2842 0.1429 0.9935 0.7673 0.3837 0.6196 0.6195
�Q5� 0.8020 1.0003 0.9986 2.2847 0.1429 0.9938 0.7674 0.3837 0.6197 0.6197
R=10.0
DZ 0.7666 0.9987 0.9957 2.1944 0.1000 0.9954 0.7232 0.3616 0.6229 0.6227
TZ 0.7676 0.9997 0.9986 2.1982 0.1000 0.9982 0.7246 0.3623 0.6242 0.6241
QZ 0.7679 0.9999 0.9996 2.1995 0.1000 0.9992 0.7249 0.3624 0.6245 0.6244
5Z 0.7680 1.0000 0.9999 2.1999 0.1000 0.9996 0.7250 0.3625 0.6246 0.6245
�Q5� 0.7681 1.0001 1.0003 2.2004 0.1000 0.9999 0.7251 0.3625 0.6248 0.6247
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complete basis set, we have shown that numerically suffi-
cient accuracy can be achieved to reproduce reasonably ac-
curately the FCI results in the same basis set.

D. The effective potential along the adiabatic
connection

The modified external potential v� may be decomposed
according to Eq. �50�. At �=0, it is the Kohn–Sham effective
potential and at �=1 is the usual external potential due to the
nuclei. Since the vext contribution does not vary with � and
the dependence of vJ,� is linear, we may wish to examine the
exchange-correlation vxc,� and correlation vc,� contributions
explicitly. These are given by

vxc,��r� = �1 − �� � �0�r�� − ��r��

r − r�


dr�

−
�1 − ��

N
� �0�r��


r − r�

dr� + �

t

btgt�r� �65�

and

vc,��r� = vxc,��r� +
�1 − ��

2
� ��r��


r − r�

dr�, �66�

where �0 is the density used in the calculation of the Fermi–
Amaldi reference potential and, in the latter expression, we
exploit the fact that for a two-electron system, the exchange
potential is − 1

2vJ. From the discussion in Sec. V C it follows
that since in a finite basis set the maximum of the target
functional F�,b��� cannot generally be precisely obtained,
neither can the potential v�. This problem has been widely
discussed in the literature in relation to the OEP method63–72

and more recently in the context of constrained-search
procedures73 at �=0.

Several procedures have been proposed for dealing with
this issue. In the present case, we employ the TSVD method
to regularize the Hessian in the optimization procedure.
When used in conjunction with an auxiliary basis set for the
potential expansion that is the same as the orbital basis, this
is sufficient to ensure almost smooth accurate potentials.
Typically unphysical oscillations remain only in regions very
close to the nuclei. To remove these, we have �for the calcu-
lation of the potentials only� utilized the smoothing norm
penalty function procedure of Heaton-Burgess et al.72 and
Bulat et al.73 with a the regularization parameter set to �
=10−5 in addition to the TSVD method. This additional con-
straint lowers the values of the target functional F�,b��� ob-
tained in the optimization by less than 10−4 a.u. The nonu-
niqueness of the potential is a consequence of the use of a
finite orbital basis set, in which case there is in general no
unique mapping between the potential and density as pointed
out in Ref. 61. This problem is further exacerbated when the
potential expansion and primary orbital basis sets are unbal-
anced. It is therefore necessary to impose extra constraints on
the maximization.

The exchange-correlation and correlation contributions
�Eqs. �65� and �66�� calculated with these constraints are
presented in Fig. 6 for the helium atom. The potentials were
calculated for � values between 0 and 1 in steps of 0.1. The
potentials in Fig. 6�a� show the exchange-correlation contri-
bution, the potentials decreasing with increasing �. When
�=1, all the modifying contributions to the external potential
are zero. Figure 6�b� shows the correlation-only potentials
for the same values of �. These agree closely with those
presented in Ref. 43 for the �=0 case. It is known that this
contribution does not vary linearly with respect to � and this
is visible. However, it is clear that the correlation contribu-
tion to the modified external potential is a very small contri-
bution and so one would expect the Harris–Jones adiabatic

FIG. 5. �Color online� The occupation numbers of the first two natural orbitals as a function of the coupling-strength parameter �. The upper half of the figure
corresponds to the first natural orbital 1�g and the lower half to the second 1�u. The individual curves may be distinguished by decreasing the occupation
number at �=1 with increasing bond length in the upper half and vice versa in the lower half.
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connection3 in which the modifying potential is approxi-
mated as v�= �1−��v�=0+�v�=1 to be a good approximation
to the adiabatic connections presented in the present work.
This was indeed confirmed in the work of Colonna and
Savin.18

The same procedure can be applied to the H2 molecule.
In this case, the potentials show a similar behavior as �
changes but the size of the correlation potential changes as
the bond is stretched. At R=0.7 bohr, the correlation poten-
tial displays smaller maximum and minimum values than in
the helium case, again consistent with a small perturbation.
At equilibrium, the maximum and minimum values are simi-
lar to those observed for helium. Further stretching the bond
results in much larger potentials, which can no longer be
regarded as small perturbations. The shape and magnitude of

the potentials are consistent with those in Ref. 74. As a con-
sequence, the Harris–Jones adiabatic connection is expected
to become less and less accurate with increasing bond length
in H2.

E. Comparison with approximate forms for the
adiabatic-connection integrand

A large motivation to study the adiabatic connection is of
course the development of more accurate exchange-
correlation functionals for use in Kohn–Sham calculations.
There have been a number of attempts to develop functionals
by explicitly approximating the integrand Wxc,���� calcu-
lated in the present work. The first of these was the half-and-
half functional of Becke75 in which a simple linear interpo-

FIG. 6. �Color online� Exchange-correlation and correlation only contributions to the modifying potential v� for 0���1 �in steps of 0.1� for the helium atom.
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lation between the Hartree–Fock exchange energy functional
�the Wxc,0��� value� and an LDA for Wxc,1��� was per-
formed. This yielded exchange-correlation functionals con-
taining 50% Hartree–Fock exchange. It was, however, noted
that a somewhat lower percentage could improve the thermo-
chemical performance of the resulting functionals. This
seminal functional may be regarded as a precursor to the
ubiquitous B3LYP functional76–80 although, as noted in Ref.
81, the Becke three-parameter functional represents a partial
abandonment of the adiabatic-connection idea.

More recently, Ernzerhof proposed the use of a �1/1�-
Padé-type form8 resulting in exchange-correlation function-
als in which the Hartree–Fock exchange contribution enters
in a nonlinear fashion. This form has also been utilized in the
functionals of Mori-Sánchez et al.11 Other approximate
forms of note are the two-legged representation of Burke et
al.14 and the interaction strength interpolation of Seidl and
co-workers,15,16 the latter of which employs information
from the strictly correlated limit of the adiabatic connection
��=�� to perform an interpolation of Wxc,����. The fact that
some Hartree–Fock-type exchange naturally enters function-
als developed from the adiabatic connection provides the
motivation for the construction of hybrid functionals, and
arguments based on the adiabatic connection have been em-
ployed to justify the inclusion of certain amounts of the
Hartree–Fock contribution.9,75

In our recent works,23,24 we highlighted the accuracy that
can be achieved using relatively simple approximate forms
for the integrand Wxc,���� when the parameters within them
are determined using accurate data. In Ref. 24, we compared
the performance of nine such forms, six of which were con-
sidered in the implementation of new self-consistent density
functionals in Ref. 12. When accurate input information was
utilized to calculate the parameters in the approximate forms,
the Padé form first proposed by Ernzerhof8 and later em-
ployed by Mori-Sánchez et al.,11

Wxc,�
AC1��� = a��� +

b����
1 + c����

, �67�

Exc
AC1��� = a��� + b���� c��� − loge�1 + c����

c���2 � , �68�

a��� = Wxc,0��� , �69�

b��� = Wxc,0� ��� , �70�

c��� =
Wxc,0� ���

Wxc,1��� − Wxc,0���
− 1 �71�

and the exponential form proposed in Ref. 12,

Wxc,�
AC6��� = a��� + b���exp�c����� , �72�

Exc
AC6��� = a��� +

b���
c���

�1 − exp�− c����� , �73�

a��� = Wxc,0��� − b��� , �74�

b����1 − exp�Wxc,0� ���/b����� = Wxc,0��� − Wxc,1��� ,

�75�

c��� =
Wxc,0� ���

b���
�76�

were the most accurate in reproducing the FCI exchange-
correlation energies of the helium isoelectronic series and the
H2 molecule. In both cases the parameters a, b, and c were
calculated using the explicit functionals

Wxc,0��� = Ex��� , �77�

Wxc,0� ��� = 2Ec
GL2��� , �78�

Wxc,1��� = �	1
Ŵ
	1� − J��� , �79�

as described in Refs. 23 and 24. We have confirmed that
these values reproduce values calculated from our accurate
curves to better than 10−4 a.u. Here we use the notation AC1
and AC6 to denote the fact that the parameters a, b, and c
were determined using this accurate FCI data rather than
using density-functional approximations. Both forms show
the correct qualitative behavior of the integrand presented in
Figs. 2 and 4.

The notable feature of the H2 dissociation curves calcu-
lated using the AC1 form was a small unphysical barrier
around R=5.0 bohr �see the potential-energy curves in Ref.
24�. Although the dissociation of this form is correct and
errors relative to the FCI curve are a vast improvement in
comparison with those of standard DFT functionals, the pres-
ence of this barrier is unsatisfactory. A similar feature was
observed in the random phase approximation calculations of
Fuchs et al.10

In the present work, we can now explicitly compare the
accurate Wxc,���� curves with those of the approximate
forms. We again employ the extrapolated quantities although
the same qualitative behavior is observed for all basis sets.
Figure 7 presents the difference between the Wxc,�

AC1��� ap-
proximate values and the accurate Wxc,���� integrand.

The integrals of the curves shown are the errors in the
exchange-correlation energy obtained from the AC1 form
�the accurate curves give the FCI values by construction�. At
short and equilibrium bond lengths, the error is very small,
indicating that the subtle curvature in Wxc,���� is well repro-
duced. However, as the bond is stretched and static correla-
tion becomes increasingly important, the curvature of
Wxc,���� grows rapidly. The errors in the exchange-
correlation energy given by the AC1 form grow rapidly. No-
tably, the AC1 form is always above the exact Wxc,���� ex-
cept at the noninteracting and physical points �which are the
same by construction�. The error �the integrals of the curves
shown in the inset� is greatest at R=5.0 bohr, consistent
with the potential-energy curves presented in Ref. 24.

It is noteworthy that the use of accurate input informa-
tion in the calculation of approximate adiabatic-connection
curves is essential, especially for the derivatives of Wxc,����
at �=0. For example, in Ref. 11 an approximate gradient
based on the meta-GGA functional form of Refs. 82 and 83
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was employed in the implementation of a self-consistent
functional using the Padé-type form and the resulting disso-
ciation curves for H2 are of B3LYP quality.23 Also, in Ref. 12
the self-consistent implementation of several forms was in-
vestigated with approximate density functionals for the input
parameters and little difference in their performance was ob-
served.

In our recent work, we highlighted the success of the
AC6 form in eliminating the unphysical barrier in the H2

dissociation observed with the AC1 form. It is important to
understand if this is due to some error cancellation or if the
form chosen is actually a better approximation to the

adiabatic-connection curve. In Fig. 8, we present explicitly
the differences between the AC6 approximate values and the
accurate Wxc,���� integrand. The errors observed at all ge-
ometries are a great improvement over the AC1 form, as
exhibited by the more compact scale of the y axis. However,
the curves are no longer all above the exact one for this
approximate form. Again, the noninteracting and physical
points agree by construction but, for this form, a crossing can
occur at intermediate values of �. At short and equilibrium
bond lengths, errors are minimal; as the bond is stretched to
R=3.0 bohr, a positive error is introduced. Further increas-
ing the bond length results in a certain degree of error can-

FIG. 7. �Color online� Differences between the approximate Padé form AC1 and the accurate adiabatic-connection curves of the present work. The inset
presents the errors. The plots for the shortest two bond lengths are barely visible. The curves may be distinguished by noting that their maxima move to
smaller � for increasing R.

FIG. 8. �Color online� Differences between the exponential approximate form AC6 and the accurate adiabatic-connection curves calculated in the present
work. The inset presents the errors. Again the curves for the shortest two bond lengths are barely visible. The curves may be distinguished by noting that their
maxima move to smaller � for increasing R.
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cellation as the approximate adiabatic-connection curve is
initially above the exact one and then later falls below it
before rising again to meet the exact value at �=1. As in the
AC1 case, further stretching the bond length results in a lo-
calization of the error to the low � end of the adiabatic con-
nection. The analysis presented here is consistent with the
potential-energy curves presented in Ref. 24. This is one area
in which we hope the present procedure will prove very
useful—the testing of new approximate density functional
forms and the detection of error cancellation.

F. Potential-fixed adiabatic-connection curves

For the density-fixed adiabatic connection, the determi-
nation of the potential v� was a maximization problem that
required the implementation of a new iterative scheme. For
the potential-fixed adiabatic connection, the situation is more
straightforward—namely, since v1=vext, we simply need to
perform FCI calculations in which we use the usual external
potential with a scaled electron-electron interaction. Further-
more, the cost is substantially lower as the optimization of
the wave function is carried out only once—no iterative re-
finement of the potential is required. We have applied this
procedure to the helium isoelectronic series and the H2 mol-
ecule as was done for the density-fixed connection. In Fig. 9,
we present plots of W��v� and W���� as a function of � for
the helium isoelectronic series; likewise, in Fig. 10, plots are
presented for the H2 molecule at the same geometries con-
sidered previously. In Table V, the integrals of these basis-set
extrapolated curves are presented along with the zero-order
energies.

Upon integration, the density-fixed adiabatic-connection
curves provide the Coulomb, exchange, and correlation con-
tributions corresponding to the physical density in addition
to the correlation corrections to the noninteracting kinetic
energy again associated with the physical density. Of these

contributions the Coulomb part is by far the largest; the ki-
netic correction is a small positive contribution, smaller than
or equal in magnitude to the correlation contribution. These
curves are presented in Figs. 9 and 10 as dashed lines and are
simply the plots of Figs. 2 and 4 with the constant Coulomb
and exchange contributions added. By contrast, the potential-
fixed adiabatic-connection curves when integrated provide
the Coulomb, exchange, correlation, and kinetic-energy cor-
rections to the BN system and are presented as solid lines in
Figs. 9 and 10. Since the density in this case changes along
the adiabatic connection, the Coulomb and exchange contri-
butions are no longer constant.

The Coulomb correction in the present case is dominant
and results in all of the curves having positive values. These
increase with Z for the helium isoelectronic series in Fig. 9
and increase as the internuclear separation R decreases for
the H2 molecule in Fig. 10. Comparing the density- and
potential-fixed adiabatic connections, we note that these are
both monotonically decreasing curves, which coincide at �

=1 since the fully interacting density matrices are identical
�̂1

v= �̂1
�. Monotonicity is easily shown in both cases using the

variation principle. We also note that the potential-fixed
curve is always above the corresponding density-fixed curve.
To understand this behavior, we note that the zero-order BN
approximation, by neglecting all electronic interactions, pro-
vides an electronic density that is more compact than the true
density, resulting in a two-electron interaction that is higher
than that of the density-fixed adiabatic interaction. For the
stretched H2 molecule, the effects of strong static correlation
become evident as the Coulomb repulsion between the elec-
trons decays, resulting in the characteristic curvature of the
largest three internuclear separations. Integration of the
curves and addition to the BN energy give excellent agree-
ment with the FCI energies, as shown in Table V.

FIG. 9. �Color online� Plots of the adiabatic connection integrands with a fixed potential W��v� �solid lines� and a fixed density W���� �dashed lines� for the
helium isoelectronic series. The curves may be distinguished by noting that they become more positive with increasing nuclear charge 1�Z�10.
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VI. CONCLUSIONS

The performance of an iterative procedure for the calcu-
lation of the universal Lieb functional generalized to arbi-
trary electron-electron interaction strengths has been exam-
ined. Specifically, we have applied the procedure to the
helium isoelectronic series and the H2 molecule, calculating
the universal density functional F���� and energies from
high-quality FCI wave functions in large basis sets. Compar-
ing first- and second-order schemes for the optimization of
the Lieb functional, the latter was found to offer significantly
better convergence with the extra effort incurred in evaluat-

ing the static density-density response function offset by a
large reduction in the number of iterations required.

The procedure was then applied to the helium isoelec-
tronic series. The adiabatic-connection curves are known to
become close to linear as the nuclear charge increases and
the high-density limit is approached. This behavior was dem-
onstrated explicitly in Fig. 2. The exact value of the
exchange-correlation energy for the FCI density was then
calculated and compared with that obtained by the integra-
tion of our accurate adiabatic-connection curves. Agreement
in all cases was excellent, demonstrating the accuracy of the
iterative procedure for a variety of densities.

FIG. 10. �Color online� Plots of the adiabatic-connection integrands with a fixed potential W��v� �solid lines� and a fixed density W���� �dashed lines� for the
H2 molecule at a range of internuclear separations. R=0.7, 1.4, 3.0, 5.0, 7.0, and 10.0 bohr. The curves can be distinguished by noting that at �=1 the values
of the integrands fall with increasing bond length.

TABLE V. Values of the BN electronic energy and the integral of the potential-fixed adiabatic-connection
curves. The sum of the zero-order and correction terms is also presented for comparison with the FCI values.
All values are for basis-set limit quantities in atomic units.

Species R E0 	W�d� E0+	W�d� EFCI

H− �1.0000 0.4724 �0.5277 �0.5277
He �4.0000 1.0963 �2.9038 �2.9038
Li+ �9.0000 1.7203 �7.2796 �7.2796
Be2+ �16.0000 2.3446 �13.6554 �13.6554
B3+ �25.0000 2.9690 �22.0311 �22.0311
C4+ �36.0000 3.5938 �32.4064 �32.4064
N5+ �49.0000 4.2186 �44.7816 �44.7816
O6+ �64.0000 4.8433 �59.1568 �59.1568
F7+ �81.0000 5.4681 �75.5321 �75.5321
Ne8+ �100.0000 6.0931 �93.9069 �93.9069

H2 0.7 �1.7944 0.8720 �0.9225 �0.9225
1.4 �1.8545 0.6798 �1.1747 �1.1747
3.0 �1.4886 0.4312 �1.0574 �1.0574
5.0 �1.2489 0.2451 �1.0039 �1.0039
7.0 �1.1541 0.1538 �1.0003 �1.0003

10.0 �1.1012 0.1011 �1.0001 �1.0001
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We then shifted our attention to the H2 molecule which
may be regarded as a prototypical system for bond dissocia-
tion. The accurate adiabatic-connection curves for a variety
of bond lengths were calculated and again exchange-
correlation energies obtained by integration were compared
with accurate FCI values. It was noted that at longer bond
lengths where static correlation dominates, the calculated
values of the adiabatic-connection curves are insensitive to
the choice of basis set. We then discussed in some detail the
relationship between the Kohn–Sham orbitals and the natural
orbitals as a function of the coupling strength, making clear
the relationship between the curvature of the adiabatic con-
nection and the degree of static correlation.

The exchange-correlation contributions to the modified
external potential v� as a function of electron-electron inter-
action strength were examined and the need to apply a
smoothing procedure to obtain accurate potentials was dis-
cussed. It was shown that the correlation potentials obtained
agree well with those in previous studies. The alternative
Harris–Jones adiabatic connection was then discussed, show-
ing that the agreement with the connection in the present
work is expected to be good when the correlation potential is
a small perturbation, as in the case of the helium isoelec-
tronic series, but much worse when the perturbation is large,
such as in the case of stretched H2.

The accurate adiabatic-connection curves were then used
to highlight the strengths and weaknesses of two recently
investigated approximate forms. This is an area in which the
presented procedure should prove very useful in the future—
the investigation of new exchange-correlation functionals
and the detection and diagnosis of errors. Indeed, a degree of
error cancellation was found in the AC6 form.

Finally, we compared the usual adiabatic connection
based on a fixed density with the adiabatic connection based
on a fixed potential, relating the BN approximation to the
fully interacting system. The adiabatic-connection curves
were found to be similar in two cases, both decreasing mono-
tonically toward the same value at full interaction strength,
the potential-fixed curve always being higher than the
density-fixed curve.

We close by considering some directions for future re-
search. The linear adiabatic-connection formalism discussed
throughout the present work may easily be generalized, as
discussed in Ref. 84, to a general electronic interaction op-
erator resulting in nonlinear adiabatic connections. Various
alternatives for the operator to be used exist and some inves-
tigations have been carried out by Savin and
co-workers.21,85,86 The generalization of the scheme pre-
sented here is straightforward and work in this direction is
already underway. Application of this scheme to other mo-
lecular systems is also already in progress, in this case the
coupled-cluster singles-doubles-perturbative-triples densities
will be used to provide an approximation to the physical
density for systems with more than two electrons.

Another aspect which remains to be investigated is cal-
culation of the adiabatic connection beyond the physical in-
teraction strength. A great deal of work has been done by
Seidl and co-workers16,87–90 for strictly correlated electrons
��=��. The procedure investigated here can be applied to

values of � beyond the physical interaction strength. The
usefulness of the procedure in this context remains to be
established. Other areas in which adiabatic-connection calcu-
lations may be illuminating are the many-electron self-
interaction error13,91,92 and the description of van der Waals
systems and dispersion interactions. Work on the latter is
currently in progress.
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