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ABSTRACT: Using variational Monte Carlo, we compare the features of 118 trial
wave function forms for selected ground and excited states of helium, lithium, and
beryllium in order to determine which characteristics give the most rapid convergence
toward the exact nonrelativistic energy. We find that fully antisymmetric functions are
more accurate than are those which use determinants, that exponential functions are
more accurate than are linear function, and that the Pade function is anomalously´

accurate for the two-electron atom. We also find that the asymptotic and nodal behavior
of the atomic wave function is best described by a minimal set of functions. Q 1997 John

Wiley & Sons, Inc. Int J Quant Chem 63: 1001]1022, 1997

Introduction

ariational Monte Carlo is a method of com-V puting the total energy

2² : w x Ž .H s C H Crw C rw 1Ý Ýi i i i i
i i

Ž .and its variance i.e., statistical error

2
22 2 2 2Ž .s s H C y E C C rw C rwÝ Ýi in i i i i i½ 5

i i

Ž .2

w xusing Monte Carlo integration 1]17 . Here, H is
Ž .the Hamiltonian, C s C x is the value of thei t i

trial wave function at the Monte Carlo integration
Ž .point x , and w s w x is the relative probabilityi i i

Žof choosing this point usually referred to as a
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.configuration . The constant E is fixed at a valuei n

close to the desired state in order to start the
optimization in the proper region. The exact wave
function is known to give both the lowest value of
² :H and a zero variance. If the adjustable parame-
ters in the trial wave function are optimized so as
to minimize the energy, an instability often occurs.

This happens when a set of parameters causes
² :H to be estimated a few sigma too low. Al-
though such parameters will produce a large vari-
ance, they are favored by the minimization. This
problem can be avoided only by using a very large
number of configurations during the optimization
of the wave function so as to distinguish between

² :those wave functions for which H is truly low
and those which are merely estimated to be low. In
contrast, variance minimization favors those wave
functions which have a constant local energy. Pa-
rameter values which do not produce this property
will be eliminated by the optimization process. As
a result, only a small fixed set of configurations is
needed to accurately determine the variance.

Q 1997 John Wiley & Sons, Inc. CCC 0020-7608 / 97 / 051001-22
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Previous studies have shown that the rate of
convergence of a variational calculation can be
tremendously accelerated by using basis functions
which satisfy the two-electron cusp condition and
which have the correct asymptotic behavior
w x18]24 . Unfortunately, the integrals of such func-
tions can rarely be evaluated analytically. Because
our method uses Monte Carlo integration, we can
easily build into the trial wave function many
features which will accelerate convergence. Al-
though, in principle, this flexibility leads to an
enormous number of possible forms, in practice,
the ideal trial wave-function form must have a low
variance, must add adjustable parameters in a
straightforward manner, and must be easy to opti-
mize.

In this article, we examine a variety of trial
wave-function forms for the ground and first ex-
cited singlet states of helium, the triplet ground
state of helium, the ground state of lithium, and
the ground state of beryllium. We use the ratio of
the variance and the number of adjustable parame-
ters to determine which forms produce the most
rapid convergence. When computed at several val-
ues, this quantity enables us to tell whether addi-
tional parameters will noticeably lower the vari-
ance of a particular wave-function form or if this
form has saturated. All our energies and variances
are computed using a set of 4000 biased-as-ran-
dom configurations which were generated specifi-

w xcally for each atom 15 . In those forms which use
a Hylleraas or Pade-type function, we add all´

possible combinations of variables which produce
a given excitation level. The excitation level N
denotes the sum of the exponents of the variables
in each term of the Hylleraas function, e.g., r 2 and13

r r are N s 2. Unless otherwise indicated, all1 23

values in this article are in atomic units.

Helium Ground State

Table I presents the results of those trial wave-
function forms which consist exclusively of a prod-
uct of one-electron orbitals. These include a deter-
minant which was optimized so as to minimize the

w xtotal energy 25 , a variance-optimized determi-
Ž . Ž .nant, C s f r f r , and a variance-optimized2 1 2

Ždifferent-orbitals-for-different-spins form, C s 13

. Ž . Ž .q P f r h r . All three forms contain enough12 1 2

adjustable parameters to obtain a saturated result
from their respective optimization functionals. Be-
cause C is the result of an energy minimization, it1

is not surprising that this form has the lowest
energy and the largest variance. When variance

Ž .minimization, Eq. 2 , is used to optimize the ad-
justable parameters in C and C , the energy of2 3

both forms increases by a significant amount while
their variance decreases. Even though the energy
of C is much higher than that of the Hartree]Fock3

determinant, its variance is almost a factor of 2
smaller. For this reason, C will turn out to be a3

better starting point for our next step which is the
addition of correlation.

In Table II, the process of including electron
correlation begins with a study of wave-function
forms which consist of one-electron orbitals multi-
plied by a function of the interelectronic coordi-

Ž .nate, i.e., g r . When the orbitals from the12

Hartree]Fock determinant are used, e.g., C , the5

variance drops by a factor of 2.9 compared to C1

and roughly 69% of the correlation energy is ob-
tained before saturation occurs. Using a variance-
optimized determinant, e.g., C , or a different-14

orbitals-for-different-spins form, e.g., C , lowers17

the variance by an additional factor of 2 and 2.8,
respectively. Although we find that the form of

TABLE I
Helium ground-state wave functions: product form.a

No.
( )Form parameters Energy au

C = det 0 y2.8655059 " 0.130e-11

( ) ( )C = f r f r 5 y2.7948343 " 0.111e-12 1 2

( ) ( ) ( )C = 1 + P f r h r 10 y2.7617876 " 0.858e-23 12 1 2

[ ]Literature y2.903724375 26

a ( ) ( ) [ ] ( ) [Here, det = f r f r as computed by Clementi and Roetti 25 using an energy minimization. Elsewhere, f r = 1 +1 2 1
4 k ] y a r1 ( ) [ 4 k ] y b r2Ý a r e and h r = 1 + Ý b r e .k = 1 k 1 2 k = 1 k 2
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TABLE II
Helium ground-state wave functions: product form times function of r

a
; N is the excitation level.12

( )Form No. parameters Energy au

k( ) ( )C = det exp Ý a r 1 N = 1 y2.8776681 " 0.633e-24 k = 0 k 12

( )2 N = 2 y2.8913797 " 0.471e-2
( )3 N = 3 y2.8907489 " 0.445e-2

k ( )C = detÝ a r 1 N = 1 y2.8820978 " 0.555e-25 k = 0 k 12

( )2 N = 2 y2.8923208 " 0.451e-2
( )3 N = 3 y2.8919144 " 0.443e-2

Best form with Hartree-Fock determinant

kÝ a rk = 0 k 12
( )C = det exp 2 N = 1 y2.8911825 " 0.448e-26 kž /Ý b r ( )k = 0 k 12 4 N = 3 y2.8916771 " 0.446e-2

kÝ a rk = 0 k 12
( )C = det 2 N = 1 y2.8917250 " 0.448e-27 kÝ b rk = 0 k 12 ( )4 N = 2 y2.8922225 " 0.443e-2

( ( )) ( )C = det exp ya exp ybr 2 N = 1 y2.8922208 " 0.443e-28 12

( ( )) ( )C = det exp yar exp ybr 2 N = 1 y2.8924062 " 0.447e-29 12 12

yg rk 12( )C = det 1 + Ý a e 2 y2.8921694 " 0.444e-210 k =1 k

4 y2.8921900 " 0.443e-2

k( ) ( ) ( ) ( )C = f r f r exp Ý a r 6 N = 1 y2.8894165 " 0.426e-211 1 2 k = 0 k 12

( )7 N = 2 y2.8963100 " 0.254e-2
( )8 N = 3 y2.8979303 " 0.237e-2

k( ) ( ) ( )C = f r f r Ý a r 6 N = 1 y2.8948153 " 0.307e-212 1 2 k = 0 k 12

( )7 N = 2 y2.8979310 " 0.231e-2
( )8 N = 3 y2.8981832 " 0.230e-2

kÝ a rk = 0 k 12
( ) ( ) ( )C = f r f r exp 7 N = 1 y2.8985944 " 0.230e-213 1 2 kž /Ý b rk = 0 k 12 ( )9 N = 2 y2.8984142 " 0.229e-2

kÝ a rk = 0 k 12
( ) ( ) ( )C = f r f r 7 N = 1 y2.8986614 " 0.230e-214 1 2 kž /Ý b rk = 0 k 12 ( )9 N = 1 y2.8983958 " 0.229e-2

Best form with same orbitals

k( ) ( ) ( ) ( ) ( )C = 1 + P f r h r exp Ý a r 11 N = 1 y2.8963143 " 0.368e-215 12 1 2 k = 0 k 12

( )12 N = 2 y2.8992829 " 0.210e-2
( )13 N = 3 y2.9030682 " 0.173e-2

k( ) ( ) ( ) ( )C = 1 + P f r h r Ý a r 11 N = 1 y2.9009906 " 0.263e-216 12 1 2 k = 0 k 12

( )12 N = 2 y2.9023661 " 0.174e-2
( )13 N = 3 y2.9041682 " 0.163e-2

kÝ a rk = 0 k 12
( ) ( ) ( ) ( )C = 1 + P f r h r exp 12 N = 1 y2.9038071 " 0.161e-217 12 1 2 kž /Ý b rk = 0 k 12 ( )14 N = 2 y2.9043052 " 0.159e-2

Best form with different orbitals

( )Continued
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TABLE II
( )Continued

( )Form No. parameters Energy au

kÝ a rk = 0 k 12
( ) ( ) ( ) ( )C = 1 + P f r h r 12 N = 1 y2.9038865 " 0.161e-218 12 1 2 kÝ b rk = 0 k 12 ( )14 N = 2 y2.9043037 " 0.159e-2

[ ]Literature y2.903724375 26

a ( ) ( ) [ ] ( ) [Here, det = f r f r as computed by Clementi and Roetti 25 using an energy minimization. Elsewhere, f r = 1 +1 2 1
4 k ] y a r1 ( ) [ 4 k ] y b r2Ý a r e and h r = 1 + Ý b r e .k = 1 k 1 2 k = 1 k 2

Ž .g r has relatively little influence on the conver-12

gence of the variance, all these forms saturate at
about the third excitation level; it should be noted
that our best wave-function form in this group,
C , is able to obtain almost 100% of the correla-17

tion energy before this occurs.

In Table III, we generalize the wave-function
form used above to include electronic coordinates

Ž .in the correlation function, i.e., g r , r , r . This1 2 12

allows some of the restrictions which are imposed
Ž .by the orbital function, f r , r , to be relaxed.1 2

Such forms have been examined by a number of
w xearlier studies 5, 7, 8, 12, 27]30 . Our results show

that the rapid saturation of the variance which
occurred in Tables I and II has been eliminated
and that it is now possible to obtain even lower
variances and much better energies. When the
orbitals from the Hartree]Fock determinant are
used, the variance of our best form of this type,
C , is a factor of 23 lower than C . Our best21 5

variance-optimized determinant form, C , and23

best different-orbitals-for-different-spins form, C ,26

show an even more impressive decrease—a factor
of 83 compared to C and a factor of 49 compared14

to C , respectively. When examined as a whole,17

we find a slight preference for the Pade-like func-´

tions over the Hylleraas-like functions as well as a
slight preference for the exponential Pade forms´

over the linear Pade forms. On a per constant´
Ž . Ž . Žbasis, we also find that the form f r f r g r ,1 2 1

.r , r converges more rapidly than does the2 12

Ž . Ž . Ž .f r h r g r ,r , r form. This somewhat coun-1 2 1 2 12

terintuitive result is due to the eight constants
required to saturate both f and h compared to
only four constants needed to saturate f alone.

These extra four constants are apparently much
more effective when placed in the correlation func-
tion rather than in the orbital. This suggests that
we could obtain even better convergence if we
were to examine the form of our orbitals. This is
done below.

In Table IV, we make no distinction between the
orbital part of the wave function and the correla-

Ž .tion function. The wave-function form C r , r , r1 2 12

is parameterized as freely as we could imagine.

When compared to the results in Table III, our
results show that the best convergence is obtained
when each orbital is reduced to a single exponen-
tial. This ‘‘minimal orbital’’ set satisfies the bound-
ary conditions and gives the correlation part the
maximum flexibility it needs to reproduce the rest
of the wave function. In contrast to the wave-func-
tion forms in Table III, the forms in this group
show an even more pronounced preference for the
Pade-like functions over the Hylleraas-like func-´

tions and a still slight preference for the exponen-
tial Pade forms over the linear Pade forms. The´ ´

variance of our best form, the exponential Padé
C , is almost a factor of 5 lower than its counter-43

part in Table III.
In Table IV, we also examine the convergence of

some of the more widely used wave-function
w xforms. The form popularized by Drake 31 is

based on the use of two Hylleraas expansions in
order to more rapidly reproduce the form of the
wave function at different length scales. We find
that for this system such a form, C , is not sub-40

stantially better than the original Hylleraas form,
C . In contrast, a wave function of Slater-type31

w xgeminals 32, 33 , C , and two of its variants, C46 47

and C , converge much more rapidly. We found,48

however, that adding additional fully optimized
functions to these wave functions became increas-
ingly difficult. This greatly limits their usefulness.

Morgan and co-workers obtained very accurate
energies for two-electron atoms using Hylleraas-
like expansions containing negative powers and

w xlogarithmic terms 26, 34 . The latter are designed
to increase convergence by correctly modeling the

w xthree-particle cusp 23, 35 . We find that negative
powers do not noticeably improve the convergence

Žof our calculations C is actually worse than the41

VOL. 63, NO. 51004
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TABLE III
Helium ground-state wave functions: product form times a general function of r , r , and r

a
; N is the1 2 12

aexcitation level.

( )Form No. parameters Energy au

n l m( ) ( ) ( )C = detÝ a r + r r y r r 2 N = 1 y2.8942232 " 0.429e-219 k = 0 k 1 2 1 2 12

( )6 N = 2 y2.9001721 " 0.208e-2
( )12 N = 3 y2.9028168 " 0.965e-3
( )21 N = 4 y2.9036992 " 0.471e-3

n l m( ) ( )Ý a r + r r y r rk = 0 k 1 2 1 2 12
( )C = det exp 4 N = 1 y2.8983108 " 0.320e-220 n l mž /( ) ( )Ý b r + r r y r r ( )k = 0 k 1 2 1 2 12 12 N = 2 y2.9038436 " 0.890e-3
( )24 N = 3 y2.9034622 " 0.196e-3

n l m( ) ( )Ý a r + r r y r rk = 0 k 1 2 1 2 12
( )C = det 4 N = 1 y2.8982490 " 0.320e-221 n l m( ) ( )Ý b r + r r y r r ( )k = 0 k 1 2 1 2 12 12 N = 2 y2.9038469 " 0.887e-3
( )24 N = 3 y2.9034624 " 0.195e-3

Best form with Hartree-Fock determinant

n l m( ) ( ) ( ) ( ) ( )C = f r f r Ý a r + r r y r r 7 N = 1 y2.8979704 " 0.282e-222 1 2 k = 0 k 1 2 1 2 12

( )11 N = 2 y2.9028438 " 0.108e-2
( )17 N = 3 y2.9040016 " 0.371e-3
( )25 N = 4 y2.9036601 " 0.206e-3

n l m( ) ( )Ý a r + r r y r rk = 0 k 1 2 1 2 12
( ) ( ) ( )C = f r f r exp 9 N = 1 y2.8978042 " 0.226e-223 1 2 n l mž /( ) ( )Ý b r + r r y r rk = 0 k 1 2 1 2 12 ( )17 N = 2 y2.9037349 " 0.201e-3

( )29 N = 3 y2.9037314 " 0.275e-4

Best form with same orbitals
n l m( ) ( )Ý a r + r r y r rk = 0 k 1 2 1 2 12

( ) ( ) ( )C = f r f r 9 N = 1 y2.8977419 " 0.226e-224 1 2 n l m( ) ( )Ý b r + r r y r r ( )k = 0 k 1 2 1 2 12 17 N = 2 y2.9038225 " 0.208e-3
( )29 N = 3 y2.9037383 " 0.209e-4

n l m( ) ( ) ( ) ( )C = 1 + P f r h r Ý a r r r 13 N = 1 y2.9003935 " 0.224e-225 12 1 2 k = 0 k 1 2 12

( )19 N = 2 y2.9041190 " 0.767e-3

n l mÝ a r r rk = 0 k 1 2 12
( ) ( ) ( ) ( )C = 1 + P f r h r exp 16 N = 1 y2.9035825 " 0.278e-326 12 1 2 n l mž /Ý b r r r ( )k = 0 k 1 2 12 28 N = 2 y2.9037524 " 0.322e-4

Best form with different orbitals
n l mÝ a r r rk = 0 k 1 2 12

( ) ( ) ( ) ( )C = 1 + P f r h r 16 N = 1 y2.9036545 " 0.352e-327 12 1 2 n l mÝ b r r rk = 0 k 1 2 12 ( )28 N = 2 y2.9037527 " 0.457e-4

[ ]Literature y2.903724375 26

a ( ) ( ) [ ] ( ) [Here, det = f r f r as computed by Clementi and Roetti 25 using an energy minimization. Elsewhere, f r = 1 +1 2 1
4 k ] y a r1 ( ) [ 4 k ] y b r2Ý a r e and h r = 1 + Ý b r e .k = 1 k 1 2 k = 1 k 2

.functionally similar form C . Similarly, we find39

that adding logarithmic terms to an exponential
Pade, C , decreased our variance only slightly.´ 49

This result is probably due to the fact that our
calculations have not reached the required level of

accuracy needed for the three-particle cusp to play
an important role.

In Table V, we examine whether the use of
transformed variables can improve our rate of con-
vergence. These variables enable one to separate

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1005
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TABLE IV
Helium ground-state wave functions: general function in r , r , and r ; N is the excitation level.1 2 12

( )Form No. parameters Energy au

( ( )) ( )C = exp ya r + r 1 N = 0 y2.8522779 " 0.154e-128 1 2

k( ( )) ( )C = exp Ý a r y a r + r 2 N = 1 y2.8806861 " 0.533e-229 k = 0 k 12 1 2

( )3 N = 2 y2.8759777 " 0.493e-2
( )4 N = 3 y2.8797514 " 0.457e-2

k y a( r + r )1 2 ( )C = Ý a r e 2 N = 1 y2.8785526 " 0.480e-230 k = 0 k 12

( )3 N = 2 y2.8770205 " 0.474e-2
( )4 N = 3 y2.8823565 " 0.445e-2

n l m y a( r + r )1 2( ) ( ) ( )C = Ý a r + r r y r r e 3 N = 1 y2.8798136 " 0.468e-231 k = 0 k 1 2 1 2 12

( )7 N = 2 y2.9030741 " 0.119e-2
( )13 N = 3 y2.9042841 " 0.470e-3
( )21 N = 4 y2.9038214 " 0.212e-3

kÝ a rk = 0 k 12
( ) ( )C = exp y a r + r 3 N = 1 y2.8764614 " 0.473e-232 1 2kž /Ý b rk = 0 k 12 ( )5 N = 2 y2.8816835 " 0.443e-2

n l m( ) ( )Ý a r + r r y r rk = 0 k 1 2 1 2 12
( ) ( )C = exp y a r + r 5 N = 1 y2.8822870 " 0.367e-233 1 2n l mž /( ) ( )Ý b r + r r y r r ( )k = 0 k 1 2 1 2 12 13 N = 2 y2.9039788 " 0.221e-3

( )25 N = 3 y2.9037142 " 0.392e-4

kÝ a rk = 0 k 12 y a( r + r )1 2 ( )C = e 3 N = 1 y2.8767865 " 0.471e-234 kÝ b rk = 0 k 12 ( )5 N = 2 y2.8815663 " 0.444e-2

n l m( ) ( )Ý a r + r r y r rk = 0 k 1 2 1 2 12 y a( r + r )1 2 ( )C = e 5 N = 1 y2.8822005 " 0.367e-235 n l m( ) ( )Ý b r + r r y r r ( )k = 0 k 1 2 1 2 12 13 N = 2 y2.9040320 " 0.231e-3
( )25 N = 3 y2.9037121 " 0.369e-4

( ) ( ) ( )C = 1 + P exp yar y b r 2 N = 0 y2.7836668 " 0.898e-236 12 1 2

k( ) ( ) ( )C = 1 + P exp Ý a r y ar y b r 3 N = 1 y2.8974720 " 0.387e-237 12 k = 0 k 12 1 2

( )4 N = 2 y2.8978520 " 0.278e-2
( )5 N = 3 y2.8984970 " 0.241e-2

k y a r y b r1 2( ) ( )C = 1 + P Ý a r e 3 N = 1 y2.8995372 " 0.294e-238 12 k = 0 k 12

( )4 N = 2 y2.8991548 " 0.246e-2
( )5 N = 3 y2.8999454 " 0.229e-2

n l m y a r y b r1 2( ) ( )C = 1 + P Ý a r r r e 5 N = 1 y2.9021813 " 0.234e-239 12 k = 0 k 1 2 12

( )11 N = 2 y2.9027775 " 0.883e-3
( )21 N = 3 y2.9041953 " 0.363e-3
( )36 N = 4 y2.9038038 " 0.172e-3
( )57 N = 5 y2.9037496 " 0.796e-4

n l m a r y b r1 2( )[ ( )C = 1 + P Ý a r r r e 11 N = 1 y2.9028785 " 0.206e-240 12 k = 0 k 1 2 12
n l m y a r y b rˆ 1 2 ] ( )+Ý a r r r e 23 N = 2 y2.9048122 " 0.368e-3ˆk = 0 k 1 2 12

( )43 N = 3 y2.9038500 " 0.104e-3

( )Continued

VOL. 63, NO. 51006
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TABLE IV
( )Continued

( )Form No. parameters Energy au

n l m y a r y b r1 2( ) ( ) ( )C = 1 + P Ý a r + r r y r r e41 12 k = 0 k 1 2 1 2 12

( )5 N = 1 y2.9021811 " 0.234e-2
( )11 N = 2 y2.9027419 " 0.884e-3
( )15 N = 2, n = y1 y2.9023392 " 0.640e-3
( )20 N = 2, n = y2 y2.9024091 " 0.578e-3
( )26 N = 2, n = y3 y2.9019591 " 0.522e-3

kÝ a rk = 0 k 12
( ) ( )C = 1 + P exp y ar y b r 4 N = 1 y2.8996389 " 0.235e-242 12 1 2kž /Ý b rk = 0 k 12 ( )6 N = 2 y2.9006769 " 0.225e-2

n l mÝ a r r rk = 0 k 1 2 12
( ) ( )C = 1 + P exp y ar y b r 8 N = 1 y2.9035974 " 0.408e-343 12 1 2n l mž /Ý b r r rk = 0 k 1 2 12 ( )20 N = 2 y2.9037434 " 0.297e-4

( )40 N = 3 y2.9037228 " 0.558e-5

Best form

kÝ a rk = 0 k 12 y a r y b r1 2( ) ( )C = 1 + P e 4 N = 1 y2.8997302 " 0.234e-244 12 kÝ b r ( )k = 0 k 12 6 N = 2 y2.9006684 " 0.225e-2

n l mÝ a r r rk = 0 k 1 2 12 y a r y b r1 2( ) ( )C = 1 + P e 8 N = 1 y2.9036625 " 0.558e-345 12 n l mÝ b r r rk = 0 k 1 2 12 ( )20 N = 2 y2.9036934 " 0.380e-4
( )40 N = 3 y2.9037201 " 0.595e-5

y a r y b r yg rk 1 k 2 k 12( )C = 1 + P Ý a e 8 y2.9016091 " 0.123e-246 12 k =1 k

16 y2.9037691 " 0.426e-3

24 y2.9036837 " 0.151e-3

32 y2.9037805 " 0.603e-4

y a r y b rk 1 k 2( ) ( )C = 1 + P Ý a 1 + g r e 8 y2.9020742 " 0.201e-247 12 k =1 k k 12

16 y2.9032493 " 0.152e-2

24 y2.9036084 " 0.147e-2

2 y a r y b rk 1 k 2( ) ( )C = 1 + P Ý a 1 + g r + d r e 10 y2.9016281 " 0.122e-248 12 k = 0 k k 12 k 12

20 y2.9043933 " 0.454e-3

30 y2.9040674 " 0.290e-3

n l mÝ a r r rk = 0 k 1 2 12
( )C = 1 + P exp49 12 n l mž Ý b r r rk = 0 k 1 2 12

2 2 2 2 2( ) [ ] ( )+c r + r y r ln r + r y ar y b r 21 N = 2 y2.9037428 " 0.297e-41 2 12 1 2 1 2 / ( )41 N = 3 y2.9037235 " 0.556e-5

[ ]Literature y2.903724375 26

two major demands on the trial wave function—its
need to satisfy the asymptotic boundary condi-
tions of the system and its need to fill space in the
appropriate regions. Transformed variables also
allow us to consider some new wave-function

forms, e.g., ehyll, which might otherwise violate the
boundary conditions at r ª `. For helium, one

Ž .common transformation is q s r r 1 q b r ,x x x x

where x s 1, 2, or 12. The value of b can be fixedx

w xat a constant, e.g., 1.0 as in 12 , optimized as a
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TABLE V
Helium ground-state wave functions: general form in transformed coordinatesa; N is the excitation level.

( )Form No. parameters Energy au

n l m( ( ) ( ) ) ( )C = det exp Ý a q + q q y q q 3 N = 1 y2.8989579 " 0.344e-250 k = 0 k 1 2 1 2 12

( )7 N = 2 y2.9022706 " 0.162e-2
( )13 N = 3 y2.9039398 " 0.580e-3
( )22 N = 4 y2.9035629 " 0.165e-3

n l m( ) ( ) ( ( ) ( ) ) ( )C = f r f r exp Ý a q + q q y q q 8 N = 1 y2.8995703 " 0.230e-251 1 2 k = 0 k 1 2 1 2 12

( )11 N = 2 y2.9024948 " 0.161e-2

n l m( ( ) ( ) ( )) ( )C = exp Ý a q + q q y q q y a r + r 4 N = 1 y2.8799693 " 0.452e-252 k = 0 k 1 2 1 2 12 1 2

( )8 N = 2 y2.8984988 " 0.243e-2
( )14 N = 3 y2.9037259 " 0.141e-2

n l m( ) ( . ( )C = 1 + P exp Ý a q q q y ar y b r 6 N = 1 y2.9001629 " 0.177e-253 12 k = 0 k 1 2 12 1 2

( )12 N = 2 y2.9029465 " 0.506e-3
( )21 N = 3 y2.9037485 " 0.916e-4

n l mÝ a q q qˆ ˆ ˆk = 0 k 1 2 12
( ) ( )C = 1 + P exp y ar y b r 8 N = 1 y2.9024366 " 0.139e-254 12 1 2n l mž /Ý b q q qˆ ˆ ˆ ( )k = 0 k 1 2 12 20 N = 2 y2.9035820 " 0.249e-3

n l mÝ a q q qk = 0 k 1 2 12
( ) ( )C = 1 + P exp y ar y b r 9 N = 1 y2.9035968 " 0.408e-355 12 1 2n l mž /Ý b q q qk = 0 k 1 2 12 ( )21 N = 2 y2.9037434 " 0.297e-4

n l mÝ a q q q˜ ˜ ˜k = 0 k 1 2 12
( ) ( )C = 1 + P exp y ar y b r 11 N = 1 y2.9035998 " 0.408e-356 12 1 2n l mž /Ý b q q q˜ ˜ ˜ ( )k = 0 k 1 2 12 23 N = 2 y2.9037447 " 0.297e-4

[ ]Literature y2.903724375 26

a ( ) ( ) [ ] ( ) ( )Here, det = f r f r as computed by Clementi and Roetti 25 using an energy minimization; q = r / 1 + r , q = r / 1 + brˆ1 2 i i i i i i

( ) ( ) ( ) [ 4 k ] y a r1and q = r / 1 + b r i = 1, 2, 12 . Elsewhere, f r = 1 + Ý a r e .ĩ i i i 1 k = 1 k 1

single parameter for all three variables or opti-
mized as a separate parameter for each variable.

For this system, none of these options, C ]C ,54 56

was found to significantly improve the conver-
gence of our best form C . We did find, however,43

that when we use transformed variables to create
several of the exponential Hylleraas forms many of
these wave functions converged faster than did the
corresponding linear Hylleraas forms in Tables III
and IV.

The relative convergence of many of our trial
wave-function forms is shown in Figure 1. Al-
though both the Hylleraas and the Pade forms are´

easily extendible, the former is much easier to
optimize. For this system, however, any increase
in difficulty due to the Pade form is more than´

offset by its superior convergence.

For comparison, we also evaluated the exponen-
w xtial Pade helium wave-function form in 7 with´

the same 4000 configurations used to determine

the results in Tables I]V. This form is similar to
C in Table IV and gives comparable results,33

y2.9037245 " 0.792 e-5, using 52 parameters which
include terms up to the fourth power of the vari-
ables. In contrast, our best form, C , has a lower43

variance, -2.9037228 " 0.558e-5, and uses only 40
adjustable parameters with terms only up to the
third power. The major difference is that C in-43

cludes an explicit permutation of the electronic
w x Ž .coordinates while the one in 7 and C does33

not.

Helium Singlet Excited State

We have optimized several wave-function forms
for this state using a functional which includes

Žexplicit orthogonality with the ground state see
.Appendix 1 . Table VI and Figure 2 show that the

convergence of these forms is generally slower
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FIGURE 1. Convergence comparison of several helium ground-state wave functions. Variances from Table IV.

than are their ground-state counterparts. One ex-
ception, however, is the Drake form, C , which is6

now noticeably better than either the Hylleraas or
linear Pade forms. Although the values are not´

included in Table VI, we also investigated the
effect of negative powers and logarithmic terms on
the convergence of this state. As in the ground
state, these features were found to have little influ-
ence on the variance. Our best form is once again
an exponential Pade. The forms C ]C show that´ 10 14

Žthe terms associated with r the unexcited elec-1

.tron have little effect on the variance and can be
eliminated without penalty. In contrast, the terms
associated with r describe the excited-state node2

and must be considered in some detail. Our results
show that the maximum convergence per constant
is given by C which uses the polynomial 1 q cr13 2

q dr 2 to describe the single node in this system.2

Helium Triplet Ground State

A Hartree]Fock description of the triplet ground
Ž . Ž .state is usually written as F r F r y1 s 1 2 s 2

Ž . Ž .F r F r . The question that we wish to ex-2 s 1 1 s 2

amine here is whether the nodal structure of this
Žstate requires an explicit node like the one pro-

vided by F above or by r in the singlet excited2 s 2

.state . We show in Table VII that the extra bound-
Ž .ary condition 1 q cr does not speed the conver-2

gence of the exponential Pade form as a function´

of the number of adjustable parameters. Thus, we
conclude that the antisymmetry operator alone is
capable of introducing the proper symmetry.

Lithium Ground State

In Table VIII and Figure 3, we compare the
results of several trial wave-function forms for the
ground state of lithium. Those forms which most
accurately describe this state are different in sev-
eral respects from those which best described the
various helium states in the second to fourth sec-
tions. Transformed coordinates, e.g., were of minor
importance for helium but are essential for all of
the good lithium forms. Although, in principle,
any wave function can be expanded in a polyno-
mial basis, in practice, the higher-power terms of
such expansions have an increasing tendency to
violate the asymptotic boundary condition of sys-
tems with more than two electrons. Coordinate
transformation remove this problems by making
the variables local. The form that we have chosen,

Ž .r r 1 q b r , is especially well suited for this job.x x x

It has no maximum for r ) 0 and is very smooth.x
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TABLE VI
Helium excited-state wave functions of general forma; N is the excitation level.

( )Form No. parameters Energy au

( ) ( ) ( ) ( )C = 1 + P f r h r 12 N = 0 y2.1226698 " 0.141e-21 12 1 2

k( ) ( ) ( ) ( ) ( )C = 1 + P f r h r exp Ý a r 13 N = 1 y2.1269442 " 0.756e-32 12 1 2 k = 0 k 12

( )14 N = 2 y2.1296726 " 0.657e-3

k( ) ( ) ( ) ( )C = 1 + P f r h r Ý a r 13 N = 1 y2.1271674 " 0.749e-33 12 1 2 k = 0 k 12

( )14 N = 2 y2.1274805 " 0.539e-3

n l m( ) ( ) ( ) ( )C = 1 + P f r h r Ý a r r r 15 N = 1 y2.1269762 " 0.724e-34 12 1 2 k = 0 k 1 2 12

( )21 N = 2 y2.1393280 " 0.465e-3

n l m y a r y b r1 2( ) ( )C = 1 + P Ý a r r r e 5 N = 1 y2.1462072 " 0.743e-35 12 k = 0 k 1 2 12

( )11 N = 2 y2.1453213 " 0.569e-3
( )21 N = 3 y2.1456610 " 0.327e-3
( )36 N = 4 y2.1465248 " 0.161e-3

n l m y a r y b r1 2( )[C = 1 + P Ý a r r r e6 12 k = 0 k 1 2 12
ˆn l m y a r y b rˆ 1 2 ] ( )+Ý a r r r e 11 N = 1 y2.1370713 " 0.832e-3ˆk = 0 k 1 2 12

( )23 N = 2 y2.1459418 " 0.940e-4
( )43 N = 3 y2.1459938 " 0.298e-4

kÝ a rk = 0 k 12
( ) ( ) ( ) ( )C = 1 + P f r h r exp 12 N = 1 y2.1454987 " 0.349e-37 12 1 2 kž /Ý b rk = 0 k 12 ( )14 N = 2 y2.1457859 " 0.322e-3

n l mÝ a r r rk = 0 k 1 2 12
( ) ( ) ( ) ( )C = 1 + P f r h r exp 18 N = 1 y2.1457433 " 0.312e-38 12 1 2 n l mž /Ý b r r rk = 0 k 1 2 12 ( )30 N = 2 y2.1459725 " 0.254e-4

n l mÝ a r r rk = 0 k 1 2 12
( )( ) ( )C = 1 + P 1 + cr exp y ar y b r 9 N = 1 y2.1440458 " 0.429e-39 12 2 1 2n l mž /Ý b r r rk = 0 k 1 2 12 ( )21 N = 2 y2.1459913 " 0.492e-4

( )41 N = 3 y2.1459722 " 0.963e-5

n l mÝ a r r rk = 0 k 1 2 123( )( ) ( )C = 1 + P 1 + cr + d r exp y ar y b r 10 N = 1 y2.1439478 " 0.426e-310 12 2 2 1 2n l mž /Ý b r r rk = 0 k 1 2 12 ( )22 N = 2 y2.1459590 " 0.353e-4
( )42 N = 3 y2.1459755 " 0.722e-5

Best form

n l mÝ a r r rk = 0 k 1 2 12
( )( ) ( )C = 1 + P 1 + cr + dr exp y ar y b r 10 N = 1 y2.1440997 " 0.429e-311 12 2 12 1 2n l mž /Ý b r r rk = 0 k 1 2 12 ( )22 N = 2 y2.1459770 " 0.489e-4

( )42 N = 3 y2.1459632 " 0.944e-5

kÝ a rk = 0 k 12
( ) ( ) ( ) ( )C = 1 + P f r h r 12 N = 1 y2.1381185 " 0.528e-312 12 1 2 kÝ b rk = 0 k 12 ( )14 N = 2 y2.1457857 " 0.322e-3

n l mÝ a r r rk = 0 k 1 2 12
( ) ( ) ( ) ( )C = 1 + P f r h r 18 N = 1 y2.1439512 " 0.442e-313 12 1 2 n l mÝ b r r rk = 0 k 1 2 12 ( )30 N = 2 y2.1458232 " 0.163e-3

( )Continued
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TABLE VI
( )Continued

( )Form No. parameters Energy au

n l mÝ a r r rk = 0 k 1 2 12 y a r y b r1 2( ) ( )C = 1 + P e 8 N = 1 y2.1424814 " 0.734e-314 12 n l mÝ b r r rk = 0 k 1 2 12 ( )20 N = 2 y2.1457626 " 0.210e-3
( )40 N = 3 y2.1459045 " 0.633e-4

n l mÝ a r r rk = 0 k 1 2 12 y a r y b r1 2( )( ) ( )C = 1 + P 1 + cr e 9 N = 1 y2.1440590 " 0.615e-315 12 2 n l mÝ b r r rk = 0 k 1 2 12 ( )21 N = 2 y2.1457518 " 0.209e-3
( )41 N = 3 y2.1459049 " 0.632e-4

y a r y b r yg rk 1 k 2 k 12( )C = 1 + P Ý a e 16 y2.1389128 " 0.795e-316 12 k =1 k

24 y2.1458506 " 0.143e-3

32 y2.1460007 " 0.425e-4

[ ]Literature y2.145974046 31

a ( ) [ 4 k ] y a r1 ( ) [ 4 k ] y b r2Here, f r = 1 + Ý a r e and h r = 1 + Ý b r e .1 k = 1 k 1 2 k = 1 k 2

This makes the task of parameterizing the wave
function relatively straightforward. We examined
the difference between scaling all variables inde-
pendently and scaling all variables using a single
parameters. For this system, we find that there is
little difference between these two approaches.

Another major difference is that all our lithium
wave functions have a variance which is much
larger than their helium counterparts. This is due
almost entirely to the presence of the third electron
Žthe lithium cation can be computed to the same

.relative error as helium . The variance of just the

Hartree]Fock determinant, C , is 0.042 Hartrees1

Ž .compared to 0.013 for the helium ground state .

Multiplying the lithium determinant by an expo-
nential Pade, C , lowers the variance by a factor of´ 3

28 to 0.0015 Hartrees. Optimizing the parameters
in the determinant, however, had little influence
on this number. On a per constant basis, the vari-
ance also seems to be relatively insensitive to the
form of the correlation functional. The Pade form´

which was by an order of magnitude more accu-
rate than any other trial wave function for the
helium ground state is not significantly better on a

FIGURE 2. Convergence comparison of several helium 2S wave functions. Variances from Table VI.
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TABLE VII
Helium triplet ground-state wave functions of general form; N is the excitation level.

( )Form No. parameters Energy au

n l mÝ a r r rk = 0 k 1 2 12
( ) ( )C = 1 y P exp y ar y b r 8 N = 1 y2.1742064 " 0.390e-31 12 1 2n l mž /Ý b r r rk = 0 k 1 2 12 ( )20 N = 2 y2.1752449 " 0.174e-4

Best form

n l mÝ a r r rk = 0 k 1 2 12
( )( ) ( )C = 1 y P 1 + cr exp y ar y b r 9 N = 1 y2.1751780 " 0.331e-32 12 2 1 2n l mž /Ý b r r rk = 0 k 1 2 12 ( )21 N = 2 y2.1752392 " 0.155e-4

[ ]Literature y2.175229378 31

per constant basis than is the simpler Hylleraas
form for the lithium ground state. The only advan-
tage of the Pade in this system is that it provides a´

straightforward way to double the number of pa-
rameters.

Our examination of the asymptotic form of the
wave function shows that the ‘‘minimal orbitals’’
for this system are given by eya r1 and eyb r2 for the

Ž . Ž . yg r3first two 1s-type electrons and r y c e for3

Ž .the third 2 s-type electron. This is entirely consis-
tent with what one would expect from a single-
particle description. While a decrease in the vari-
ance can be gained by making the 1s orbital more
flexible, setting the correct nodal behavior of the
2 s orbital is ultimately more important.

For a system with multiple electrons, the anti-
symmetric nature of the wave function can be
described using either a determinant or by explic-

Ž .itly permuting all electrons see Appendix 2 . When
compared with our best determinant-based wave
function, C , the variance of our best fully anti-6

symmetric wave function, C , is smaller by a18

factor of 5.6.

Beryllium Ground State

In Table IX and Figure 4, we compare the re-
sults of several trial wave-function forms for the
ground state of beryllium. For the most part,
we find that the behavior of this system is simi-
lar to that of the lithium ground state. The major
difference is that an accurate orbital description
requires that we now take into account the near

degeneracy of the 2 s]2 p levels. In a determinant-
based wave function, this can be done most sim-

Žply by using the four-determinant form det f ,1 s

. w Ž . Ž .X Xf q constant det f , f q det f , f q2 s 1 s p x 1 s p y

Ž .xXdet f , f . In a purely antisymmetric wave1 s p z

function, this degeneracy can be included by using
Ž .the term x x q y y q z z to reproduce the3 4 3 4 3 4

w xclose-in behavior of the p states 36 .

For this system, the variance of the Hartree]

Fock determinant, C , is 0.035 Hartrees. Multiply-1

ing this form by an exponential Pade, C , lowers´ 3

the variance by a factor of 8 to 0.0044 Hartrees. As
in lithium, optimizing the parameters inside the
determinant does not significantly lower the vari-
ance—in fact, the value for C is slightly worse13

than for C . On a per constant basis, the form of3

the correlation functional again seems to have little
effect. Although the variances of our four determi-
nant forms, e.g., C , have only a slightly smaller14

variance than those of our single-determinant
forms, e.g., C , their energy is noticeably better.12

This behavior was also seen by Umrigar et al. in
w x7 .

Our examination of the asymptotic form of the
wave function again shows that the ‘‘minimal or-
bitals’’ for this system are given by eya r1 and eyb r2

Ž . Žfor the first two 1s-type electrons and r y3

. yg r3 Ž .c e for the third 2 s-type electron. We still see,
however, some lingering desire to make the 1s
orbital more flexible.

If we choose to explicitly permute the electronic
coordinates in the wave function rather than to use
determinants, both our variance and our energy
show a significant improvement. When compared
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TABLE VIII
Lithium ground wave functions of general forma; N is the excitation level.

( )Form No. parameters Energy au

( )C = det 0 N = 0 y7.377666 " 0.426e-11

hyll1 ( )C = det e 7 N = 1 y7.469512 " 0.101e-12

( )28 N = 2 y7.479467 " 0.416e-2

pade1´ ( )C = det e 13 N = 1 y7.466850 " 0.979e-23

( )55 N = 2 y7.475383 " 0.151e-2

hyll1( ) ( )C = opt det a e 2 N = 0 y7.270501 " 0.361e-14

( )9 N = 1 y7.468003 " 0.706e-2
( )30 N = 2 y7.474828 " 0.410e-2

hyll1( ) ( )C = opt det b e 4 N = 0 y7.301724 " 0.311e-15

( )11 N = 1 y7.467400 " 0.689e-2
( )32 N = 2 y7.475041 " 0.403e-2

hyll1( ) ( )C = opt det c e 3 N = 0 y7.233649 " 0.357e-16

( )10 N = 1 y7.454445 " 0.682e-2
( )31 N = 2 y7.477295 " 0.407e-2
( )87 N = 3 y7.477064 " 0.152e-2

Best form with minimal orbital determinant

pade1´( ) ( )C = opt det a e 2 N = 0 y7.274083 " 0.361e-17

( )15 N = 1 y7.470297 " 0.525e-2
( )57 N = 2 y7.473268 " 0.261e-2

pade1´( ) ( )C = opt det b e 4 N = 0 y7.305709 " 0.311e-18

( )17 N = 1 y7.473371 " 0.398e-2
( )59 N = 2 y7.473565 " 0.150e-2

padé1( ) ( )C = opt det c e 3 N = 0 y7.233649 " 0.357e-19

( )16 N = 1 y7.465996 " 0.521e-2
( )58 N = 2 y7.474210 " 0.259e-2

hyll1y a r y b r yg r1 2 3[ ] ( )C = A e 3 N = 0 y7.275161 " 0.345e-110

( )10 N = 1 y7.470221 " 0.473e-2
( )31 N = 2 y7.477487 " 0.124e-2

y a r y b r yg r1 2 3[ ] ( )C = A hyll1e 10 N = 1 y7.463641 " 0.589e-211

( )31 N = 2 y7.476566 " 0.165e-2

pade1y a r y b r yg r´ 1 2 3[ ] ( )C = A e 16 N = 1 y7.463701 " 0.446e-212

( )58 N = 2 y7.477765 " 0.577e-3

y a r y b r yg r1 2 3[ ] ( )C = A pade1e 16 N = 1 y7.471567 " 0.458e-2´13

( )58 N = 2 y7.477468 " 0.433e-3

hyll1y a r y b r yg r1 2 3[ ] ( )C = A r e 3 N = 0 y7.287719 " 0.362e-114 3

( )10 N = 1 y7.471244 " 0.476e-2
( )31 N = 2 y7.477611 " 0.123e-2

y a r y b r yg r1 2 3[ ] ( )C = A r hyll1e 10 N = 1 y7.472713 " 0.378e-215 3

( )31 N = 2 y7.477633 " 0.148e-2

( )Continued
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TABLE VIII
( )Continued

( )Form No. parameters Energy au

pade1ya r y b r yg r´ 1 2 3[ ] ( )C = A r e 16 N = 1 y7.470518 " 0.435e-216 3

( )58 N = 2 y7.477935 " 0.330e-3

y a r y b r yg r1 2 3[ ] ( )C = A r pade1e 16 N = 1 y7.470874 " 0.218e-2´17 3

( )58 N = 2 y7.477702 " 0.438e-3

hyll1y a r y b r yg r1 2 3[( ) ] ( )C = A r y c e 4 N = 0 y7.275045 " 0.345e-118 3

( )11 N = 1 y7.470166 " 0.473e-2
( )32 N = 2 y7.477765 " 0.123e-2
( )88 N = 3 y7.478281 " 0.276e-3

Best form

y a r y b r yg r1 2 3[( ) ] ( )C = A r y c hyll1e 11 N = 1 y7.473313 " 0.375e-219 3

( )32 N = 2 y7.477858 " 0.146e-2

pade1y a r y b r yg r´ 1 2 3[( ) ] ( )C = A r y c e 17 N = 1 y7.470957 " 0.199e-220 3

( )59 N = 2 y7.478069 " 0.319e-3

y a r y b r yg r1 2 3[( ) ] ( )C = A r y c pade1e 17 N = 1 y7.471629 " 0.213e-2´21 3

( )59 N = 2 y7.477793 " 0.352e-3

hyll2y a r y b r yg r1 2 3[( ) ] ( )C = A r y c e 16 N = 1 y7.472168 " 0.457e-222 3

( )37 N = 2 y7.477795 " 0.119e-2

y a r y b r yg r1 2 3[( ) ] ( )C = A r y c hyll2e 16 N = 1 y7.474202 " 0.369e-223 3

( )37 N = 2 y7.477785 " 0.146e-2

pade2y a r y b r yg r´ 1 2 3[( ) ] ( )C = A r y c e 22 N = 1 y7.475782 " 0.165e-224 3

( )64 N = 2 y7.478067 " 0.316e-3

y a r y b r yg r1 2 3[( ) ] ( )C = A r y c pade2e 22 N = 1 y7.469480 " 0.192e-2´25 3

( )64 N = 2 y7.477967 " 0.327e-3

[ ]Exact y7.478060326 37

a [ ]Here, det is the Hartree]Fock determinant computed by Clementi and Roetti 25 using an energy minimization;

c d e f g h ( )hyll1 = a q q q q q q , where q = r / 1 + br ,Ý k 1 2 3 12 13 23 i i i

k=0

c d e f g h ( )hyll2 = a q q q q q q , where q = r / 1 + b r ,Ý k 1 2 3 12 13 23 i i i i

k=0

Ý a qcqdqeq f q g q h
k = 0 k 1 2 3 12 13 23

( )pade1 = , where q = r / 1 + br ,´ i i ic d e f g hÝ b q q q q q qk = 0 k 1 2 3 12 13 23

Ý a qcqdqeq f q g q h
k = 0 k 1 2 3 12 13 23

( )pade2 = , where q = r / 1 + b r .´ i i i ic d e f g hÝ b q q q q q qk = 0 k 1 2 3 12 13 23

( ) y a1r y a2 r ( ) y a1r y a2 rThe orbitals which define det a are f = e and f = re . The orbitals which define det b are f = e + ce and1 2 1
y a3 r ( ) y a1r ( ) y a2 rf = re . The orbitals which define det c are f = e and f = r + c e .2 1 2
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FIGURE 3. Convergence comparison of several lithium ground-state wave functions. Variances from Table VIII.

with the best determinantal form, C , the vari-14

ance of our best fully antisymmetric form, C , is16

smaller by a factor of 2.7.

For comparison, we have also examined the
four-determinant exponential Pade form described´

w xin 17 . This form has 110 parameters and includes
terms up to the fourth power of the variables but

Žhas a single parameter for each type of term e.g.,
the coefficient of r r is the same for all values of ii i j

.and j . When evaluated with the same 4000 con-
figurations used to determine the results in Table
IX, this wave function has a value of y14.66642 "

0.175e-2. In contrast, our most similar form, C ,15

has 137 parameters and includes terms up to the
second power of the variables but uses separate

Žparameters for all terms e.g., the coefficient of
.r r is allowed to be different from that of r r .1 12 3 34

Because our value, y14.66261 " 0.265e-2, is
w xslightly worse than the one in 17 , we conclude

that our rate of convergence could be improved by
combining some types of terms in the Hylleraas
and Pade expansions rather than using separate´

parameters for each one.

Antisymmetry Considerations

A number of calculations have recently been
able to obtain highly accurate energies of atoms
and molecules by using a fully antisymmetric wave

Ž w x.function see, e.g., 38]40 . For this reason, it is of
interest to compare the convergence of the forms

Ž . w Ž .xdet f r , . . . , r and A f r , . . . , r in some de-1 n 1 n

tail. It should be noted that on the order of N!
evaluations of the complete trial wave function are
required to antisymmetrize N same-spin coordi-

Ž . 3nates see Appendix 2 . In contrast, only about N
arithmetic operations are required to evaluate a
determinant. This is a substantial difference and a
large drop in the variance will be needed to justify
the extra time required.

For the helium ground state, our best single-de-
terminant form, C , produced an energy of24

Ž .y2.90374 2 with 29 adjustable constants. In con-
Ž .trast, our best form, C , gives y2.903723 6 with43

40 constants, i.e., a factor of 4 decrease in the
variance. A similar improvement was found for
the lithium ground state. There our best single-de-
terminant form, C , produced an energy of6

Ž .y7.477 1 with 87 adjustable constants, while our
Ž .best form, C , gives 7.4783 3 with 32 constants,18

i.e., a factor of 5.4 improvement in the variance. In
the case of the beryllium ground state, our best
single-determinant form, C , produced an energy12

Ž .of y14.640 4 with 69 adjustable constants while
our best four-determinant form, C , gives14

Ž .y14.661 4 with 72 constants. Our best form for
this system, C , was designed to include the de-16

w xgeneracy between the 2 s and 2 p orbitals 36 .

Compared to either of the single determinant or
the multideterminant form, the variance of the full

Ž .antisymmetrized wave function, y14.663 1 with
72 constants, is lower by almost a factor of 3.
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TABLE IX
Beryllium ground wave functions of general forma; N is the excitation level.

( )Form No. parameters Energy au

( )C = det 0 N = 0 y14.521009 " 0.350e-11

hyll1 ( )C = det e 11 N = 1 y14.631914 " 0.674e-22

( )66 N = 2 y14.638787 " 0.438e-2

pade1´ ( )C = det e 21 N = 1 y14.632676 " 0.491e-23

( )131 N = 2 y14.662865 " 0.305e-2

hyll1( ) ( )C = opt det a e 2 N = 0 y14.531015 " 0.329e-14

( )13 N = 1 y14.628944 " 0.708e-2
( )68 N = 2 y14.641285 " 0.468e-2

pade1´( ) ( )C = opt det a e 23 N = 1 y14.633346 " 0.526e-25

( )133 N = 2 y14.639388 " 0.384e-2

4 hyll1[ ( )] ( )C = Ý opt det b e 5 N = 0 y14.512123 " 0.326e-16 i=1 i

( )16 N = 1 y14.643356 " 0.693e-2
( )71 N = 2 y14.660304 " 0.444e-2

4 pade1´[ ( )] ( )C = Ý opt det b e 26 N = 1 y14.654809 " 0.491e-27 i=1 i

( )136 N = 2 y14.658009 " 0.321e-2

hyll1( ) ( )C = opt det c e 4 N = 0 y14.563531 " 0.290e-18

( )15 N = 1 y14.628784 " 0.696e-2
( )70 N = 2 y14.641373 " 0.468e-2

pade1´( ) ( )C = opt det c e 25 N = 1 y14.633497 " 0.522e-29

( )135 N = 2 y14.643355 " 0.350e-2

4 hyll1[ ( )] ( )C = Ý opt det d e 9 N = 0 y14.536849 " 0.277e-110 i=1 i

( )20 N = 1 y14.631374 " 0.686e-2
( )75 N = 2 y14.660843 " 0.441e-2

4 pade1´[ ( )] ( )C = Ý opt det d e 30 N = 1 y14.653399 " 0.490e-211 i=1 i

( )140 N = 2 y14.662517 " 0.277e-2

hyll1( ) ( )C = opt det e e 3 N = 0 y14.520258 " 0.323e-112

( )14 N = 1 y14.629705 " 0.686e-2
( )69 N = 2 y14.640387 " 0.431e-2

Best single determinant form

pade1´( ) ( )C = opt det e e 24 N = 1 y14.634530 " 0.490e-213

( )134 N = 2 y14.642677 " 0.325e-2

4 hyll1[ ( )] ( )C = Ý opt det f e 6 N = 0 y14.491088 " 0.316e-114 i=1 i

( )17 N = 1 y14.644169 " 0.670e-2
( )72 N = 2 y14.661215 " 0.403e-2

Best multiple determinant form

4 pade1´[ ( )] ( )C = Ý opt det f e 27 N = 1 y14.658263 " 0.444e-215 i=1 i

( )137 N = 2 y14.662610 " 0.266e-2

( )Continued
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TABLE IX
( )Continued

( )Form No. parameters Energy au

[(( )( )C = A r y d r y d16 3 4
hyll1y a r y b r yg r y d r1 2 3 4( )) ] ( )+c x x + y y + z z e 5 N = 0 y14.670208 " 0.314e-13 4 3 4 3 4

( )17 N = 1 y14.669376 " 0.694e-2
( )72 N = 2 y14.663186 " 0.150e-2

Best form

[(( )( ))C = A r y d r y d17 3 4
y a r y b r yg r y d r1 2 3 4( )) ] ( )+c x x + y y + z z hyll1e 17 N = 1 y14.662252 " 0.621e-23 4 3 4 3 4

( )72 N = 2 y14.663404 " 0.191e-2

[(( )( )C = A r y d r y d18 3 4
pade1y a r y b r yg r y d r´ 1 2 3 4( )) ] ( )+c x x + y y + z z e 27 N = 1 y14.665581 " 0.472e-23 4 3 4 3 4

( )137 N = 2 y14.667133 " 0.745e-3

[(( )( )C = A r y d r y d19 3 4
y a r y b r yg r y d r1 2 3 4( )) ] ( )+c x x + y y + z z pade1e 27 N = 1 y14.661077 " 0.468e-2´3 4 3 4 3 4

( )137 N = 2 y14.665984 " 0.735e-3

( ) [ ]Literature y14.66737 3 41

a [ ]Here, det is the Hartree]Fock determinant computed by Clementi and Roetti 25 using an energy minimization;

c d e f g h m n o p ( ) ( )hyll1 = a q q q q q q q q q q , where q = r / 1 + br and q = r / 1 + br ,Ý k 1 2 3 4 12 13 14 23 24 3 4 i i i i j i j i j

k=0

Ý a qcqdqeq f q g q h q m q n qo q p
k = 0 k 1 2 3 4 12 13 14 23 24 3 4

( ) ( )pade1 = , where q = r / 1 + br and q = r / 1 + br .´ i i i i j i j i jc d e f g h m n o pÝ b q q q q q q q q q qk = 0 k 1 2 3 4 12 13 14 23 24 3 4

( ) y a1r y a2 r [ 4 ( )] ( ) [ ( ( ))The orbitals which define det a are f = e and f = re . Ý opt det b = det f , f + const det f , f x +1 2 i= 1 i 1 2 3 4

( ( )) ( ( ))] y a1r y a2 r y a3 r ( ) y a4 rdet f , f y + det f , f z , where f = e , f = re , f = e , and f x = xe . The orbitals which define3 4 3 4 1 2 3 4

( ) y a1r y a2 r y a3 r [ 4 ( )] ( ) [ ( ( )) ( ( ))det c are f = e + ce and f = re . Ý opt det d = det f , f + const det f , f x + det f , f y +1 2 i= 1 i 1 2 3 4 3 4
y a r y a r y a r y a r y a r y a r1 2 3 4 5 6( ( ))] ( )det f , f z , where f = e + ce , f = re , f = e + ce , and f x = xe . The orbitals which define3 4 1 2 3 4

( ) y a1r ( ) y a2 r [ 4 ( )] ( ) [ ( ( )) ( ( ))det e are f = e and f = r + c e . Ý opt det f = det f , f + const det f , f x + det f , f y +1 2 i= 1 i 1 2 3 4 3 4

( ( ))] y a1r ( ) y a2 r y a3 r ( ) y a4 rdet f , f z , where f = e , f = r + c e , f = e , and f x = xe .3 4 1 2 3 4

FIGURE 4. Convergence comparison of several beryllium ground-state wave functions. Variances from Table IX.
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Expanding the Wave Function

Although our comparison of wave-function
forms has heretofore been done using a relatively
small number of configurations, we also calculated
the energies of our best wave functions using

w x1,024,000 configurations. As discussed in 13 , the
variances of such expansions may be distorted
because of the influence of the electron]electron
singularities in the Hamiltonian. In the present
work, we eliminated this problem by modifying
our algorithm for generating Monte Carlo integra-
tion points so as to explicitly sample these singu-
larities. This is done by selecting 10% of the elec-
tron locations with respect to other electrons and

averaging over the various ways of selecting an
w xelectron as first discussed in 2 , rather than only

with respect to the nucleus.

As shown in Table X, with our best wave func-
tions, we are able to obtain both a low variance
and a large percentage of the correlation energy for
all of the states considered. These values are also
in excellent agreement with those computed using
other methods.

In addition to the wave-function forms listed in
Table X, we also expanded a few of the Pade forms´

for lithium and beryllium. These calculations ex-
hibited clear signs of numerical instability. In each
case, either the energy andror the variance were
found to be anomalously large. We traced this
problem to the presence of nodes in the denomina-

TABLE X
Comparison of our best energies evaluated with 1,024,000 biased-as-random configurations with those in

the literature. The number in parentheses is the variance.

( )System Method Energy au

1 ( ) ( )1 S He Variational Monte Carlo C y2.9037243 4 This work43

[ ]Hylleraas expansion y2.903724375 42
[ ]Gaussian geminal expansion y2.9037238 43
[ ]Slater geminal expansion y2.903724363 32
[ ]Hylleraas expansion with log terms y2.9037243770341184 26

( ) [ ]VMC y2.903722 2 7
( ) [ ]QMC y2.90374 5 44

3 ( ) ( )2 S He Variational Monte Carlo C y2.175228 1 This work13

[ ]Hylleraas expansion y2.175229378237 42
[ ]Slater geminal expansion y2.175229376 33
[ ]Double Hylleraas expansion y2.1752293782367907 31

( ) [ ]VMC y2.175226 2 7
( ) [ ]QMC y2.175243 66 45

1 ( ) ( )2 S He Variational Monte Carlo C y2.1459737 5 This work1

[ ]Hylleraas expansion y2.145974037 46
[ ]Slater geminal expansion y2.145973824 33
[ ]Double Hylleraas expansion y2.145974046054143 31

( ) [ ]QMC y2.14493 7 47

2 ( ) ( )1 S Li Variational Monte Carlo C y7.47800 3 This work18

[ ]Hylleraas expansion y7.478060326 37
( ) [ ]MBPT 2 y7.4743 48

[ ]CI y7.477906662 49
( ) [ ]VMC y7.4768 3 12

( ) [ ]QMC y7.47809 24 50

1 ( ) ( )1 S Be Variational Monte Carlo C y14.6667 2 This work16

[ ]Hylleraas expansion y14.66654 51
( ) [ ]Numerical MCSCF y14.66737 3 41

[ ]Numerical CCSD y14.666690 52
( ) [ ]CCSD T y14.667264 53

( ) [ ]VMC y14.66648 1 17
( ) [ ]QMC y14.66718 3 17
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tor of the Pade. During the optimization step,´

these nodes were placed in poorly sampled re-
gions. If a configuration happens to sample this
region during the expansion, a singularity is pro-
duced. We were able to eliminate this problem by
making the coefficients in the denominator of the
Pade positive definite, i.e., changing b to b2 but´ k k

this significantly increased the variances of these
functions.

Conclusions

In this article, we examined the relationship
between wave-function form and the rate of con-
vergence for several atomic systems. Our calcula-
tions reveal a number of trends:

There is often a tradeoff one must make be-
tween the complexity of a wave-function form and
its computational cost. Although the convergence
of the Slater-geminal forms was quite good for
helium, its structure makes it difficult to add addi-
tional functions. In contrast, both Hylleraas and
Pade forms allow additional terms to be added in´

a straightforward manner. Because the Pade and´

Slater-geminal forms contain a number of nonlin-
ear parameters per basis function, they take much

Žlonger to optimize than a Hylleraas form in fact,
our Pade optimizations were almost always started´

.from the corresponding Hylleraas result . Once all
parameters are optimized, however, the computa-
tional time needed to evaluate a trial wave func-
tion scales as the number of basis functions.

We find that of use of minimal orbitals to de-
Žscribe the boundary conditions a concept not ex-

w xplicitly described in 7 but which is used there
w x.and in 17 leads to an especially compact wave-

function form. Because information about the
Hartree]Fock determinant is available for many
systems, a large number of trial wave functions
incorporate this function. Hartree]Fock orbitals,
however, contain a number of parameters which
do not provide any information about the asymp-
totic or nodal behavior of the system but exist only
to maintain orthogonality with the other orbitals.

In a Monte Carlo calculation, this orthogonality
requirement is unnecessary and may slow conver-
gence.

We have found that explicit permutation of the
electrons leads to even more flexible wave-func-
tion forms and more rapid convergence than do
similar forms which are based on determinants.

Explicit permutation of the wave function can

probably be used in systems with up to about six
electrons before the computational cost becomes
prohibitive. The latter, however, give good results
and will be much cheaper for systems with large
number of electrons.

Transformed coordinates allow us to create ex-
ponential Hylleraas-type wave functions which do
not violate the boundary conditions at large dis-
tances. Our calculations show that after a trial
wave function reaches a certain level of accuracy
these exponential forms are more accurate than are
the corresponding linear forms. This can probably
be attributed to the fact that an exponential form is
able to adjust more rapidly to changes in the wave
function. Because it is also a positive definite func-
tion, the exponential form cannot introduce extra-
neous nodes.

In general, we have found that the form of our
trial wave function does not need to explicitly
satisfy the cusp condition at the origin in order to
obtain highly accurate results. The error associated
with this omission is easily corrected by having
the optimized guiding function put more configu-
rations in this region. We have examined several
wave-function forms which do explicitly satisfy
this cusp condition and found that for a fixed
number of constants they raised the total energy
andror the variance. We recommend that such
terms not be used.

Our calculations confirm that the Pade form´
w xintroduced by Umrigar et al. 7 is capable of

Žproducing low variances and most of the correla-
.tion energy with few parameters for the ground

and excited states of helium. Although we have
w xpresented the results from only m, m -type Pades,´

w xwe have explored the use of m, n -type Pades and´

found without exception that they performed
slightly worse. Unfortunately, the rapid conver-
gence of the Pade form seems to be restricted only´

to the helium atom. For larger systems, we find
that the energies and variances produced by
Hylleraas and Pade forms are not substantially´

different when examined on a per constant basis.

This, together with the problems we had expand-
ing the Pade forms for lithium and beryllium, led´

us to recommend that Hylleraas forms with trans-
formed coordinates be used as the basis for future
atomic calculations.
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Appendix 1: Excited-state Calculations

The procedure used to optimize the wave func-
tions of excited states is basically the same as the
one used for ground states. For the first excited
state, the optimization functional of the wave func-

Ž .tion must be changed from Eq. 2 to

2Ž .C xt i2
w Ž . Ž .xH C x y E C xÝ t i in t i Ž .w x ii

22Ž .C xt i
Ý½ 5Ž .w x ii

2
Ž . Ž .F x C xt i t i

Ý½ 5Ž .w x ii Ž .q l . A1
2 2Ž . Ž .F x C xt i t i

Ý Ý
Ž . Ž .w x w xi ii i

Here, F is the optimized wave function for thet

ground state and C is the trial wave function fort

the first excited state. The second term approxi-
mately orthogonalizes the first excited state to the
ground state. Higher excited states can be gener-
ated in similar manner. While this procedure has

w xproved to be quite accurate 15 , the only way to
be certain that an excited state is rigorously or-
thogonal to all lower-state approximate wave func-
tions is to perform a Rayleigh]Ritz calculation
w x13 .

w xIn 15 , we reported that the mixing parameter
l s 0.001 was adequate for most applications.

During the current calculations, we noticed that
when the variance is smaller than 10y3 the opti-
mization was frequently dominated by the orthog-
onality rather than by the variance. Setting l s

0.1s removes this problem. As both Table XI and
Figure 5 illustrate, this value produces a low vari-
ance and sufficient orthogonality with the ground
state for accurate optimization.

Appendix 2: Electron Permutation

A fermion wave function must be antisymmet-
ric with respect to all electrons. In many textbooks,
this requirement is usually expressed as a summa-

Ž w x.tion over all N! permutations see, e.g., 54 :

1 v
Ž . Ž . Ž .C 1, 2 . . . N s y1 P F 1, 2 . . . N ,Ý v'N ! v

Ž .A2

FIGURE 5. Convergence of a helium 2S wave function as a function of the orthogonality parameter l.
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TABLE XI
Energy of the helium singlet excited state and its

overlap with the helium ground state as a function
( )of the orthogonality parameter l in Eq. A1 .

l Energy Overlap

y210 y2.1459924 " 0.4188e-4 0.114e-4
y310 y2.1459901 " 0.4154e-4 0.124e-3
y410 y2.1459836 " 0.3866e-4 0.110e-2
y510 y2.1459684 " 0.2865e-4 0.522e-2
y610 y2.1459721 " 0.2536e-4 0.815e-2
y710 y2.1459740 " 0.2528e-4 0.862e-2

( )The excited state wave function is F N = 2 as described8

in Table VI and the ground-state wave function is C26

( )N = 2 as described in Table III. All values are in atomic

units.

Ž .where P F 1, 2 . . . N denotes the function ob-v

Ž .tained from F 1, 2 . . . N by the vth permutation
of the N electrons in the system. If F contains
only single-particle functions, C can be written

Žsimply as a Slater determinant which may not be
.an eigenfunction of the spin . If F contains inter-

particle coordinates, however, one must explicitly
permute the electrons in the wave function in
order to properly incorporate antisymmetry. The
symmetric group approach is perhaps the most
straightforward method of determining which of
the possible N! operations will contribute to a

w xparticular spin state 55 . In this procedure, one
first writes down the Young diagram for the de-
sired spin state, antisymmetrizes with respect to
the columns, and then symmetrizes with respect to
the rows. For the lithium doublet ground state,
this leads to

1 2

3 w Ž .x w Ž .xF s I q 12 I y 13 F

w Ž . Ž . Ž .Ž .x Ž .s I q 12 y 13 y 12 13 F . A3

Ž .Here, I is the unit operator no permutation and
Ž .ij interchanges electrons i and j in F. For the
beryllium singlet ground state, the symmetric
group approach yields

1 2

3 4 w Ž .x w Ž .x w Ž .xF s I q 12 I q 34 I y 13

w Ž .x= I y 24 F

w Ž . Ž . Ž . Ž .s I q 12 q 34 y 13 y 24

Ž .Ž . Ž .Ž . Ž .Ž .q 12 34 y 12 13 y 12 24

Ž .Ž . Ž .Ž . Ž .Ž .y 34 13 y 34 24 y 13 24

Ž .Ž .Ž . Ž .Ž .Ž .y 12 34 13 y 12 34 24

Ž .Ž .Ž . Ž .Ž .Ž .q 12 13 24 q 34 13 24

Ž .Ž .Ž .Ž .xq 12 34 13 24 F .

With such wave functions, the computation of the
w Ž .x w Ž .xtotal energy Eq. 1 and the variance Eq. 2 is

straightforward. For each configuration, one sim-
ply evaluates the trial wave function F as well as
the quantity HF at each set of permuted electronic
coordinates specified by the symmetric group ap-
proach. These values are then summed with the
proper signs to produce C and H C, respectively.

In our lithium calculation, this method requires
four evaluations of the trial wave function for each
configuration, and for beryllium, 16 evaluations.

Although the computational cost of an explicitly
permuted wave function is larger than that re-
quired by a wave function which uses a determi-
nant to permute the electrons, the large reduction
in the variance which we obtain does justify the
additional expense.
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