
16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

1

A general-purpose program structure
for variational Monte-Carlo calculation

Code, slides and report may be found at:
http://folk.uio.no/kyrrens

Kyrre Ness Sjøbæk
16th of April, 2009

http://folk.uio.no/kyrrens

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

2

Outline

✗ Object-orientation and inheritance with C++
✗ Basic overview of program structure

✗ Wavefunction classes
✗ Algorithm classes
✗ Glue

✗ Ideas for improvement for my code
✗ Tips & tricks

✗ How to split a big C/C++ program into several files
✗ Makefile

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

3

Object-orientation and inheritance
with C++

What is object orientation

Why and when to use object orientation

Inheritance

C++ syntax

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

4

What is object orientation

✗ Classes = new types datatypes specialized for
a task, that may perform operations

✗ A good way to keep state that needs to be
shared between many functions

(alternative: Global variables, massive
argument lists)

✗ Makes debugging and code reuse simpler:

Program is composed of several (mostly)
independent self-contained pieces

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

5

Why and when to use object
orientation (and when not to)

✗ Use object orientation when:

– You can separate your code into logically separate sections

– When writing a big, complicated program

– Working on the same program for an extended period of time, or many
collaborating with many people

✗ Don't use it when:

– Writing a small “script”

– Don't jump in and out of class methods to add two numbers

✗ Remember:

– Programmers are (usually) slower than a computer

– Comments don't make your program(ming) slower!

– These rules are meant to be broken

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

6

C++ syntax
//Header file
class myclass {
public:

myclass();
myclass(int arg1, double** arg2,...);
void method1(int arg1);
~myclass();

protected:
double** matrix;

private:
int some_private_variable;

};

//Implementation
#include “header.hpp”

myclass::myclass() {
//Body of 1st constructor

}
myclass::myclass(int arg1, void arg2, ...) {

//Body of 2nd constructor
}
void myclass::method1(int arg1) {

//Body of method1
}

myclass::~myclass() {
//Body of destructor

}

Remember
the “;”!

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

7

Inheritance – what is it?
✗ You can make several new

classes “inherit” old classes

✗ They then get copies of the
methods* and variables in
the parent class

✗ In addition they may define
their own methods and
variables, or override
methods in the base class

✗ You may use a parent
pointer to hold any child,
while accessing
functionality declared in
parent

Parent (base-class) class

Method 1
Method 2
Variable 1

etc.

Child 1

Method 3
Method 1 (overridden)

Method 1
Method 2
Variable 1

etc.

Child 2

Method 3
Method 2 (overriden)

Method 1
Method 2
Variable 1

etc.

*) Method = function in a class

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

8

C++ syntax//Header file
class myclass {
public:

myclass(); //Called by default before
//children constructors runs

myclass(int arg1, double** arg2,...); //... Unless the children “calls”
//this one explicitly

void method1(int arg1);
~myclass();

protected:
double** matrix;

private:
int some_private_variable;

};

class myChildClass : public myclass {
public:

myChildClass(); //Argless constructor
myChildClass(int arg1, double** arg2, double arg3) :

myclass(arg1, arg2), childvar1(arg3) {}; // Call base parent constructor,
// set childvar1

double method2(double arg1);
Private:

double childvar1;
};

//Implementation
#include “header.hpp”

myChildClass::myChildClass() {
// Body of 1st child constructor

}

double myChildClass::method2(double arg1) {
// Body of method2 in myChildClass
// You may here manipulate class variables
// belonging to myChildClass, and
// public/protected variables from parent

}

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

9

Interfaces / “abstract” classes

✗ An interface is a class with “undefined” method

✗ Serves as a template for other class to inherit

✗ A pointer of the interface type may then be used to access all
methods & variables defined in the interface

– You cannot have an object of an interface type

✗ In addition to the “purely virtual” functions, there may be
“normal” helper functions

✗ Example: All algorithms need a method “runAlgo()”.

– Declare this in an interface for algoritms

– Implement it in the inheriting class

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

10

C++ syntax
//Header
#ifndef HEADER_HPP
#define HEADER_HPP

class myInterface {
public:
virtual void runAlgo() = 0;

};

class implementation : public myInterface {
public:
void runAlgo();
double specialFunction();

};

#endif

//Implementation
#include “header.hpp”

void implementation::runAlgo() {
//Implementation of runAlgo()

}
Double implementation::specialFunction() {

//Implementation of specialFunction()
return 42;

}

//Usage
#include “header.hpp”

int main() {
//Create an implementation object, use a generic myInterface pointer to store it
myInterface* interfacePointer = new implementation();
//Call runAlgo() in the implementation
pointer->runAlgo();

//Doesn't work (undefined what happens...):
interfacePointer->specialFunction();
//Correct: cast to implementation type first
((implementation*)interfacePointer)->specialFunction();

delete interfacePointer;
}

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

11

Virtual keyword

✗ A warning about virtual methods: As the program has to
figure out where in memory the function lives each time it is
called, calls to virtual methods are a bit slower than “normal”
methods.

– Don't use virtual methods for very small methods that are called
bazillions of times (but if you have a couple of calls to the math
library etc. it doesn't matter)

✗ Virtual methods are the only methods that can be completely
overridden

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

12

Program

Basic overview of program structure

Description of physical
system:

Wavefunction

Numerical
algorithm+

+ Some code
that “glue”

them together
=

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

13

Wavefunction

✗ Represents the physical system under study

✗ Interface for basic operations
– Algorithms use only the functions defined in the

interface (getWf(), getRatio() etc.)

✗ Many implementing classes (helium1,
hydrogen_1s, ...)

✗ Special implementation: Wavefunction_Slater

– An interface
– Handles “statefull” wavefunctions

– Implementations neon, beryllium, ...

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

14

W
av

ef
un

ct
io

n

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

15

W
av

ef
un

ct
io

n

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

16

Numerical algorithm

✗ Several possibilities for different algorithms
with same purpose (simulation of the PDF,
taking statistics)

✗ They share common operations (runAlgo()
etc.)

✗ Common interface for these:
MontecarloAlgo

✗ Several implementations:
metropolis_brute, metropolis_brute_slater,
metropolis_importance_sampler,
metropolis_importance_sampler_slater

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

17

A
lg

or
ith

m
s

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

18

Glue

✗ Several programs that use the wavefunction and
algorithm classes to do usefull things

– Calculate energy in a set of points
– Calculate energy and estimate error in a set of Δt
– Use CGM to find minima

✗ Since MontecarloAlgo and Wavefunction /
Wavefunction_Slater are interfaces, easy to
change which wavefunction or algo we are
working with

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

19

Ideas for improvement

✗ Sampler classes

✗ Generalization of functions to get wavefunction
parameters

✗ Generalization of Wavefunction_Slater to handle
other (non-atomic) Hamiltonians

✗ Implementation of real “rollback” support

✗ Smarter calculation of determinants of slater matrices
– Maybe possible to have a “simple” scheme for

calculating analytic Ψ
i
/Ψ, in analogue to ∇Ψ/Ψ and

∇2Ψ/Ψ?

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

20

Tips & tricks

✗ How to split a big C/C++ program into several
files

✗ Makefile

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

21

How to split a big C/C++ program
into several files

✗ Headers:
Named .h or .hpp

✗ Contain definitions of
functions, classes, global
variables etc.

✗ Basic structure:
#ifndef FILE_HPP
#define FILE_HPP
<stuff>
#endif

✗ Often useful to put detailed
comments that describes
functions, variables etc. here

✗ Program code:
Named .c or .cpp

✗ Contains the code that will be
compiled

✗ #include one or more headers:

#include "header.hpp"

✗ Compilation of a single .cpp file:

g++ -Wall -O3 -c file.cpp

This yields an “object” (.o) file

✗ Linking of several object files:

g++ -Wall -O3 file1.o
file2.o -o progname

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

22

Makefile

✗ Big programs takes time to compile, and
manually giving commands is error-prone

✗ Solution: Only compiled what is needed
✗ Tool: make

✗ Make is controlled by a “makefile” in the
directory

16th of April, 2009

Kyrre Ness Sjøbæk, Fys4410

23

M
a

ke
fil

e:
 B

a
si

c
sy

nt
a

x
#This is a comment

#Definition of variables
CPP = g++ -Wall -O3
LONGSTRING = lib1.o lib2.o

#Special target “all”
all : program1 program2 lib

#Compile program 1
program1 : program1.o ${LONGSTRING}

${CPP} program1.o ${LONGSTRING} -o program1
program1.o: program1.cpp

${CPP} -c program1.cpp

#Compile program 2
program2 :

(similar to above)

#Special target to compile targets lib1.o lib2.o
lib : lib1.o lib2.o

lib1.o : lib1.cpp lib2.hpp
${CPP} -c lib1.cpp

lib2.o : lib2.cpp lib2.hpp
${CPP} -c lib2.cpp

Use:
“make”

in directory with makefile
to run make with target “all”

“make program1”
Run make with target “program1”

“make -C subdir target”
Run make in subdirectory “subdir”

with target “target”

	Lysbilde 1
	Lysbilde 2
	Object-orientation and inheritance with C++
	Lysbilde 4
	Lysbilde 5
	Lysbilde 6
	Lysbilde 7
	Lysbilde 8
	Lysbilde 9
	Lysbilde 10
	Lysbilde 11
	Basic overview of program structure
	Wavefunction
	Lysbilde 14
	Lysbilde 15
	Numerical algorithm
	Lysbilde 17
	Glue
	Ideas for improvement
	Tips & tricks
	Split to several files
	Makefile
	Lysbilde 23

