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Topics for Week 3, January 12-16

Introduction, Parallelization, MPI and Variational Monte Carlo
Wednesday:
Presentation of topics to be covered and introduction to
Many-Body physics (Lecture notes chapter 16, Raimes
chapter 1 or Thijssen chapter 4).
Thursday:
Variational Monte Carlo theory and presentation of project
1. (lecture notes chapter 11)
Introduction to Message Passing Interface (MPI) and
parallelization. (lecture notes chapter 7.7)
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12 January - 31 May

Course overview, Computational aspects
Parallelization (MPI), high-performance computing topics
and object orientation. Choose between F95 and/or C++
as programming languages. Python also possible as
programming language. (all projects)
Algorithms for Monte Carlo Simulations (multidimensional
integrals), Metropolis-Hastings and importance sampling
algorithms. Improved Monte Carlo methods (project 1)
Statistical analysis of data from Monte Carlo calculations,
blocking method. (project 1)
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12 January - 31 May

Course overview, Computational aspects
Search for minima in multidimensional spaces (conjugate
gradient method) (project 1)
Solutions of coupled differential equations for Hartree-Fock
and density functional calculations. (project 2)
Parallelization of quantum molecular dynamics code.
(project 3)
Object orientation (all projects)

Computational Physics II FYS4410



12 January -31 May, project 1

Quantum Mechanical Methods and Systems
1 Variational Monte Carlo for ’ab initio’ studies of quantum

mechanical many-body systems.
2 Simulation of atoms like Helium, Beryllium and Neon with

extensions to solids.
3 Aim of projects 1: understand how to simulate qauntum

mechanical systems with many interacting particles using
variational Monte Carlo methods.

The methods of project 1, 2 and 3 are relevant for atomic,
molecular,solid state, materials science, nanotechnology,
quantum chemistry and nuclear physics.
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12 January -31 May, project 2

Quantum Mechanical Methods and Systems
1 Project 2 solves much of the same systems as in project 1

but introduces Hartree-Fock theory and density functional
theory.

2 The Hartree-Fock solutions are in turn used in the code
from project 1 to obtain an ab initio solution for a given
system

3 This solution is then used to constrain a density functional
(actual research).

4 We will also end up writing a density functional code and
use this to compute properties of solids (atoms in a lattice).

DFT and HF are covered by the lectures notes, chapters 4-6 of
Thijssen and the articles of Jones on the webpage of the
course.
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12 January -31 May, project 3

Quantum Mechanical Methods and Systems
1 Project 3 is not yet determined, but will most likely deal

with quantum molecular dynamics (QMD). The DFT results
will be used to fit a semi-classical potential to be used in
QMD calculations. QMD is covered by chapter 8-9 of
Thijssen’s book plus lecture notes by MHJ.
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12 January -31 May

Projects, deadlines and oral exam
1 Deadline project 1: 16 March
2 Deadline project 2: 30 April
3 Deadline project 3: 31 May
4 Oral exam: week 24 (8-12 June)

The oral exam is based on your presentation of the projects.
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Lectures and ComputerLab

Lectures: Wednesday (12.15-14.00, room LilleFys) and
Thursday (14.15-19, room FV329)
Detailed lecture notes, all programs presented and
projects can be found at the homepage of the course.
Computerlab: 16-19 thursday, room FV329
Weekly plans and all other information are on the official
webpage.
The thursday lectures will also be used to demonstrate
algorithms etc, while the wednesday lectures will be more
like classical blackboard sessions.
Chapters 8, 9, 11 and 16 and 17 of the FYS3150/4150
lecture notes give a good starting point. We recommend
also J. M. Thijssen text Computational Physics and the text
of Raimes as background. For MPI we recommend Gropp,
Lusk and Sjellum’s text.
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Thijssen’s text

J. M. Thijssen’s text
Computational
Physics
Chapters 3-6 and 8-9
see http://www.
tn.tudelft.nl/
tn/People/Staff/
Thijssen/
comphybook.html
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MPI text

Gropp, Lusk and Sjellum
Using MPI
Chapters 1-5
see
http://mitpress.
mit.edu/catalog/
item/default.
asp?ttype=2&tid=
10761
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Selected Texts and lectures on C/C++

J. J. Barton and L. R. Nackman,Scientific and Engineering C++, Addison Wesley,
3rd edition 2000.

B. Stoustrup, The C++ programming language, Pearson, 1997.

H. P. Langtangen INF-VERK3830
http://heim.ifi.uio.no/˜hpl/INF-VERK4830/

D. Yang, C++ and Object-oriented Numeric Computing for Scientists and
Engineers, Springer 2000.

More books reviewed at http:://www.accu.org/ and
http://www.comeaucomputing.com/booklist/
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Definitions and notations

The Schrödinger equation reads

Ĥ(r1, r2, . . . , rN )Ψλ(r1, r2, . . . , rN ) = EλΨλ(r1, r2, . . . , rN ), (1)

where the vector ri represents the coordinates (spatial and spin) of particle i , λ stands

for all the quantum numbers needed to classify a given N-particle state and Ψλ is the

pertaining eigenfunction. Throughout this course, Ψ refers to the exact eigenfunction,

unless otherwise stated.
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Definitions and notations

We write the Hamilton operator, or Hamiltonian, in a generic way

Ĥ = T̂ + V̂

where T̂ represents the kinetic energy of the system

T̂ =
NX

i=1

p2
i

2mi
=

NX
i=1

„
−

~2

2mi
∇i

2
«

=
NX

i=1

t(ri )

while the operator V̂ for the potential energy is given by

V̂ =
NX

i=1

u(ri ) +
NX

ji=1

v(ri , rj ) +
NX

ijk=1

v(ri , rj , rk ) + . . . (2)

Hereafter we use natural units, viz. ~ = c = e = 1, with e the elementary chargeand c

the speed of light. This means that momenta and masses have dimension energy.
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Definitions and notations

If one does quantum chemistry, after having introduced the Born-Oppenheimer
approximation which effectively freezes out the nucleonic degrees of freedom, the
Hamiltonian for N = ne electrons takes the following form

Ĥ =

neX
i=1

t(ri )−
neX

i=1

k
Z
ri

+

neX
i<j

k
rij
,

with k = 1.44 eVnm
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Definitions and notations

We can rewrite this as

Ĥ = Ĥ0 + Ĥ1 =

neX
i=1

ĥi +

neX
i<j=1

1
rij
, (3)

where we have defined rij = |ri − rj | and

ĥi = t(ri )−
Z
ri
. (4)

The first term of eq. (3), H0, is the sum of the A or n one-body Hamiltonians ĥi . Each

individual Hamiltonian ĥi contains the kinetic energy operator of an electron and its

potential energy due to the attraction of the nucleus. The second term, H1, is the sum

of the ne(ne − 1)/2 two-body interactions between each pair of electrons. Note that the

double sum carries a restriction i < j .
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Definitions and notations

The potential energy term due to the attraction of the nucleus defines the onebody field
ui = u(ri ) of Eq. (2). We have moved this term into the Ĥ0 part of the Hamiltonian,
instead of keeping it in V̂ as in Eq. (2). The reason is that we will hereafter treat Ĥ0 as
our non-interacting Hamiltonian. For a many-body wavefunction Φλ defined by an
appropriate single-particle basis, we may solve exactly the non-interacting eigenvalue
problem

Ĥ0Φλ = eλΦλ,

with eλ being the non-interacting energy. This energy is defined by the sum over

single-particle energies to be defined below. For atoms the single-particle energies

could be the hydrogen-like single-particle energies corrected for the charge Z . For

nuclei and quantum dots, these energies could be given by the harmonic oscillator in

three and two dimensions, respectively.
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Definitions and notations

We will assume that the interacting part of the Hamiltonian can be approximated by a
two-body interaction. This means that our Hamiltonian is written as

Ĥ = Ĥ0 + Ĥ1 =
NX

i=1

hi +
NX

i<j=1

V (rij ), (5)

with

H0 =
NX

i=1

hi =
NX

i=1

(t(ri ) + u(ri )) . (6)

The onebody part u(ri ) is normally approximated by a harmonic oscillator potential or

the Coulomb interaction an electron feels from the nucleus. However, other potentials

are fully possible, such as one derived from the self-consistent solution of the

Hartree-Fock equations.
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Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.
Since we deal with fermions however, the total wave function is antisymmetric. Let P̂
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[Ĥ, P̂] = 0,

meaning that Ψλ(r1, r2, . . . , rN ) is an eigenfunction of P̂ as well, that is

P̂ij Ψλ(r1, r2, . . . , ri , . . . , rj , . . . , rN ) = βΨλ(r1, r2, . . . , ri , . . . , rj , . . . , rN ),

where β is the eigenvalue of P̂. We have introduced the suffix ij in order to indicate that

we permute particles i and j . The Pauli principle tells us that the total wave function for

a system of fermions has to be antisymmetric, resulting in the eigenvalue β = −1.
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Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Φ(r1, r2, . . . , rN , α, β, . . . , σ) =
1
√

N!

˛̨̨̨
˛̨̨̨
˛
ψα(r1) ψα(r2) . . . . . . ψα(rN )
ψβ(r1) ψβ(r2) . . . . . . ψβ(rN )
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(r1) ψσ(r2) . . . . . . ψγ(rN )

˛̨̨̨
˛̨̨̨
˛ , (7)

where ri stand for the coordinates and spin values of a particle i and α, β, . . . , γ are

quantum numbers needed to describe remaining quantum numbers.
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Definitions and notations

The single-particle function ψα(ri ) are eigenfunctions of the onebody Hamiltonian hi ,
that is

hi = h(ri ) = t(ri ) + u(ri ),

with eigenvalues
hiψα(ri ) = t(ri ) + u(ri )ψα(ri ) = εαψα(ri ).

The energies εα are the so-called non-interacting single-particle energies, or

unperturbed energies. The total energy is in this case the sum over all single-particle

energies, if no two-body or more complicated many-body interactions are present.
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Definitions and notations

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E [Φ] =

Z
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalizedZ
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .
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Definitions and notations

In the Hartree-Fock method the trial function is the Slater determinant of Eq. (7) which
can be rewritten as

Ψ(r1, r2, . . . , rN , α, β, . . . , ν) =
1
√

N!

X
P

(−)P P̂ψα(r1)ψβ(r2) . . . ψν(rN ) =
√

N!AΦH ,

(8)

where we have introduced the antisymmetrization operator A defined by the

summation over all possible permutations of two nucleons.

Computational Physics II FYS4410



Definitions and notations

It is defined as
A =

1
N!

X
p

(−)pP̂, (9)

with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle
functions

ΦH (r1, r2, . . . , rN , α, β, . . . , ν) = ψα(r1)ψβ(r2) . . . ψν(rN ).
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Definitions and notations

Both Ĥ0 and Ĥ1 are invariant under all possible permutations of any two particles and
hence commute with A

[H0,A] = [H1,A] = 0. (10)

Furthermore, A satisfies
A2 = A, (11)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations

The expectation value of Ĥ0Z
Φ∗Ĥ0Φdτ = N!

Z
Φ∗HAĤ0AΦHdτ

is readily reduced to Z
Φ∗Ĥ0Φdτ = N!

Z
Φ∗H Ĥ0AΦHdτ,

where we have used eqs. (10) and (11). The next step is to replace the
antisymmetrization operator by its definition Eq. (8) and to replace Ĥ0 with the sum of
one-body operators

Z
Φ∗Ĥ0Φdτ =

NX
i=1

X
p

(−)p
Z

Φ∗H ĥi P̂ΦHdτ.
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Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions ΦH because the individual single-particle wave functions are
orthogonal. We obtain then

Z
Φ∗Ĥ0Φdτ =

NX
i=1

Z
Φ∗H ĥi ΦHdτ.

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

Z
Φ∗Ĥ0Φdτ =

NX
µ=1

Z
ψ∗µ(r)ĥψµ(r)dr. (12)
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Definitions and notations

We introduce the following shorthand for the above integral

〈µ|h|µ〉 =

Z
ψ∗µ(r)ĥψµ(r),

and rewrite Eq. (12) as Z
Φ∗Ĥ0Φdτ =

NX
µ=1

〈µ|h|µ〉. (13)
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Definitions and notations

The expectation value of the two-body Hamiltonian is obtained in a similar manner. We
have Z

Φ∗Ĥ1Φdτ = N!

Z
Φ∗HAĤ2AΦHdτ,

which reduces to

Z
Φ∗Ĥ1Φdτ =

NX
i≤j=1

X
p

(−)p
Z

Φ∗HV (rij )P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.
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Definitions and notations

Because of the dependence on the inter-particle distance rij , permutations of any two
particles no longer vanish, and we get

Z
Φ∗Ĥ1Φdτ =

NX
i<j=1

Z
Φ∗HVrij )(1− Pij )ΦHdτ.

where Pij is the permutation operator that interchanges nucleon i and nucleon j . Again

we use the assumption that the single-particle wave functions are orthogonal.
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Definitions and notations

We obtain

Z
Φ∗Ĥ1Φdτ =

1
2

NX
µ=1

NX
ν=1

»Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj

−
Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(ri )dri rj

–
.

(14)

The first term is the so-called direct term. It is frequently also called the Hartree term,

while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.
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Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions ψµ(r), defined by the quantum numbers µ and r (recall that r also
includes spin degree) are defined as the overlap

ψα(r) = 〈r|α〉.
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Definitions and notations

We introduce the following shorthands for the above two integrals

〈µν|V |µν〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj ,

and
〈µν|V |νµ〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(ri )dri rj .
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Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .
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Definitions and notations

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .

With these notations we rewrite Eq. (14) as

Z
Φ∗Ĥ1Φdτ =

1
2

NX
µ=1

NX
ν=1

〈µν|V |µν〉AS . (15)
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Definitions and notations

Combining Eqs. (13) and (85) we obtain the energy functional

E [Φ] =
NX
µ=1

〈µ|h|µ〉+
1
2

NX
µ=1

NX
ν=1

〈µν|V |µν〉AS . (16)

which we will use as our starting point for the Hartree-Fock calculations later in this

course.
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Quantum Monte Carlo Motivation

Most quantum mechanical problems of interest in e.g., atomic, molecular, nuclear and
solid state physics consist of a large number of interacting electrons and ions or
nucleons. The total number of particles N is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation value for a chosen hamiltonian for a
system of N particles is

〈H〉 =R
dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN )H(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )R

dR1dR2 . . . dRN Ψ∗(R1,R2, . . . ,RN )Ψ(R1,R2, . . . ,RN )
,

an in general intractable problem. an in general intractable problem.

This integral is actually the starting point in a Variational Monte Carlo calculation.

Gaussian quadrature: Forget it! given 10 particles and 10 mesh points for each

degree of freedom and an ideal 1 Tflops machine (all operations take the same time),

how long will it ta ke to compute the above integral? Lifetime of the universe

T ≈ 4.7× 1017s.
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Quantum Monte Carlo

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).
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Quantum Monte Carlo

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.
For a nucleus like 10Be this number is 215040. This is a truely challenging many-body
problem.

Methods like partial differential equations can at most be used for 2-3 particles.
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Quantum Many-particle(body) Methods

1 Monte-Carlo methods

2 Renormalization group (RG) methods, in particular density matrix RG

3 Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

4 Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

5 Perturbative many-body methods

6 Green’s function methods

7 Density functional theory/Mean-field theory and Hartree-Fock theory

The physics of the system hints at which many-body methods to use. For systems with

strong correlations among the constituents, item 5 and 7 are ruled out.
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Pros and Cons of Monte Carlo

Is physically intuitive.

Allows one to study systems with many degrees of freedom. Diffusion Monte
Carlo (DMC) and Green’s function Monte Carlo (GFMC) yield in principle the
exact solution to Schrödinger’s equation.

Variational Monte Carlo (VMC) is easy to implement but needs a reliable trial
wave function, can be difficult to obtain. This is where we will use Hartree-Fock
theory to construct an optimal basis.

DMC/GFMC for fermions (spin with half-integer values, electrons, baryons,
neutrinos, quarks) has a sign problem. Nature prefers an anti-symmetric wave
function. PDF in this case given distribution of random walkers (p ≥ 0).

The solution has a statistical error, which can be large.

There is a limit for how large systems one can study, DMC needs a huge number
of random walkers in order to achieve stable results.

Obtain only the lowest-lying states with a given symmetry. Can get excited
states.
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Where and why do we use Monte Carlo Methods in
Quantum Physics

Quantum systems with many particles at finite temperature: Path Integral Monte
Carlo with applications to dense matter and quantum liquids (phase transitions
from normal fluid to superfluid). Strong correlations.

Bose-Einstein condensation of dilute gases, method transition from non-linear
PDE to Diffusion Monte Carlo as density increases.

Light atoms, molecules, solids and nuclei.

Lattice Quantum-Chromo Dynamics. Impossible to solve without MC
calculations.

Simulations of systems in solid state physics, from semiconductors to spin
systems. Many electrons active and possibly strong correlations.
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Bose-Einstein Condensation of atoms, thousands of
Atoms in one State, Project 2 in 2007
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Quantum Monte Carlo

Given a hamiltonian H and a trial wave function ΨT , the variational principle states that
the expectation value of 〈H〉, defined through

E [H] = 〈H〉 =

R
dRΨ∗T (R)H(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre

will not be adequate for say the computation of the energy of a many-body system.
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Quantum Monte Carlo

The trial wave function can be expanded in the eigenstates of the hamiltonian since
they form a complete set, viz.,

ΨT (R) =
X

i

ai Ψi (R),

and assuming the set of eigenfunctions to be normalized one obtainsP
nm a∗man

R
dRΨ∗m(R)H(R)Ψn(R)P

nm a∗man
R

dRΨ∗m(R)Ψn(R)
=

P
n a2

nEnP
n a2

n
≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the integrals involved in the

calculation of various expectation values are multi-dimensional ones. The variational

principle yields the lowest state of a given symmetry.
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Quantum Monte Carlo

In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed random
points in configuration space will most likely lead to poor results. This may suggest that
some kind of importance sampling combined with e.g., the Metropolis algorithm may
be a more efficient way of obtaining the ground state energy. The hope is then that
those regions of configurations space where the wave function assumes appreciable
values are sampled more efficiently.

The tedious part in a VMC calculation is the search for the variational minimum. A

good knowledge of the system is required in order to carry out reasonable VMC

calculations. This is not always the case, and often VMC calculations serve rather as

the starting point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way

of solving exactly the many-body Schrödinger equation by means of a stochastic

procedure. A good guess on the binding energy and its wave function is however

necessary. A carefully performed VMC calculation can aid in this context.
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Quantum Monte Carlo

Construct first a trial wave function ψαT (R), for a many-body system consisting of
N particles located at positions R = (R1, . . . ,RN). The trial wave function
depends on α variational parameters α = (α1, . . . , αN ).

Then we evaluate the expectation value of the hamiltonian H

E [H] = 〈H〉 =

R
dRΨ∗Tα (R)H(R)ΨTα (R)R

dRΨ∗Tα (R)ΨTα (R)
.

Thereafter we vary α according to some minimization algorithm and return to the
first step.
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Quantum Monte Carlo

Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The approximation to the
expectation value of the Hamiltonian is now

E [H] ≈
R

dRΨ∗T (R)H(R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

.

Define a new quantity

EL(R) =
1

ψT (R)
HψT (R),

called the local energy, which, together with our trial PDF yields

E [H] = 〈H〉 ≈
Z

P(R)EL(R)dR ≈
1
N

NX
i=1

P(Ri)EL(Ri)

with N being the number of Monte Carlo samples.
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Quantum Monte Carlo

Algo:

Initialisation: Fix the number of Monte Carlo steps. Choose an initial R and
variational parameters α and calculate

˛̨
ψαT (R)

˛̨2.

Initialise the energy and the variance and start the Monte Carlo calculation
(thermalize)

1 Calculate a trial position Rp = R + r ∗ step where r is a
random variable r ∈ [0,1].

2 Metropolis algorithm to accept or reject this move

w = P(Rp)/P(R).

3 If the step is accepted, then we set R = Rp. Update
averages

Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. Called brute-force

sampling. Need importance sampling.
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Quantum Monte Carlo

The radial Schrödinger equation for the hydrogen atom can be written as

−
~2

2m
∂2u(r)

∂r2
−
„

ke2

r
−

~2l(l + 1)

2mr2

«
u(r) = Eu(r),

or with dimensionless variables

−
1
2
∂2u(ρ)

∂ρ2
−

u(ρ)

ρ
+

l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −
1
2
∂2

∂ρ2
−

1
ρ

+
l(l + 1)

2ρ2
.

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.
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Quantum Monte Carlo

Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −
1
ρ
−
α

2

„
α−

2
ρ

«
.

α 〈H〉 σ2 σ/
√

N
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
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Quantum Monte Carlo

We note that at α = 1 we obtain the exact result, and the variance is zero, as it should.
The reason is that we then have the exact wave function, and the action of the
hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values involving
moments of the hamiltonian becomes then

〈Hn〉 =

R
dRΨ∗T (R)Hn(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
= constant×

R
dRΨ∗T (R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave function leads to zero

variance! Variation is then performed by minimizing both the energy and the variance.
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Quantum Monte Carlo

The helium atom consists of two electrons and a nucleus with charge Z = 2. The
contribution to the potential energy due to the attraction from the nucleus is

−
2ke2

r1
−

2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain the
potential energy

V (r1, r2) = −
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.
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Quantum Monte Carlo

The hamiltonian becomes then

bH = −
~2∇2

1
2m

−
~2∇2

2
2m

−
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

and Schrödingers equation reads bHψ = Eψ.

All observables are evaluated with respect to the probability distribution

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate an exact

eigenstate in order that accurate results are to be obtained. Improved trial wave

functions also improve the importance sampling, reducing the cost of obtaining a

certain statistical accuracy.
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Quantum Monte Carlo

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1
ψT (R)

„
−

1
2
∇2

1 −
Z
r1

«
ψT (R) + finite terms.

EL(R) =
1

RT (r1)

 
−

1
2

d2

dr2
1
−

1
r1

d
dr1
−

Z
r1

!
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

„
−

1
r1

d
dr1
−

Z
r1

«
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the origin.
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Quantum Monte Carlo

This results in
1

RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have

1
RT (r)

dRT (r)

dr
= −

Z
l + 1

.

Similalry, studying the case r12 → 0 we can write a possible trial wave function as

ψT (R) = e−α(r1+r2)eβr12 .

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN )
Y
i<j

f (rij ),

for a system with N electrons or particles.
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VMC code for helium, vmc para.cpp

// Here we define global variables used in various functions
// These can be changed by reading from file the different parameters
int dimension = 3; // three-dimensional system
int charge = 2; // we fix the charge to be that of the helium atom
int my_rank, numprocs; // these are the parameters used by MPI to

// define which node and how many
double step_length = 1.0; // we fix the brute force jump to 1 Bohr radius
int number_particles = 2; // we fix also the number of electrons to be 2
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VMC code for helium, vmc para.cpp, main part

// MPI initializations
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
time_start = MPI_Wtime();

if (my_rank == 0 && argc <= 2) {
cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

exit(1);
}
if (my_rank == 0 && argc > 2) {
outfilename=argv[1];
ofile.open(outfilename);

}
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VMC code for helium, vmc para.cpp, main part

// Setting output file name for this rank:
ostringstream ost;
ost << "blocks_rank" << my_rank << ".dat";
// Open file for writing:
blockofile.open(ost.str().c_str(), ios::out | ios::binary);

total_cumulative_e = new double[max_variations+1];
total_cumulative_e2 = new double[max_variations+1];
cumulative_e = new double[max_variations+1];
cumulative_e2 = new double[max_variations+1];

// initialize the arrays by zeroing them
for( i=1; i <= max_variations; i++){

cumulative_e[i] = cumulative_e2[i] = 0.0;
total_cumulative_e[i] = total_cumulative_e2[i] = 0.0;

}
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VMC code for helium, vmc para.cpp, main part

// broadcast the total number of variations
MPI_Bcast (&max_variations, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast (&number_cycles, 1, MPI_INT, 0, MPI_COMM_WORLD);
total_number_cycles = number_cycles*numprocs;
// array to store all energies for last variation of alpha
all_energies = new double[number_cycles+1];
// Do the mc sampling and accumulate data with MPI_Reduce
mc_sampling(max_variations, number_cycles, cumulative_e,

cumulative_e2, all_energies);
// Collect data in total averages
for( i=1; i <= max_variations; i++){

MPI_Reduce(&cumulative_e[i], &total_cumulative_e[i], 1, MPI_DOUBLE,
MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cumulative_e2[i], &total_cumulative_e2[i], 1, MPI_DOUBLE,
MPI_SUM, 0, MPI_COMM_WORLD);

}
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VMC code for helium, vmc para.cpp, main part

blockofile.write((char*)(all_energies+1),
number_cycles*sizeof(double));

blockofile.close();
delete [] total_cumulative_e; delete [] total_cumulative_e2;
delete [] cumulative_e; delete [] cumulative_e2; delete [] all_energies;
// End MPI
MPI_Finalize ();
return 0;
} // end of main function
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VMC code for helium, vmc para.cpp, sampling

alpha = 0.5*charge;
// every node has its own seed for the random numbers
idum = -1-my_rank;
// allocate matrices which contain the position of the particles
r_old =(double **)matrix(number_particles,dimension,sizeof(double));
r_new =(double **)matrix(number_particles,dimension,sizeof(double));
for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {
r_old[i][j] = r_new[i][j] = 0;

}
}
// loop over variational parameters
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VMC code for helium, vmc para.cpp, sampling

for (variate=1; variate <= max_variations; variate++){
// initialisations of variational parameters and energies
alpha += 0.1;
energy = energy2 = 0; accept =0; delta_e=0;
// initial trial position, note calling with alpha
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {

r_old[i][j] = step_length*(ran2(&idum)-0.5);
}

}
wfold = wave_function(r_old, alpha);
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VMC code for helium, vmc para.cpp, sampling

// loop over monte carlo cycles
for (cycles = 1; cycles <= number_cycles; cycles++){

// new position
for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {
r_new[i][j] = r_old[i][j]+step_length*(ran2(&idum)-0.5);
}

// for the other particles we need to set the position to the old position since
// we move only one particle at the time

for (k = 0; k < number_particles; k++) {
if ( k != i) {

for ( j=0; j < dimension; j++) {
r_new[k][j] = r_old[k][j];

}
}

}
wfnew = wave_function(r_new, alpha);

// The Metropolis test is performed by moving one particle at the time
if(ran2(&idum) <= wfnew*wfnew/wfold/wfold ) {

for ( j=0; j < dimension; j++) {
r_old[i][j]=r_new[i][j];

}
wfold = wfnew;

}
} // end of loop over particlesComputational Physics II FYS4410



VMC code for helium, vmc para.cpp, sampling

// compute local energy
delta_e = local_energy(r_old, alpha, wfold);
// save all energies on last variate
if(variate==max_variations){

all_energies[cycles] = delta_e;
}
// update energies
energy += delta_e;
energy2 += delta_e*delta_e;

} // end of loop over MC trials
// update the energy average and its squared
cumulative_e[variate] = energy;
cumulative_e2[variate] = energy2;

} // end of loop over variational steps
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VMC code for helium, vmc para.cpp, wave function

// Function to compute the squared wave function, simplest form

double wave_function(double **r, double alpha)
{

int i, j, k;
double wf, argument, r_single_particle, r_12;

argument = wf = 0;
for (i = 0; i < number_particles; i++) {
r_single_particle = 0;
for (j = 0; j < dimension; j++) {
r_single_particle += r[i][j]*r[i][j];

}
argument += sqrt(r_single_particle);

}
wf = exp(-argument*alpha) ;
return wf;

}
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VMC code for helium, vmc para.cpp, local energy

// Function to calculate the local energy with num derivative

double local_energy(double **r, double alpha, double wfold)
{

int i, j , k;
double e_local, wfminus, wfplus, e_kinetic, e_potential, r_12,
r_single_particle;

double **r_plus, **r_minus;

// allocate matrices which contain the position of the particles
// the function matrix is defined in the progam library
r_plus =(double **)matrix(number_particles,dimension,sizeof(double));
r_minus =(double **)matrix(number_particles,dimension,sizeof(double));
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
r_plus[i][j] = r_minus[i][j] = r[i][j];

}
}
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VMC code for helium, vmc para.cpp, local energy

// compute the kinetic energy
e_kinetic = 0;
for (i = 0; i < number_particles; i++) {
for (j = 0; j < dimension; j++) {
r_plus[i][j] = r[i][j]+h;
r_minus[i][j] = r[i][j]-h;
wfminus = wave_function(r_minus, alpha);
wfplus = wave_function(r_plus, alpha);
e_kinetic -= (wfminus+wfplus-2*wfold);
r_plus[i][j] = r[i][j];
r_minus[i][j] = r[i][j];

}
}

// include electron mass and hbar squared and divide by wave function
e_kinetic = 0.5*h2*e_kinetic/wfold;
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VMC code for helium, vmc para.cpp, local energy

// compute the potential energy
e_potential = 0;
// contribution from electron-proton potential
for (i = 0; i < number_particles; i++) {
r_single_particle = 0;
for (j = 0; j < dimension; j++) {
r_single_particle += r[i][j]*r[i][j];

}
e_potential -= charge/sqrt(r_single_particle);

}
// contribution from electron-electron potential
for (i = 0; i < number_particles-1; i++) {
for (j = i+1; j < number_particles; j++) {
r_12 = 0;
for (k = 0; k < dimension; k++) {

r_12 += (r[i][k]-r[j][k])*(r[i][k]-r[j][k]);
}
e_potential += 1/sqrt(r_12);

}
}
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Going Parallel with MPI

In all projects it will be useful to parallelize the code. Task
parallelism: the work of a global problem can be divided into a
number of independent tasks, which rarely need to synchronize.
Monte Carlo simulation or integrations are examples of this. It is
almost embarrassingly trivial to parallelize Monte Carlo codes.
MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI_COMMAND_NAME

Computational Physics II FYS4410



What is Message Passing Interface (MPI)? Yet
another library!

MPI is a library, not a language. It specifies the names, calling
sequences and results of functions or subroutines to be called
from C or Fortran programs, and the classes and methods that
make up the MPI C++ library. The programs that users write in
Fortran, C or C++ are compiled with ordinary compilers and
linked with the MPI library.
MPI is a specification, not a particular implementation. MPI
programs should be able to run on all possible machines and
run all MPI implementetations without change.
An MPI computation is a collection of processes
communicating with messages.
See chapter 7.7 of lecture notes for more details.
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MPI

MPI is a library specification for the message passing interface,
proposed as a standard.

independent of hardware;
not a language or compiler specification;
not a specific implementation or product.

A message passing standard for portability and ease-of-use.
Designed for high performance.
Insert communication and synchronization functions where
necessary.
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Demands from the HPC community

In the field of scientific computing, there is an ever-lasting wish
to do larger simulations using shorter computer time.
Development of the capacity for single-processor computers
can hardly keep up with the pace of scientific computing:

processor speed
memory size/speed

Solution: parallel computing!
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The basic ideas of parallel computing

Pursuit of shorter computation time and larger simulation
size gives rise to parallel computing.
Multiple processors are involved to solve a global problem.
The essence is to divide the entire computation evenly
among collaborative processors. Divide and conquer.
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A rough classification of hardware models

Conventional single-processor computers can be called
SISD (single-instruction-single-data) machines.
SIMD (single-instruction-multiple-data) machines
incorporate the idea of parallel processing, which use a
large number of process- ing units to execute the same
instruction on different data.
Modern parallel computers are so-called MIMD
(multiple-instruction- multiple-data) machines and can
execute different instruction streams in parallel on different
data.
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Shared memory and distributed memory

One way of categorizing modern parallel computers is to
look at the memory configuration.
In shared memory systems the CPUs share the same
address space. Any CPU can access any data in the
global memory.
In distributed memory systems each CPU has its own
memory. The CPUs are connected by some network and
may exchange messages.
A recent trend is ccNUMA
(cache-coherent-non-uniform-memory- access) systems
which are clusters of SMP (symmetric multi-processing)
machines and have a virtual shared memory.
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Different parallel programming paradigms

Task parallelism Â the work of a global problem can be
divided into a number of independent tasks, which rarely
need to synchronize. Monte Carlo simulation is one
example. Integration is another. However this paradigm is
of limited use.
Data parallelism Â use of multiple threads (e.g. one
thread per processor) to dissect loops over arrays etc. This
paradigm requires a single memory address space.
Communication and synchronization between processors
are often hidden, thus easy to program. However, the user
surrenders much control to a specialized compiler.
Examples of data parallelism are compiler-based
parallelization and OpenMP directives.
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Different parallel programming paradigms

Message-passing Â all involved processors have an
independent memory address space. The user is
responsible for partition- ing the data/work of a global
problem and distributing the subproblems to the
processors. Collaboration between processors is achieved
by explicit message passing, which is used for data
transfer plus synchronization.
This paradigm is the most general one where the user has
full control. Better parallel efficiency is usually achieved by
explicit message passing. However, message-passing
programming is more difficult.
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SPMD

Although message-passing programming supports MIMD, it
suffices with an SPMD (single-program-multiple-data) model,
which is flexible enough for practical cases:

Same executable for all the processors.
Each processor works primarily with its assigned local
data.
Progression of code is allowed to differ between
synchronization points.
Possible to have a master/slave model. The standard
option in Monte Carlo calculations and numerical
integration.
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Today’s situation of parallel computing

Distributed memory is the dominant hardware
configuration. There is a large diversity in these machines,
from MPP (massively parallel pro cessing) systems to
clusters of off-the-shelf PCs, which are very cost-effective.
Message-passing is a mature programming paradigm and
widely accepted. It often provides an efficient match to the
hardware. It is primarily used for the distributed memory
systems, but can also be used on shared memory systems.

In these lectures we consider only message-passing for writing
parallel programs.
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Overhead present in parallel computing

Uneven load balance: not all the processors can perform
useful work at all time.
Overhead of synchronization.
Overhead of communication.
Extra computation due to parallelization.

Due to the above overhead and that certain part of a sequential
algorithm cannot be parallelized we may not achieve an optimal
parallelization.
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Parallelizing a sequential algorithm

Identify the part(s) of a sequential algorithm that can be
executed in parallel. This is the difficult part,
Distribute the global work and data among P processors.
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Process and processor

We refer to process as a logical unit which executes its
own code, in an MIMD style.
The processor is a physical device on which one or several
processes are executed.
The MPI standard uses the concept process consistently
throughout its documentation.
However, we only consider situations where one processor
is responsible for one process and therefore use the two
terms interchangeably.
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Bindings to MPI routines

MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI_COMMAND_NAME

The discussion in these slides focuses on the C++ binding.
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Communicator

A group of MPI processes with a name (context).
Any process is identified by its rank. The rank is only
meaningful within a particular communicator.
By default communicator MPI COMM WORLD contains all
the MPI processes.
Mechanism to identify subset of processes.
Promotes modular design of parallel libraries.
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The 6 most important MPI routines

MPI Init - initiate an MPI computation
MPI Finalize - terminate the MPI computation and clean up
MPI Comm size - how many processes participate in a
given MPI communicator?
MPI Comm rank - which one am I? (A number between 0
and size-1.)
MPI Send - send a message to a particular pro cess within
an MPI communicator
MPI Recv - receive a message from a particular pro cess
within an MPI communicator
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The first MPI C/C++ program

Let every process write ”Hello world” on the standard output.
This is program2.cpp of chapter 7.

using namespace std;
#include <mpi.h>
#include <iostream>
int main (int nargs, char* args[])
{
int numprocs, my_rank;
// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
cout << "Hello world, I have rank " << my_rank << " out of "

<< numprocs << endl;
// End MPI
MPI_Finalize ();
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The Fortran program

PROGRAM hello
INCLUDE "mpif.h"
INTEGER:: size, my_rank, ierr

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
WRITE(*,*)"Hello world, I’ve rank ",my_rank," out of ",size
CALL MPI_FINALIZE(ierr)

END PROGRAM hello
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Note 1

The output to screen is not ordered since all processes are
trying to write to screen simultaneously. It is then the operating
system which opts for an ordering. If we wish to have an
organized output, starting from the first process, we may rewrite
our program as in the next example (program3.cpp), see again
chapter 7.7 of lecture notes.
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Ordered output with MPI Barrier

int main (int nargs, char* args[])
{
int numprocs, my_rank, i;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
for (i = 0; i < numprocs; i++) {}
MPI_Barrier (MPI_COMM_WORLD);
if (i == my_rank) {
cout << "Hello world, I have rank " << my_rank <<

" out of " << numprocs << endl;}
MPI_Finalize ();
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Note 2

Here we have used the MPI Barrier function to ensure that that
every process has completed its set of instructions in a
particular order. A barrier is a special collective operation that
does not allow the processes to continue until all processes in
the communicator (here MPI COMM WORLD have called
MPI Barrier . The barriers make sure that all processes have
reached the same point in the code. Many of the collective
operations like MPI ALLREDUCE to be discussed later, have
the same property; viz. no process can exit the operation until
all processes have started. However, this is slightly more
time-consuming since the processes synchronize between
themselves as many times as there are processes. In the next
Hello world example we use the send and receive functions in
order to a have a synchronized action.
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Ordered output with MPI Recv and MPI Send

.....
int numprocs, my_rank, flag;
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
if (my_rank > 0)
MPI_Recv (&flag, 1, MPI_INT, my_rank-1, 100,

MPI_COMM_WORLD, &status);
cout << "Hello world, I have rank " << my_rank << " out of "
<< numprocs << endl;
if (my_rank < numprocs-1)
MPI_Send (&my_rank, 1, MPI_INT, my_rank+1,

100, MPI_COMM_WORLD);
MPI_Finalize ();
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Note 3

The basic sending of messages is given by the function
MPI SEND, which in C/C++ is defined as

int MPI_Send(void *buf, int count,
MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)}

This single command allows the passing of any kind of variable,
even a large array, to any group of tasks. The variable buf is
the variable we wish to send while count is the number of
variables we are passing. If we are passing only a single value,
this should be 1. If we transfer an array, it is the overall size of
the array. For example, if we want to send a 10 by 10 array,
count would be 10× 10 = 100 since we are actually passing
100 values.
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Note 4

Once you have sent a message, you must receive it on another
task. The function MPI RECV is similar to the send call.

int MPI_Recv( void *buf, int count, MPI_Datatype datatype,
int source,
int tag, MPI_Comm comm, MPI_Status *status )

The arguments that are different from those in MPI SEND are
buf which is the name of the variable where you will be storing
the received data, source which replaces the destination in the
send command. This is the return ID of the sender.
Finally, we have used MPI Status status; where one can
check if the receive was completed.
The output of this code is the same as the previous example,
but now process 0 sends a message to process 1, which
forwards it further to process 2, and so forth.
Armed with this wisdom, performed all hello world greetings,
we are now ready for serious work.
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Integrating π

Examples
Go to the webpage
and click on the
programs link
Go to MPI and then
chapter 7
Look at program5.ccp
and program6.cpp.
(Fortran version also
available).
These codes
compute π using the
rectangular and
trapezoidal rules.
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Integration algos

The trapezoidal rule (example6.cpp)

I =

Z b

a
f (x)dx = h (f (a)/2 + f (a + h) + f (a + 2h) + · · ·+ f (b − h) + fb/2) .

Another very simple approach is the so-called midpoint or rectangle method. In this
case the integration area is split in a given number of rectangles with length h and
heigth given by the mid-point value of the function. This gives the following simple rule
for approximating an integral

I =

Z b

a
f (x)dx ≈ h

NX
i=1

f (xi−1/2),

where f (xi−1/2) is the midpoint value of f for a given rectangle. This is used in

example5.cpp.
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Dissection of example 5

1 // Reactangle rule and numerical integration
2 using namespace std;
3 #include <mpi.h>
4 #include <iostream>

5 int main (int nargs, char* args[])
6 {
7 int numprocs, my_rank, i, n = 1000;
8 double local_sum, rectangle_sum, x, h;
9 // MPI initializations
10 MPI_Init (&nargs, &args);
11 MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
12 MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
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Dissection of example 5

After the standard initializations with MPI such as MPI Init, MPI Comm size and
MPI Comm rank, MPI COMM WORLD contains now the number of processes defined
by using for example

mpiexec -np 10 ./prog.x

In line 4 we check if we have read in from screen the number of mesh points n. Note
that in line 7 we fix n = 1000, however we have the possibility to run the code with a
different number of mesh points as well. If my rank equals zero, which correponds to
the master node, then we read a new value of n if the number of arguments is larger
than two. This can be done as follows when we run the code

mpiexec -np 10 ./prog.x 10000
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Dissection of example 5

13 // Read from screen a possible new vaue of n
14 if (my_rank == 0 && nargs > 1) {
15 n = atoi(args[1]);
16 }
17 h = 1.0/n;
18 // Broadcast n and h to all processes
19 MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
20 MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
21 // Every process sets up its contribution to the integral
22 local_sum = 0.;
23 for (i = my_rank; i < n; i += numprocs) {
24 x = (i+0.5)*h;
25 local_sum += 4.0/(1.0+x*x);
26 }
27 local_sum *= h;

In line 17 we define also the step length h. In lines 19 and 20 we use the broadcast

function MPI Bcast. We use this particular function because we want data on one

processor (our master node) to be shared with all other processors. The broadcast

function sends data to a group of processes.
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Dissection of example 5

The MPI routine MPI Bcast transfers data from one task to a group of others. The
format for the call is in C++ given by the parameters of

MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);.
MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

in a case of a double. The general structure of this function is

MPI_Bcast( void *buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm).

All processes call this function, both the process sending the data (with rank zero) and
all the other processes in MPI COMM WORLD. Every process has now copies of n
and h, the number of mesh points and the step length, respectively.

We transfer the addresses of n and h. The second argument represents the number of

data sent. In case of a one-dimensional array, one needs to transfer the number of

array elements. If you have an n ×m matrix, you must transfer n ×m. We need also to

specify whether the variable type we transfer is a non-numerical such as a logical or

character variable or numerical of the integer, real or complex type.
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Dissection of example 5

28 if (my_rank == 0) {
29 MPI_Status status;
30 rectangle_sum = local_sum;
31 for (i=1; i < numprocs; i++) {
32 MPI_Recv(&local_sum,1,MPI_DOUBLE,MPI_ANY_SOURCE,500,

MPI_COMM_WORLD,&status);
33 rectangle_sum += local_sum;
34 }
35 cout << "Result: " << rectangle_sum << endl;
36 } else
37 MPI_Send(&local_sum,1,MPI_DOUBLE,0,500,MPI_COMM_WORLD);
38 // End MPI
39 MPI_Finalize ();
40 return 0;
41 }
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Dissection of example 5

In lines 23-27, every process sums its own part of the final sum used by the rectangle
rule. The receive statement collects the sums from all other processes in case
my rank == 0, else an MPI send is performed. If we are not the master node, we
send the results, else they are received and the local results are added to final sum.
The above can be rewritten using the MPI allreduce, as discussed in the next example.

The above function is not very elegant. Furthermore, the MPI instructions can be

simplified by using the functions MPI Reduce or MPI Allreduce. The first function takes

information from all processes and sends the result of the MPI operation to one process

only, typically the master node. If we use MPI Allreduce, the result is sent back to all

processes, a feature which is useful when all nodes need the value of a joint operation.

We limit ourselves to MPI Reduce since it is only one process which will print out the

final number of our calculation, The arguments to MPI Allreduce are the same.
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MPI reduce

Call as

MPI_reduce( void *senddata, void* resultdata, int count,
MPI_Datatype datatype, MPI_Op, int root, MPI_Comm comm)

The two variables senddata and resultdata are obvious, besides the fact that one
sends the address of the variable or the first element of an array. If they are arrays they
need to have the same size. The variable count represents the total dimensionality, 1
in case of just one variable, while MPI Datatype defines the type of variable which is
sent and received.
The new feature is MPI Op. It defines the type of operation we want to do. In our case,
since we are summing the rectangle contributions from every process we define
MPI Op = MPI SUM. If we have an array or matrix we can search for the largest og
smallest element by sending either MPI MAX or MPI MIN. If we want the location as
well (which array element) we simply transfer MPI MAXLOC or MPI MINOC. If we want
the product we write MPI PROD.
MPI Allreduce is defined as

MPI_Alreduce( void *senddata, void* resultdata, int count,
MPI_Datatype datatype, MPI_Op, MPI_Comm comm)}.
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Dissection of example 6

// Trapezoidal rule and numerical integration usign MPI, example 6
using namespace std;
#include <mpi.h>
#include <iostream>

// Here we define various functions called by the main program

double int_function(double );
double trapezoidal_rule(double , double , int , double (*)(double));

// Main function begins here
int main (int nargs, char* args[])
{

int n, local_n, numprocs, my_rank;
double a, b, h, local_a, local_b, total_sum, local_sum;
double time_start, time_end, total_time;
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Dissection of example 6

// MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
time_start = MPI_Wtime();
// Fixed values for a, b and n
a = 0.0 ; b = 1.0; n = 1000;
h = (b-a)/n; // h is the same for all processes
local_n = n/numprocs;
// make sure n > numprocs, else integer division gives zero
// Length of each process’ interval of
// integration = local_n*h.
local_a = a + my_rank*local_n*h;
local_b = local_a + local_n*h;
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Dissection of example 6

total_sum = 0.0;
local_sum = trapezoidal_rule(local_a, local_b, local_n,

&int_function);
MPI_Reduce(&local_sum, &total_sum, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
time_end = MPI_Wtime();
total_time = time_end-time_start;
if ( my_rank == 0) {
cout << "Trapezoidal rule = " << total_sum << endl;
cout << "Time = " << total_time

<< " on number of processors: " << numprocs << endl;
}
// End MPI
MPI_Finalize ();
return 0;

} // end of main program

We use MPI reduce to collect data from each process. Note also the use of the

function MPI Wtime.
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Dissection of example 6

// this function defines the function to integrate
double int_function(double x)
{

double value = 4./(1.+x*x);
return value;

} // end of function to evaluate
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Dissection of example 6

Implementation of the trapezoidal rule.

// this function defines the trapezoidal rule
double trapezoidal_rule(double a, double b, int n,

double (*func)(double))
{

double trapez_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(*func)(a)/2. ;
fb=(*func)(b)/2. ;
trapez_sum=0.;
for (j=1; j <= n-1; j++){
x=j*step+a;
trapez_sum+=(*func)(x);

}
trapez_sum=(trapez_sum+fb+fa)*step;
return trapez_sum;

} // end trapezoidal_rule
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Strategies

Develop codes locally, run with some few processes and
test your codes. Do benchmarking, timing and so forth on
local nodes, for example your laptop. You can install
MPICH2 on your laptop (most new laptos come with dual
cores). You can test with one node at the lab.
When you are convinced that your codes run correctly, you
start your production runs on available supercomputers, in
our case titan.uio.no.
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Research Computing Services

hpc@usit.uio.no
Computational Physics requires High Performance
Computing (HPC) resources
USIT and the Research Computing Services (RCS)
provides HPC resources and HPC support
Resources: titan.uio.no
Support: 14 people
Contact: hpc@usit.uio.no
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Titan

Hardware
546 X2200m2, 7 X4200, Magnum 3456 IB switch
174 Dell 1425, + 20 HP DL385 servers
EVA8K 120 TB storage
Dual core Intel and AMD (∼ 2500 cores in total)
Quad-core intel
Infiniband and ethernet
From 4GB to 64GB RAM
Heterogenous cluster!
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Titan

Software
Batch system: Sun Grid Engine (SGE)
Message Passing Interface (MPI):

Scampi
MPICH2
OpenMPI

Compilers: GCC, Intel, Portland and Pathscale
Optimized math libraries and scientific applications
All you need may be found under /site
Available software: http:
//www.hpc.uio.no/index.php/Titan_software
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Getting started

Batch systems
A batch system controls the use of the cluster resources
Submits the job to the right resource
Monitors the job while executing
Restarts the job in case of failure
Takes care of priorities and queues to control execution
order of unrelated jobs

Sun Grid Engine

SGE is the batch system used on Titan
Jobs are executed either interactively or through job scripts
Useful commands: showq, qlogin, qsub
http:
//www.hpc.uio.no/index.php/FAQ#QUEUE_SYSTEM
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Getting started

Modules
Different compilers, MPI-versions and applications need
different sets of user environment variables
The modules package lets you load and remove the
different variable sets
Useful commands:

List available modules: module avail
Load module: module load <environment>
Unload module: module unload <environment>
Currently loaded: module list

http://www.hpc.uio.no/index.php/FAQ#MODULES
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Example

Interactively

# l o g i n to t i t a n
$ ssh t i t a n . u io . no
# ask for 4 cpus
$ q log in −P fys4410 −pe mpi 4
# we want to use the scampi module
$ module load scampi
$ mkdir −p fys4410 / mpiexample /
$ cd fys4410 / mpiexample /
# download program5 . cpp from the course pages :
$ wget h t t p : / / t i n y u r l . com/39 hrah / program5 . cpp
# compile the program
$ mpic++ −O3 −o program5 . x program5 . cpp
# and execute i t
$ mpiexec . / program5 . x
Result : 3.14159
# f i n i shed , so logg ing out
$ ex i t
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The job script

job.sge

# ! / b in / sh
# 4 cpus wi th mpi ( or other communication )
#$ −pe mpi 4
# 10 mins o f wa l l t ime
#$ − l s r t =0:10:0
# p r o j e c t fys4410
#$ −P fys4410
# we need 512 MB of memory per process
#$ − l s vmem=512M
# name of job
#$ −N program5

source / s i t e / b in / jobsetup

# load the module used when we compiled the program
module load scampi

# s t a r t program
/ s i t e / b in / mpiexec . / program5 . x

#END OF SCRIPT
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Example

Submitting

# l o g i n to t i t a n
$ ssh t i t a n . u io . no
# we want to use the module scampi
$ module load scampi
$ cd fys4410 / mpiexample /
# compile the program
$ mpic++ −O3 −o program5 . x program5 . cpp
# and submit i t
$ qsub job . sge
$ ex i t
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Example

Checking execution

# check i f j ob i s running :
$ qs ta t −u mhjensen
job−ID p r i o r name user s ta te submit / s t a r t a t queue

s l o t s ja−task−ID
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

379931 2.50073 rec tang le mhjensen r 10/17/2008 06:02:39 normal@compute
−13−6. l o c a l 4

# r e s u l t s are in rec tang le . o379931
$ cat rec tang le . o379931
S t a r t i n g job 379931 on node compute−13−6. l o c a l a t Thu Jan 17 06:02:39 CET 2008
Creat ing / work /379931. undef ined . d
Result : 3.14159
Terminat ing job 379931 on compute−13−6. l o c a l a t Thu Jan 17 06:02:44 CET 2008
De le t ing / work /379931. undef ined . d
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Tips and admonitions

Tips
Titan FAQ: http://www.hpc.uio.no/index.php/FAQ
man-pages, e.g. man qsub

Ask us

Admonitions
Remember to exit from qlogin-sessions; the resource is
reserved for you untill you exit
Don’t run jobs on login-nodes; these are only for compiling
and editing files
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Topics for Week 5, 26-30 January

Importance sampling, blocking and Slater determinants
Wednesday:
Repetion from previous weeks
Discussion of importance sampling, lecture notes chapter
8 and 16. Part of this is material from FYS3150 (lecture
notes chapter 8)
Thursday:
Discussion of importance sampling and Slater
determinants, MPI and further computing topics.
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Importance sampling, what we want to do
We need to replace the brute force Metropolis algorithm with a walk in coordinate
space biased by the trial wave function. This approach is based on the Fokker-Planck
equation and the Langevin equation for generating a trajectory in coordinate space.
This is explained later.
For a diffusion process characterized by a time-dependent probability density P(x , t) in
one dimension the Fokker-Planck equation reads (for one particle/walker)

∂P
∂t

= D
∂

∂x

„
∂

∂x
− F

«
P(x , t),

where F is a drift term and D is the diffusion coefficient. The drift term is

F = 2
1

ΨT
∇ΨT

where ΨT is our trial wave function. The new positions in coordinate space are given
as the solutions of the Langevin equation using Euler’s method, namely, we go from the
Langevin equation

∂x(t)
∂t

= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x + DF (x)∆t + ξ,

where ξ is gaussian random variable and ∆t is a chosen time step.
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Importance Sampling

The Fokker-Planck equation yields a transition probability given by the Green’s function

G(y , x ,∆t) =
1

(4πD∆t)3N/2
exp

“
−(y − x − D∆tF (x))2/4D∆t

”
which in turn means that our brute force Metropolis algorithm

A(y , x) = min(1, q(y , x))),

with q(y , x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by

q(y , x) =
G(x , y ,∆t)|ΨT (y)|2

G(y , x ,∆t)|ΨT (x)|2

See program vmc be.cpp for example.
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Importance sampling: Transformation of Variables

The starting point is always the uniform distribution

p(x)dx =


dx 0 ≤ x ≤ 1
0 else

with p(x) = 1 and satisfying Z ∞
−∞

p(x)dx = 1.

All random number generators provided in the program library generate numbers in
this domain.
When we attempt a transformation to a new variable x → y we have to conserve the
probability

p(y)dy = p(x)dx ,

which for the uniform distribution implies

p(y)dy = dx .
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Transformation of Variables

Let us assume that p(y) is a PDF different from the uniform PDF p(x) = 1 with
x ∈ [0, 1]. If we integrate the last expression we arrive at

x(y) =

Z y

0
p(y ′)dy ′,

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P(y) =

Z y

0
p(y ′)dy ′.

This is an important result which has consequences for eventual improvements over

the brute force Monte Carlo.
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Example 1, a general Uniform Distribution

Suppose we have the general uniform distribution

p(y)dy =

(
dy

b−a a ≤ y ≤ b
0 else

If we wish to relate this distribution to the one in the interval x ∈ [0, 1] we have

p(y)dy =
dy

b − a
= dx ,

and integrating we obtain the cumulative function

x(y) =

Z y

a

dy ′

b − a
,

yielding
y = a + (b − a)x ,

a well-known result!
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Example 2, from Uniform to Exponential

Assume that
p(y) = e−y ,

which is the exponential distribution, important for the analysis of e.g., radioactive
decay. Again, p(x) is given by the uniform distribution with x ∈ [0, 1], and with the
assumption that the probability is conserved we have

p(y)dy = e−y dy = dx ,

which yields after integration

x(y) = P(y) =

Z y

0
exp (−y ′)dy ′ = 1− exp (−y),

or
y(x) = −ln(1− x).

This gives us the new random variable y in the domain y ∈ [0,∞) determined through

the random variable x ∈ [0, 1] generated by our favorite random generator.

Computational Physics II FYS4410



Example 2, from Uniform to Exponential

This means that if we can factor out exp (−y) from an integrand we may have

I =

Z ∞
0

F (y)dy =

Z ∞
0

exp (−y)G(y)dy

which we rewrite as

Z ∞
0

exp (−y)G(y)dy =

Z ∞
0

dx
dy

G(y)dy ≈
1
N

NX
i=1

G(y(xi )),

where xi is a random number in the interval [0,1].

Note that in practical implementations, our random number generators for the uniform

distribution never return exactly 0 or 1, but we we may come very close. We should

thus in principle set x ∈ (0, 1).
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Example 2, from Uniform to Exponential

The algorithm is rather simple. In the function which sets up the integral, we simply
need the random number generator for the uniform distribution in order to obtain
numbers in the interval [0,1]. We obtain y by the taking the logarithm of (1− x). Our
calling function which sets up the new random variable y may then include statements
like

.....
idum=-1;
x=ran0(&idum);
y=-log(1.-x);
.....
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Example 3, from Uniform to Normal

For the normal distribution, expressed here as

g(x , y) = exp (−(x2 + y2)/2)dxdy .

it is rather difficult to find an inverse since the cumulative distribution is given by the
error function erf (x).
If we however switch to polar coordinates, we have for x and y

r =
“

x2 + y2
”1/2

θ = tan−1 x
y
,

resulting in
g(r , θ) = r exp (−r2/2)drdθ,

where the angle θ could be given by a uniform distribution in the region [0, 2π].

Following example 1 above, this implies simply multiplying random numbers x ∈ [0, 1]

by 2π.
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Example 3, from Uniform to Normal
The variable r , defined for r ∈ [0,∞) needs to be related to to random numbers
x ′ ∈ [0, 1]. To achieve that, we introduce a new variable

u =
1
2

r2,

and define a PDF
exp (−u)du,

with u ∈ [0,∞). Using the results from example 2, we have that

u = −ln(1− x ′),

where x ′ is a random number generated for x ′ ∈ [0, 1]. With

x = rcos(θ) =
√

2ucos(θ),

and
y = rsin(θ) =

√
2usin(θ),

we can obtain new random numbers x , y through

x =
p
−2ln(1− x ′)cos(θ),

and
y =

p
−2ln(1− x ′)sin(θ),

with x ′ ∈ [0, 1] and θ ∈ 2π[0, 1].
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Example 3, from Uniform to Normal

A function which yields such random numbers for the normal distribution would include
statements like

.....
idum=-1;
radius=sqrt(-2*ln(1.-ran0(idum)));
theta=2*pi*ran0(idum);
x=radius*cos(theta);
y=radius*sin(theta);
.....
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Box-Mueller Method for Normal Deviates, gasdev.cpp
under project 1

// random numbers with gaussian distribution
double gaussian_deviate(long * idum)
{

static int iset = 0;
static double gset;
double fac, rsq, v1, v2;
if ( idum < 0) iset =0;
if (iset == 0) {
do {
v1 = 2.*ran0(idum) -1.0;
v2 = 2.*ran0(idum) -1.0;
rsq = v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0.);
fac = sqrt(-2.*log(rsq)/rsq);
gset = v1*fac;
iset = 1;
return v2*fac;

} else {
iset =0;
return gset;

}
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Importance Sampling

With the aid of the above variable transformations we address now one of the most
widely used approaches to Monte Carlo integration, namely importance sampling.
Let us assume that p(y) is a PDF whose behavior resembles that of a function F
defined in a certain interval [a, b]. The normalization condition isZ b

a
p(y)dy = 1.

We can rewrite our integral as

I =

Z b

a
F (y)dy =

Z b

a
p(y)

F (y)

p(y)
dy .
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Importance Sampling

Since random numbers are generated for the uniform distribution p(x) with x ∈ [0, 1],
we need to perform a change of variables x → y through

x(y) =

Z y

a
p(y ′)dy ′,

where we used
p(x)dx = dx = p(y)dy .

If we can invert x(y), we find y(x) as well.
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Importance Sampling

With this change of variables we can express the integral of Eq. (133) as

I =

Z
p(y)

F (y)

p(y)
dy =

Z
F (y(x))

p(y(x))
dx ,

meaning that a Monte Carlo evalutaion of the above integral gives

Z
F (y(x))

p(y(x))
dx =

1
N

NX
i=1

F (y(xi ))

p(y(xi ))
.

The advantage of such a change of variables in case p(y) follows closely F is that the
integrand becomes smooth and we can sample over relevant values for the integrand.
It is however not trivial to find such a function p. The conditions on p which allow us to
perform these transformations are

1 p is normalizable and positive definite,

2 it is analytically integrable and

3 the integral is invertible, allowing us thereby to express a new variable in terms of
the old one.
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Importance Sampling
The algorithm for this procedure is

Use the uniform distribution to find the random variable y in the interval [0,1].
p(x) is a user provided PDF.

Evaluate thereafter

I =

Z
F (x)dx =

Z
p(x)

F (x)

p(x)
dx ,

by rewriting Z
p(x)

F (x)

p(x)
dx =

Z
F (x(y))

p(x(y))
dy ,

since
dy
dx

= p(x).

Perform then a Monte Carlo sampling for

Z
F (x(y))

p(x(y))
dy ,≈

1
N

NX
i=1

F (x(yi ))

p(x(yi ))
,

with yi ∈ [0, 1],

Evaluate the variance
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Demonstration of Importance Sampling

I =

Z 1

0
F (x)dx =

Z 1

0

1
1 + x2

dx =
π

4
.

We choose the following PDF (which follows closely the function to integrate)

p(x) =
1
3

(4− 2x)

Z 1

0
p(x)dx = 1,

resulting
F (0)

p(0)
=

F (1)

p(1)
=

3
4
.

Check that it fullfils the requirements of a PDF. We perform then the change of
variables (via the Cumulative function)

y(x) =

Z x

0
p(x ′)dx ′ =

1
3

x (4− x) ,

or
x = 2− (4− 3y)1/2

We have that when y = 0 then x = 0 and when y = 1 we have x = 1.
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Simple Code

// evaluate the integral with importance sampling
for ( int i = 1; i <= n; i++){
x = ran0(&idum); // random numbers in [0,1]
y = 2 - sqrt(4-3*x); // new random numbers
fy=3*func(y)/(4-2*y); // weighted function
int_mc += fy;
sum_sigma += fy*fy;

}
int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/((double) n );
variance=(sum_sigma-int_mc*int_mc);
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Test Runs and Comparison with Brute Force for
π = 3.14159

The suffix cr stands for the brute force approach while is stands for the use of
importance sampling. All calculations use ran0 as function to generate the uniform
distribution.

N Icr σcr Iis σis
10000 3.13395E+00 4.22881E-01 3.14163E+00 6.49921E-03

100000 3.14195E+00 4.11195E-01 3.14163E+00 6.36837E-03
1000000 3.14003E+00 4.14114E-01 3.14128E+00 6.39217E-03

10000000 3.14213E+00 4.13838E-01 3.14160E+00 6.40784E-03

However, it is unfair to study one-dimensional integrals with MC methods!
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Multidimensional Integrals

When we deal with multidimensional integrals of the form

I =

Z 1

0
dx1

Z 1

0
dx2 . . .

Z 1

0
dxd g(x1, . . . , xd ),

with xi defined in the interval [ai , bi ] we would typically need a transformation of
variables of the form

xi = ai + (bi − ai )ti ,

if we were to use the uniform distribution on the interval [0, 1]. In this case, we need a
Jacobi determinant (useful in point b of project 2)

dY
i=1

(bi − ai ),

and to convert the function g(x1, . . . , xd ) to

g(x1, . . . , xd )→ g(a1 + (b1 − a1)t1, . . . , ad + (bd − ad )td ).
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Example, six-dimensional integral (project 1, part a)

We first integrate in a brute force manner a six-dimensional integral which is used to
determine the ground state correlation energy between two electrons in a helium atom.
We will employ both Gauss-Legendre quadrature and Monte-Carlo integration. We
assume that the wave function of each electron can be modelled like the single-particle
wave function of an electron in the hydrogen atom. The single-particle wave function
for an electron i in the 1s state is given in terms of a dimensionless variable (the wave
function is not properly normalized)

ri = xi ex + yi ey + zi ez ,

as
ψ1s(ri ) = e−αri ,

where α is a parameter and

ri =
q

x2
i + y2

i + z2
i .

We will fix α = 2, which should correspond to the charge of the helium atom Z = 2.
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Switch to spherical coordinates

Useful to change to spherical coordinates

dr1dr2 = r2
1 dr1r2

2 dr2dcos(θ1)dcos(θ2)dφ1dφ2,

and
1

r12
=

1q
r2
1 + r2

2 − 2r1r2cos(β)

with
cos(β) = cos(θ1)cos(θ2) + sin(θ1)sin(θ2)cos(φ1 − φ2))
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How do I do importance sampling in spherical
coordinates

r1,2 ∈ [0,∞), here we use the mapping r1,2 = −ln(1− ran) with ran ∈ [0, 1], a
uniform distribution point.

θ1,2 ∈ [0, π], use mapping θ1,2 = π ∗ ran with ran ∈ [0, 1] a uniform distribution
point.

φ1,2 ∈ [0, 2π], use mapping φ1,2 = 2π ∗ ran with ran ∈ [0, 1] a uniform
distribution point.

Be careful with the integrand

exp (−4(r1 + r2))r2
1 dr1r2

2 dr2dcos(θ1)dcos(θ2)dφ1dφ2q
r2
1 + r2

2 − 2r1r2cos(β)
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Example, six-dimensional integral

The ansatz for the wave function for two electrons is then given by the product of two
1s wave functions as

Ψ(r1, r2) = e−α(r1+r2).

Note that it is not possible to find an analytic solution to Schrödinger’s equation for two
interacting electrons in the helium atom.
The integral we need to solve is the quantum mechanical expectation value of the
correlation energy between two electrons, namely

〈
1

|r1 − r2|
〉 =

Z ∞
−∞

dr1dr2e−2α(r1+r2) 1
|r1 − r2|

=
5π2

162
= 0.192765711. (17)

Note that our wave function is not normalized. There is a normalization factor missing,

but for this project we don’t need to worry about that.
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Example, six-dimensional integral, Gauss-Legendre

double *x = new double [N];
double *w = new double [N];

// set up the mesh points and weights
gauleg(a,b,x,w, N);

// evaluate the integral with the Gauss-Legendre method
// Note that we initialize the sum

double int_gauss = 0.;
for (int i=0;i<N;i++){
for (int j = 0;j<N;j++){
for (int k = 0;k<N;k++){
for (int l = 0;l<N;l++){
for (int m = 0;m<N;m++){
for (int n = 0;n<N;n++){

int_gauss+=w[i]*w[j]*w[k]*w[l]*w[m]*w[n]

*int_function(x[i],x[j],x[k],x[l],x[m],x[n]);
}}}}}

}
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Example, six-dimensional integral, Gauss-Legendre

// this function defines the function to integrate
double int_function(double x1, double y1, double z1, double x2, double y2, double z2)
{

double alpha = 2.;
// evaluate the different terms of the exponential

double exp1=-2*alpha*sqrt(x1*x1+y1*y1+z1*z1);
double exp2=-2*alpha*sqrt(x2*x2+y2*y2+z2*z2);
double deno=sqrt(pow((x1-x2),2)+pow((y1-y2),2)+pow((z1-z2),2));
if(deno <pow(10.,-6.)) { return 0;}
else return exp(exp1+exp2)/deno;

} // end of function to evaluate
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Example, six-dimensional integral, brute force MC

double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ; long idum=-1 ;
double length=1.5; // we fix the max size of the box to L=3
double volume=pow((2*length),6.);

// evaluate the integral with importance sampling
for ( int i = 1; i <= n; i++){

// x[] contains the random numbers for all dimensions
for (int j = 0; j< 6; j++) {

x[j]=-length+2*length*ran0(&idum); // Maps U[0,1] to U[-L,L]
}
fx=brute_force_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/((double) n );
variance=sum_sigma-int_mc*int_mc;
....
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Example, six-dimensional integral, brute force MC

double brute_force_MC(double *x)
{

double alpha = 2.;
// evaluate the different terms of the exponential

double exp1=-2*alpha*sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
double exp2=-2*alpha*sqrt(x[3]*x[3]+x[4]*x[4]+x[5]*x[5]);
double deno=sqrt(pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2));
double value=exp(exp1+exp2)/deno;

return value;
} // end function for the integrand
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Example, six-dimensional integral, importance
sampling

double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ; long idum=-1 ;
// The ’volume’ contains 4 jacobideterminants(pi,pi,2pi,2pi) and a scaling factor 1/16
double volume=4*pow(acos(-1.),4.)*1./16;
// evaluate the integral with importance sampling
for ( int i = 1; i <= n; i++){

for (int j = 0; j < 2; j++) {
y=ran0(&idum);
x[j]=-0.25*log(1.-y);

}
for (int j = 2; j < 4; j++) {

x[j] = 2*acos(-1.)*ran0(&idum);
}
for (int j = 4; j < 6; j++) {

x[j] = acos(-1.)*ran0(&idum);
}

fx=gaussian_MC(x);
....
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Example, six-dimensional integral, importance
sampling

// this function defines the integrand to integrate

double gaussian_MC(double *x)
{
double num=x[0]*x[0]*x[1]*x[1]*sin(x[4])*sin(x[5]);
double deno=sqrt(x[0]*x[0]+x[1]*x[1]-2*x[0]*x[1]*

(sin(x[4])*sin(x[5])*cos(x[2]-x[3])+cos(x[4])*cos(x[5])));
return num/deno;
} // end function for the integrand
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Test Runs and Comparison with Brute Force and
Gauss-Legendre

The suffix br stands for the brute force approach while is stands for the use of
importance sampling.

N Ibr σbr time(s) Iis σis time(s)
1E6 0.19238 3.85124E-4 0.6 0.19176 1.01515E-4 1.4

10E6 0.18607 1.18053E-4 6 0.192254 1.22430E-4 14
100E6 0.18846 4.37163E-4 57 0.192720 1.03346E-4 138

1000E6 0.18843 1.35879E-4 581 0.192789 3.28795E-5 1372

Gauss-Legendre results:

N time(s) In |In − I
20 31 0.18047 1.123E-2
30 354 0.18501 7.76E-3
40 1999 0.18653 6.24E-3
50 7578 0.18722 5.54E-3
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Topics for Week 6, 2-6 February

Importance sampling, blocking and Slater determinants
Wednesday:
Fokker-Planck and Langevin equation, importance
sampling
Thursday:
Blocking and Slater determinants.
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Topics for Week 7, 9-13 February

Importance sampling, blocking and Slater determinants
Wednesday:
Fokker-Planck and Langevin equation, importance
sampling and blocking
Thursday:
Blocking and Slater determinants.
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Why blocking?

Statistical analysis
Monte Carlo simulations can be treated as computer
experiments
The results can be analysed with the same statistics tools
we would use in analysing laboraty experiments
As in all other experiments, we are looking for expectation
values and an estimate of how accurate they are, i.e., the
error
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Why blocking?

Statistical analysis
As in other experiments, Monte Carlo experiments have
two classes of errors:

Statistical errors
Systematic errors

Statistical errors can be estimated using standard tools
from statistics
Systematic errors are method specific and must be treated
differently from case to case. (In VMC a common source is
the step length)
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Statistics and blocking

The probability distribution function (PDF) is a function p(x) on the domain which, in
the discrete case, gives us the probability or relative frequency with which these values
of X occur:

p(x) = Prob(X = x)

In the continuous case, the PDF does not directly depict the actual probability. Instead
we define the probability for the stochastic variable to assume any value on an
infinitesimal interval around x to be p(x)dx . The continuous function p(x) then gives
us the density of the probability rather than the probability itself. The probability for a
stochastic variable to assume any value on a non-infinitesimal interval [a, b] is then
just the integral:

Prob(a ≤ X ≤ b) =

Z b

a
p(x)dx

Qualitatively speaking, a stochastic variable represents the values of numbers chosen

as if by chance from some specified PDF so that the selection of a large set of these

numbers reproduces this PDF.
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Statistics and blocking

Also of interest to us is the cumulative probability distribution function (CDF), P(x),
which is just the probability for a stochastic variable X to assume any value less than x :

P(x) = Prob(X ≤ x) =

Z x

−∞
p(x ′)dx ′

The relation between a CDF and its corresponding PDF is then:

p(x) =
d
dx

P(x)

Computational Physics II FYS4410



Statistics and blocking

A particularly useful class of special expectation values are the moments. The n-th
moment of the PDF p is defined as follows:

〈xn〉 ≡
Z

xnp(x) dx

The zero-th moment 〈1〉 is just the normalization condition of p. The first moment, 〈x〉,
is called the mean of p and often denoted by the letter µ:

〈x〉 = µ ≡
Z

xp(x) dx
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Statistics and blocking

A special version of the moments is the set of central moments, the n-th central
moment defined as:

〈(x − 〈x〉)n〉 ≡
Z

(x − 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and 0, respectively. But
the second central moment, known as the variance of p, is of particular interest. For
the stochastic variable X , the variance is denoted as σ2

X or Var(X):

σ2
X = Var(X) = 〈(x − 〈x〉)2〉 =

Z
(x − 〈x〉)2p(x) dx

=

Z “
x2 − 2x〈x〉 + 〈x〉2

”
p(x) dx

= 〈x2〉 − 2〈x〉〈x〉+ 〈x〉2

= 〈x2〉 − 〈x〉2

The square root of the variance, σ =
p
〈(x − 〈x〉)2〉 is called the standard deviation of

p. It is clearly just the RMS (root-mean-square) value of the deviation of the PDF from

its mean value, interpreted qualitatively as the “spread” of p around its mean.
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Statistics and blocking

Another important quantity is the so called covariance, a variant of the above defined
variance. Consider again the set {Xi} of n stochastic variables (not necessarily
uncorrelated) with the multivariate PDF P(x1, . . . , xn). The covariance of two of the
stochastic variables, Xi and Xj , is defined as follows:

Cov(Xi , Xj ) ≡
˙
(xi − 〈xi 〉)(xj − 〈xj 〉)

¸
=

Z
· · ·
Z

(xi − 〈xi 〉)(xj − 〈xj 〉) P(x1, . . . , xn) dx1 . . . dxn (18)

with
〈xi 〉 =

Z
· · ·
Z

xi P(x1, . . . , xn) dx1 . . . dxn
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Statistics and blocking

If we consider the above covariance as a matrix Cij = Cov(Xi , Xj ), then the diagonal
elements are just the familiar variances, Cii = Cov(Xi , Xi ) = Var(Xi ). It turns out that
all the off-diagonal elements are zero if the stochastic variables are uncorrelated. This
is easy to show, keeping in mind the linearity of the expectation value. Consider the
stochastic variables Xi and Xj , (i 6= j):

Cov(Xi , Xj ) =
˙
(xi − 〈xi 〉)(xj − 〈xj 〉)

¸
= 〈xi xj − xi 〈xj 〉 − 〈xi 〉xj + 〈xi 〉〈xj 〉〉
= 〈xi xj 〉 − 〈xi 〈xj 〉〉 − 〈〈xi 〉xj 〉+ 〈〈xi 〉〈xj 〉〉
= 〈xi xj 〉 − 〈xi 〉〈xj 〉 − 〈xi 〉〈xj 〉+ 〈xi 〉〈xj 〉
= 〈xi xj 〉 − 〈xi 〉〈xj 〉
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Statistics and blocking

If Xi and Xj are independent, we get 〈xi xj 〉 = 〈xi 〉〈xj 〉, resulting in
Cov(Xi ,Xj ) = 0 (i 6= j).
Also useful for us is the covariance of linear combinations of stochastic variables. Let
{Xi} and {Yi} be two sets of stochastic variables. Let also {ai} and {bi} be two sets of
scalars. Consider the linear combination:

U =
X

i

ai Xi V =
X

j

bj Yj

By the linearity of the expectation value

Cov(U,V ) =
X
i,j

ai bj Cov(Xi ,Yj )
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Statistics and blocking

Now, since the variance is just Var(Xi ) = Cov(Xi ,Xi ), we get the variance of the linear
combination U =

P
i ai Xi :

Var(U) =
X
i,j

ai aj Cov(Xi ,Xj ) (19)

And in the special case when the stochastic variables are uncorrelated, the
off-diagonal elements of the covariance are as we know zero, resulting in:

Var(U) =
X

i

a2
i Cov(Xi ,Xi ) =

X
i

a2
i Var(Xi )

Var(
X

i

ai Xi ) =
X

i

a2
i Var(Xi )

which will become very useful in our study of the error in the mean value of a set of

measurements.
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Statistics and blocking

A stochastic process is a process that produces sequentially a chain of values:

{x1, x2, . . . xk , . . . }.

We will call these values our measurements and the entire set as our measured

sample. The action of measuring all the elements of a sample we will call a stochastic

experiment (since, operationally, they are often associated with results of empirical

observation of some physical or mathematical phenomena; precisely an experiment).

We assume that these values are distributed according to some PDF pX (x), where X

is just the formal symbol for the stochastic variable whose PDF is pX (x). Instead of

trying to determine the full distribution p we are often only interested in finding the few

lowest moments, like the mean µX and the variance σX .
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Statistics and blocking

In practical situations a sample is always of finite size. Let that size be n. The
expectation value of a sample, the sample mean, is then defined as follows:

x̄n ≡
1
n

nX
k=1

xk

The sample variance is:

Var(x) ≡
1
n

nX
k=1

(xk − x̄n)2

its square root being the standard deviation of the sample. The sample covariance is:

Cov(x) ≡
1
n

X
kl

(xk − x̄n)(xl − x̄n)
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Statistics and blocking

Note that the sample variance is the sample covariance without the cross terms. In a
similar manner as the covariance in eq. (18) is a measure of the correlation between
two stochastic variables, the above defined sample covariance is a measure of the
sequential correlation between succeeding measurements of a sample.

These quantities, being known experimental values, differ significantly from and must

not be confused with the similarly named quantities for stochastic variables, mean µX ,

variance Var(X) and covariance Cov(X ,Y ).
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Statistics and blocking

The law of large numbers states that as the size of our sample grows to infinity, the
sample mean approaches the true mean µX of the chosen PDF:

lim
n→∞

x̄n = µX

The sample mean x̄n works therefore as an estimate of the true mean µX .

What we need to find out is how good an approximation x̄n is to µX . In any stochastic

measurement, an estimated mean is of no use to us without a measure of its error. A

quantity that tells us how well we can reproduce it in another experiment. We are

therefore interested in the PDF of the sample mean itself. Its standard deviation will be

a measure of the spread of sample means, and we will simply call it the error of the

sample mean, or just sample error, and denote it by errX . In practice, we will only be

able to produce an estimate of the sample error since the exact value would require the

knowledge of the true PDFs behind, which we usually do not have.
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Statistics and blocking

The straight forward brute force way of estimating the sample error is simply by

producing a number of samples, and treating the mean of each as a measurement.

The standard deviation of these means will then be an estimate of the original sample

error. If we are unable to produce more than one sample, we can split it up sequentially

into smaller ones, treating each in the same way as above. This procedure is known as

blocking and will be given more attention shortly. At this point it is worth while exploring

more indirect methods of estimation that will help us understand some important

underlying principles of correlational effects.
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Statistics and blocking

Let us first take a look at what happens to the sample error as the size of the sample
grows. In a sample, each of the measurements xi can be associated with its own
stochastic variable Xi . The stochastic variable X n for the sample mean x̄n is then just a
linear combination, already familiar to us:

X n =
1
n

nX
i=1

Xi

All the coefficients are just equal 1/n. The PDF of X n, denoted by pXn
(x) is the

desired PDF of the sample means.
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Statistics and blocking

The probability density of obtaining a sample mean x̄n is the product of probabilities of
obtaining arbitrary values x1, x2, . . . , xn with the constraint that the mean of the set {xi}
is x̄n:

pXn
(x) =

Z
pX (x1) · · ·

Z
pX (xn) δ

„
x −

x1 + x2 + · · ·+ xn

n

«
dxn · · · dx1

And in particular we are interested in its variance Var(X n).
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Statistics and blocking

It is generally not possible to express pXn
(x) in a closed form given an arbitrary PDF

pX and a number n. But for the limit n→∞ it is possible to make an approximation.
The very important result is called the central limit theorem. It tells us that as n goes to
infinity, pXn

(x) approaches a Gaussian distribution whose mean and variance equal
the true mean and variance, µX and σ2

X , respectively:

lim
n→∞

pXn
(x) =

„
n

2πVar(X)

«1/2
e−

n(x−x̄n)2

2Var(X) (20)
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Statistics and blocking

The desired variance Var(X n), i.e. the sample error squared err2
X , is given by:

err2
X = Var(X n) =

1
n2

X
ij

Cov(Xi ,Xj ) (21)

We see now that in order to calculate the exact error of the sample with the above

expression, we would need the true means µXi
of the stochastic variables Xi . To

calculate these requires that we know the true multivariate PDF of all the Xi . But this

PDF is unknown to us, we have only got the measurements of one sample. The best

we can do is to let the sample itself be an estimate of the PDF of each of the Xi ,

estimating all properties of Xi through the measurements of the sample.
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Statistics and blocking

Our estimate of µXi
is then the sample mean x̄ itself, in accordance with the the central

limit theorem:

µXi
= 〈xi 〉 ≈

1
n

nX
k=1

xk = x̄

Using x̄ in place of µXi
we can give an estimate of the covariance in eq. (21):

Cov(Xi ,Xj ) = 〈(xi − 〈xi 〉)(xj − 〈xj 〉)〉 ≈ 〈(xi − x̄)(xj − x̄)〉

≈
1
n

nX
l

 
1
n

nX
k

(xk − x̄n)(xl − x̄n)

!
=

1
n

1
n

X
kl

(xk − x̄n)(xl − x̄n)

=
1
n

Cov(x)
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Statistics and blocking

By the same procedure we can use the sample variance as an estimate of the variance
of any of the stochastic variables Xi :

Var(Xi ) = 〈xi − 〈xi 〉〉 ≈ 〈xi − x̄n〉

≈
1
n

nX
k=1

(xk − x̄n)

= Var(x) (22)

Now we can calculate an estimate of the error errX of the sample mean x̄n:

err2
X =

1
n2

X
ij

Cov(Xi ,Xj )

≈
1
n2

X
ij

1
n

Cov(x) =
1
n2

n2 1
n

Cov(x)

=
1
n

Cov(x) (23)

which is nothing but the sample covariance divided by the number of measurements in

the sample.

Computational Physics II FYS4410



Statistics and blocking

In the special case that the measurements of the sample are uncorrelated (equivalently
the stochastic variables Xi are uncorrelated) we have that the off-diagonal elements of
the covariance are zero. This gives the following estimate of the sample error:

err2
X =

1
n2

X
ij

Cov(Xi ,Xj ) =
1
n2

X
i

Var(Xi )

≈
1
n2

X
i

Var(x)

=
1
n

Var(x) (24)

where in the second step we have used eq. (22). The error of the sample is then just its

standard deviation divided by the square root of the number of measurements the

sample contains. This is a very useful formula which is easy to compute. It acts as a

first approximation to the error, but in numerical experiments, we cannot overlook the

always present correlations.
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Statistics and blocking

For computational purposes one usually splits up the estimate of err2
X , given by

eq. (23), into two parts:

err2
X =

1
n

Var(x) +
1
n

(Cov(x)− Var(x))

=
1
n2

nX
k=1

(xk − x̄n)2 +
2
n2

X
k<l

(xk − x̄n)(xl − x̄n) (25)

The first term is the same as the error in the uncorrelated case, eq. (24). This means

that the second term accounts for the error correction due to correlation between the

measurements. For uncorrelated measurements this second term is zero.
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Statistics and blocking

Computationally the uncorrelated first term is much easier to treat efficiently than the
second.

Var(x) =
1
n

nX
k=1

(xk − x̄n)2 =

 
1
n

nX
k=1

x2
k

!
− x̄2

n

We just accumulate separately the values x2 and x for every measurement x we

receive. The correlation term, though, has to be calculated at the end of the experiment

since we need all the measurements to calculate the cross terms. Therefore, all

measurements have to be stored throughout the experiment.
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Statistics and blocking

Let us analyze the problem by splitting up the correlation term into partial sums of the
form:

fd =
1

n − d

n−dX
k=1

(xk − x̄n)(xk+d − x̄n)

The correlation term of the error can now be rewritten in terms of fd :

2
n

X
k<l

(xk − x̄n)(xl − x̄n) = 2
n−1X
d=1

fd

The value of fd reflects the correlation between measurements separated by the
distance d in the sample samples. Notice that for d = 0, f is just the sample variance,
Var(x). If we divide fd by Var(x), we arrive at the so called autocorrelation function:

κd =
fd

Var(x)

which gives us a useful measure of the correlation pair correlation starting always at 1

for d = 0.
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Statistics and blocking

The sample error (see eq. (25)) can now be written in terms of the autocorrelation
function:

err2
X =

1
n

Var(x) +
2
n
· Var(x)

n−1X
d=1

fd
Var(x)

=

0@1 + 2
n−1X
d=1

κd

1A 1
n

Var(x)

=
τ

n
· Var(x) (26)

and we see that errX can be expressed in terms the uncorrelated sample variance
times a correction factor τ which accounts for the correlation between measurements.
We call this correction factor the autocorrelation time:

τ = 1 + 2
n−1X
d=1

κd (27)
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Statistics and blocking

For a correlation free experiment, τ equals 1. From the point of view of eq. (26) we can
interpret a sequential correlation as an effective reduction of the number of
measurements by a factor τ . The effective number of measurements becomes:

neff =
n
τ

To neglect the autocorrelation time τ will always cause our simple uncorrelated

estimate of err2
X ≈ Var(x)/n to be less than the true sample error. The estimate of the

error will be too “good”. On the other hand, the calculation of the full autocorrelation

time poses an efficiency problem if the set of measurements is very large.
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Can we understand this? Time Auto-correlation
Function

The so-called time-displacement autocorrelation φ(t) for a quantityM is given by

φ(t) =

Z
dt ′
ˆ
M(t ′)− 〈M〉

˜ ˆ
M(t ′ + t)− 〈M〉

˜
,

which can be rewritten as

φ(t) =

Z
dt ′
h
M(t ′)M(t ′ + t)− 〈M〉2

i
,

where 〈M〉 is the average value andM(t) its instantaneous value. We can discretize
this function as follows, where we used our set of computed valuesM(t) for a set of
discretized times (our Monte Carlo cycles corresponding to moving all electrons?)

φ(t) =
1

tmax − t

tmax−tX
t′=0

M(t ′)M(t ′+ t)−
1

tmax − t

tmax−tX
t′=0

M(t ′)×
1

tmax − t

tmax−tX
t′=0

M(t ′+ t).
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Time Auto-correlation Function

One should be careful with times close to tmax, the upper limit of the sums becomes
small and we end up integrating over a rather small time interval. This means that the
statistical error in φ(t) due to the random nature of the fluctuations inM(t) can
become large.
One should therefore choose t � tmax.
Note that the variableM can be any expectation values of interest.

The time-correlation function gives a measure of the correlation between the various

values of the variable at a time t ′ and a time t ′ + t . If we multiply the values ofM at

these two different times, we will get a positive contribution if they are fluctuating in the

same direction, or a negative value if they fluctuate in the opposite direction. If we then

integrate over time, or use the discretized version of, the time correlation function φ(t)

should take a non-zero value if the fluctuations are correlated, else it should gradually

go to zero. For times a long way apart the different values ofM are most likely

uncorrelated and φ(t) should be zero.
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Time Auto-correlation Function

We can derive the correlation time by observing that our Metropolis algorithm is based
on a random walk in the space of all possible spin configurations. Our probability
distribution function ŵ(t) after a given number of time steps t could be written as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix.
We can always expand ŵ(0) in terms of the right eigenvectors of v̂ of Ŵ as

ŵ(0) =
X

i

αi v̂i ,

resulting in
ŵ(t) = Ŵt ŵ(0) = Ŵt

X
i

αi v̂i =
X

i

λt
iαi v̂i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂i .
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Time Auto-correlation Function

If we assume that λ0 is the largest eigenvector we see that in the limit t →∞, ŵ(t)
becomes proportional to the corresponding eigenvector v̂0. This is our steady state or
final distribution.
We can relate this property to an observable like the mean energy. With the probabilty
ŵ(t) (which in our case is the squared trial wave function) we can write the expectation
values as

〈M(t)〉 =
X
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values ofMµ in its various

microstates µ.
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Time Auto-correlation Function
We rewrite this relation as

〈M(t)〉 = ŵ(t)m =
X

i

λt
iαi v̂i mi .

If we define mi = v̂i mi as the expectation value ofM in the i th eigenstate we can
rewrite the last equation as

〈M(t)〉 =
X

i

λt
iαi mi .

Since we have that in the limit t →∞ the mean value is dominated by the the largest
eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

λt
iαi mi .

We define the quantity

τi = −
1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

αi mi e−t/τi .
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Time Auto-correlation Function

The quantities τi are the correlation times for the system. They control also the
auto-correlation function discussed above. The longest correlation time is obviously
given by the second largest eigenvalue τ1, which normally defines the correlation time
discussed above. For large times, this is the only correlation time that survives. If
higher eigenvalues of the transition matrix are well separated from λ1 and we simulate
long enough, τ1 may well define the correlation time. In other cases we may not be
able to extract a reliable result for τ1. Coming back to the time correlation function φ(t)
we can present a more general definition in terms of the mean magnetizations 〈M(t)〉.
Recalling that the mean value is equal to 〈M(∞)〉 we arrive at the expectation values

φ(t) = 〈M(0)−M(∞)〉〈M(t)−M(∞)〉,

resulting in
φ(t) =

X
i,j 6=0

miαi mjαj e−t/τi ,

which is appropriate for all times.
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Correlation Time

If the correlation function decays exponentially

φ(t) ∼ exp (−t/τ)

then the exponential correlation time can be computed as the average

τexp = −〈
t

log| φ(t)
φ(0)
|
〉.

If the decay is exponential, thenZ ∞
0

dtφ(t) =

Z ∞
0

dtφ(0) exp (−t/τ) = τφ(0),

which suggests another measure of correlation

τint =
X

k

φ(k)

φ(0)
,

called the integrated correlation time.
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What is blocking?

Blocking

Say that we have a set of samples from a Monte Carlo
experiment
Assuming (wrongly) that our samples are uncorrelated our
best estimate of the standard deviation of the mean 〈M〉 is
given by

σ =

√
1
n

(〈M2〉 − 〈M〉2)

If the samples are correlated we can rewrite our results to
show that

σ =

√
1 + 2τ/∆t

n
(〈M2〉 − 〈M〉2)

where τ is the correlation time (the time between a sample
and the next uncorrelated sample) and ∆t is time between
each sample
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What is blocking?

Blocking
If ∆t � τ our first estimate of σ still holds
Much more common that ∆t < τ

In the method of data blocking we divide the sequence of
samples into blocks
We then take the mean 〈Mi〉 of block i = 1 . . . nblocks to
calculate the total mean and variance
The size of each block must be so large that sample j of
block i is not correlated with sample j of block i + 1
The correlation time τ would be a good choice
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What is blocking?

Blocking
Problem: We don’t know τ or it is too expensive to compute
Solution: Make a plot of std. dev. as a function of block size
The estimate of std. dev. of correlated data is too low→
the error will increase with increasing block size until the
blocks are uncorrelated, where we reach a plateau
When the std. dev. stops increasing the blocks are
uncorrelated
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Implementation

Main ideas
Do a parallel Monte Carlo simulation, storing all samples to
files (one per process)
Do the statistical analysis on these files, independently of
your Monte Carlo program
Read the files into an array
Loop over various block sizes
For each block size nb, loop over the array in steps of nb
taking the mean of elements inb, . . . , (i + 1)nb

Take the mean and variance of the resulting array
Write the results for each block size to file for later analysis
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Implementation

Example
The files vmc para.cpp and vmc blocking.cpp contains a
parallel VMC simulator and a program for doing blocking
on the samples from the resulting set of files
Will go through the parts related to blocking
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Implementation

Parallel file output
The total number of samples from all processes may get
very large
Hence, storing all samples on the master node is not a
scalable solution
Instead we store the samples from each process in
separate files
Must make sure these files have different names

String handling

os t r ings t ream ost ;
os t << "blocks_rank" << my rank << ".dat" ;
b l o c k o f i l e . open ( os t . s t r ( ) . c s t r ( ) , i os : : out | i os : :

b ina ry ) ;
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Implementation

Parallel file output
Having separated the filenames it’s just a matter of taking
the samples and store them to file
Note that there is no need for communication between the
processes in this procedure

File dumping

a l l e n e r g i e s = new double [ number cycles + 1 ] ;
mc sampling ( max var ia t ions , number cycles ,

cumulat ive e , cumulat ive e2 ,
a l l e n e r g i e s ) ;

b l o c k o f i l e . write ( ( char ∗ ) ( a l l e n e r g i e s +1) ,
number cycles∗sizeof ( double ) ) ;

b l o c k o f i l e . close ( ) ;
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Implementation

Reading the files
Reading the files is only about mirroring the output
To make life easier for ourselves we find the filesize, and
hence the number of samples by using the C function stat

File loading

struct sta t resul t ;
i f ( stat ("blocks_rank0.dat" , &resul t ) == 0){

l o c a l n = resul t . s t s i z e / sizeof ( double ) ;
n = l o c a l n∗n procs ;

}

double∗ mc resu l ts = new double [ n ] ;
for ( i n t i =0; i<n procs ; i ++){

os t r ings t ream ost ;
os t << "blocks_rank" << i << ".dat" ;
i f s t r eam i n f i l e ;
i n f i l e . open ( os t . s t r ( ) . c s t r ( ) , i os : : in | i os : : b ina ry ) ;
i n f i l e . read ( ( char∗) &( mc resu l t s [ i∗ l o c a l n ] ) , resul t . s t s i z e ) ;
i n f i l e . close ( ) ;

}
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Implementation

Blocking

Loop over block sizes inb, . . . , (i + 1)nb

Loop over block sizes

for ( i n t i =0; i<n block samples ; i ++){
b lock s i ze = min b lock s i ze+ i ∗ b l o c k s t e p l e n g t h ;
b lock ing ( mc resu l ts , n , b lock s ize , res ) ;
mean = res [ 0 ] ;
sigma = res [ 1 ] ;
o u t f i l e << b lock s i ze << "\t" << mean << "\t"

<< s q r t ( sigma / ( ( n / b l ock s i ze ) −1.0) )
<< endl ;

}
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Implementation

Blocking
The blocking itself is now just a matter of finding the
number of blocks (note the integer division) and taking the
mean of each block
Note the pointer aritmetic: Adding a number i to an array
pointer moves the pointer to element i in the array

Blocking function

void b lock ing ( double ∗ vals , i n t n vals , i n t
b lock s ize , double ∗ res ) {

i n t n b locks = n va ls / b l ock s i ze ;
double∗ b lock va l s = new double [ n b locks ] ;
for ( i n t i =0; i<n b locks ; i ++)

b l ock va l s [ i ] = mean( va ls+ i ∗ b lock s ize ,
b l ock s i ze ) ;

meanvar ( b lock va ls , n blocks , res ) ;
}
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Bootstrap and Jackknife Methods, formalities

A good reference is M. C. K. Yang and David H. Robinson, Understanding and
Learning Statistics by Computer, (World Scientific, Singapore, 1986).
Simple example: suppose we want to estimate the mass of an elementary particle as
predicted in a numerical simulation. The mass is obtained by fitting an exponential to a
simulation data set as follows:

y(t) = a exp(−mt)

where the data are given as a table of y values for integer values of t , as

{y(0), y(1), y(2), . . . , y(L)}.

Actually the simulation spits out a list of such values in one single measurement, runs
for a while, and spits out another list, and so on. So our data set looks like

{yi (0), yi (1), yi (2), . . . , yi (L)},

where i = 1, . . . ,N labels a list of measurements.
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Bootstrap and Jackknife Methods

We might think all we have to do is to take the raw data and construct means ȳ(t) and

standard errors σ(t) at each time t and then do a standard least chi square fit. We

would get the best values for the parameters a and m and we would get the errors from

the error matrix. But we have a problem. The standard chi square fit assumes that the

fluctuations in the data points are statistically independent. It turns out that with the

numerical simulations (also often a problem with experimental data as well) the

fluctuations in the data are correlated. That is, if y(0) fluctuates upwards, chances are

better that y(1) also fluctuates upwards. So we can’t use the standard formula for chi

square. Now it is possible to modify the formula for chi square to take proper account of

the correlations. But the analysis becomes much more involved, so one would like to

develop more confidence in the resulting error in the mass parameter.
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Bootstrap and Jackknife Methods, formalities

Starting from a sample of N measurements, the jackknife begins by throwing out the
first measurement, leaving a jackknife data set of N − 1 “resampled” values. The
statistical analysis is done on the reduced sample, giving a measured value of a
parameter, say mJ1. Then a new resampling is done, this time throwing out the second
measurement, and a new measured value of the parameter is obtained, say mJ2. The
process is repeated for each set i in the sample, resulting in a set of parameter values
{mJi , i = 1, . . . ,N}. The standard error is given by the formula

σ2
Jmean = (N − 1)

NX
i=1

(mJi −m)2/N

where m is the result of fitting the full sample.
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Bootstrap and Jackknife Methods, formalities

The jackknife method is also capable of giving an estimate of sampling bias. We may
have a situation in which a parameter estimate tends to come out on the high side (or
low side) of its true value if a data sample is too small. Thus the estimate m derived
from a fit to N data points may be higher (or lower) than the true value. When this
happens, we might expect that removing a measurement, as we do in the jackknife,
would enhance the bias. We measure this effect by comparing the mean of the
jackknife values mJi , call it mJ. with the result m of fitting the full data set. If there is a
difference, we can correct for the bias using

m̃ = m − (N − 1)(mJ. −m)
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Bootstrap and Jackknife Methods, formalities
To see how the jackknife works, let us consider the much simpler problem of computing
the mean and standard deviation of the mean of a random sample {xi}. The
conventional approach gives

x̄ =
NX

j=1

xi/N

σ2
mean =

NX
j=1

(xj − x̄)2/[N(N − 1)]

The jackknife approach computes the jackknife sample means

xJi =
X
j 6=i

xi/(N − 1)

for i = 1, . . . ,N. Then we compute the jackknife error in the mean, which is given by

σ2
Jmean = (N − 1)

NX
i=1

(xJi − x̄)2/N
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Bootstrap and Jackknife Methods, formalities

Compare the placement of the factors of N and N − 1 here with the expression for
σmean. The reason for the difference is that the jackknife sample means are distributed
N − 1 times closer to the mean than the original values xi , so we need a correction
factor of (N − 1)2. In fact for this simple example, it is easy to show that

xJi − x̄ = (x̄ − xi )/(N − 1).

Consequently we can show trivially that

σJmean = σmean

so the jackknife procedure hasn’t gained us anything in this simple case. But our
example of determining the mass of an elementary particle is not so simple. The error
estimate is found from Eq ([*]). This error estimate is not likely to be the same as the
error obtained from a full correlated chi square analysis. However, we expect that in the
limit of an infinitely large sample, both estimates should agree.

So if we get two error estimates and they don’t agree, which should we believe? A

conservative approach would take the larger of the two.
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Topics for Week 8, 16-20 February

Conjugate gradient method and wave functions
Wednesday:
Conjugate gradient method (Numerical recipes chapter
10.7)
Thursday:
Conjugate gradient method
Wave functions: Slater determinant and Jastrow part
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Conjugate gradient (CG) method

The success of the CG method for finding solutions of non-linear problems is based on
the theory for of conjugate gradients for linear systems of equations. It belongs to the
class of iterative methods for solving problems from linear algebra of the type

Âx̂ = b̂.

In the iterative process we end up with a problem like

r̂ = b̂− Âx̂,

where r̂ is the so-called residual or error in the iterative process.
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Conjugate gradient method

The residual is zero when we reach the minimum of the quadratic equation

P(x̂) =
1
2

x̂T Âx̂− x̂T b̂,

with the constraint that the matrix Â is positive definite and symmetric. If we search for

a minimum of the quantum mechanical variance, then the matrix Â, which is called the

Hessian, is given by the second-derivative of the variance. This quantity is always

positive definite. If we vary the energy, the Hessian may not always be positive definite.
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Conjugate gradient method

In the CG method we define so-called conjugate directions and two vectors ŝ and t̂ are
said to be conjugate if

ŝT Ât̂ = 0.

The philosophy of the CG method is to perform searches in various conjugate
directions of our vectors x̂i obeying the above criterion, namely

x̂T
i Âx̂j = 0.

Two vectors are conjugate if they are orthogonal with respect to this inner product.

Being conjugate is a symmetric relation: if ŝ is conjugate to t̂, then t̂ is conjugate to ŝ.
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Conjugate gradient method

An example is given by the eigenvectors of the matrix

v̂T
i Âv̂j = λv̂T

i v̂j ,

which is zero unless i = j .
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Conjugate gradient method

Assume now that we have a symmetric positive-definite matrix Â of size n × n. At each
iteration i + 1 we obtain the conjugate direction of a vector

x̂i+1 = x̂i + αi p̂i .

We assume that p̂i is a sequence of n mutually conjugate directions. Then the p̂i form
a basis of Rn and we can expand the solution Âx̂ = b̂ in this basis, namely

x̂ =
nX

i=1

αi p̂i .
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Conjugate gradient method

The coefficients are given by

Ax =
nX

i=1

αi Api = b.

Multiplying with p̂T
k from the left gives

p̂T
k Âx̂ =

nX
i=1

αi p̂T
k Âp̂i = p̂T

k b̂,

and we can define the coefficients αk as

αk =
p̂T

k b̂

p̂T
k Âp̂k
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Conjugate gradient method and iterations

If we choose the conjugate vectors p̂k carefully, then we may not need all of them to
obtain a good approximation to the solution x̂. So, we want to regard the conjugate
gradient method as an iterative method. This also allows us to solve systems where n
is so large that the direct method would take too much time.
We denote the initial guess for x̂ as x̂0. We can assume without loss of generality that

x̂0 = 0,

or consider the system
Âẑ = b̂− Âx̂0,

instead.
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Conjugate gradient method

Important, one can show that the solution x̂ is also the unique minimizer of the
quadratic form

f (x̂) =
1
2

x̂T Âx̂− x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector p̂1 to be the gradient of f at x̂ = x̂0, which
equals

Âx̂0 − b̂,

and x̂0 = 0 it is equal −b̂. The other vectors in the basis will be conjugate to the

gradient, hence the name conjugate gradient method.
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Conjugate gradient method

Let r̂k be the residual at the k -th step:

r̂k = b̂− Âx̂k .

Note that r̂k is the negative gradient of f at x̂ = x̂k , so the gradient descent method
would be to move in the direction r̂k . Here, we insist that the directions p̂k are
conjugate to each other, so we take the direction closest to the gradient r̂k under the
conjugacy constraint. This gives the following expression

p̂k+1 = r̂k −
p̂T

k Âr̂k

p̂T
k Âp̂k

p̂k .
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Conjugate gradient method

We can also compute the residual iteratively as

r̂k+1 = b̂− Âx̂k+1,

which equals
b̂− Â(x̂k + αk p̂k ),

or
(b̂− Âx̂k )− αk Âp̂k ,

which gives
r̂k+1 = r̂k − Âp̂k ,
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Conjugate gradient method, our case

If we consider finding the minimum of a function f using Newton’s method, that is
search for a zero of the gradient of a function. Near a point xi we have to second order

f (x̂) = f (x̂i ) + (x̂− x̂i )∇f (x̂i )
1
2

(x̂− x̂i )Â(x̂− x̂i )

giving
∇f (x̂) = ∇f (x̂i ) + Â(x̂− x̂i ).

In Newton’s method we set ∇f = 0 and we can thus compute the next iteration point
(here the exact result)

x̂− x̂i = Â−1∇f (x̂i ).

Subtracting this equation from that of x̂i+1 we have

x̂i+1 − x̂i = Â−1(∇f (x̂i+1)−∇f (x̂i )).
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Codes from numerical recipes

The codes are taken from chapter 10.7 of Numerical recipes. We use the functions
dfpmin and lnsrch. You can load down the package of programs from the webpage of
the course, see under project 1. The package is called NRcgm107.tar .gz and contains
the files dfmin.c, lnsrch.c, nrutil.c and nrutil.h. These codes are written in C.

void dfpmin(double p[], int n, double gtol, int *iter, double *fret,
double(*func)(double []), void (*dfunc)(double [], double []))
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What you have to provide

The input to dfpmin

void dfpmin(double p[], int n, double gtol, int *iter, double *fret,
double(*func)(double []), void (*dfunc)(double [], double []))

is

The starting vector p of length n

The function func on which minimization is done

The function dfunc where the gradient i calculated

The convergence requirement for zeroing the gradient gtol .

It returns in p the location of the minimum, the number of iterations and the minimum

value of the function under study fret .
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Simple example and demonstration

For the harmonic oscillator in one-dimension with a trial wave function and probability

ψT (x) = e−α
2x2

,PT (x)dx =
e−2α2x2

dxR
dxe−2α2x2

with α as the variational parameter. We have the following local energy

EL[α] = α2 + x2
„

1
2
− 2α2

«
,

which results in the expectation value

〈EL[α]〉 =
1
2
α2 +

1
8α2
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Simple example and demonstration

The derivative of the energy with respect to α gives

d〈EL[α]〉
dα

= α−
1

4α3

and a second derivative which is always positive (meaning that we find a minimum)

d2〈EL[α]〉
dα2

= 1 +
3

4α4

The condition
d〈EL[α]〉

dα
= 0,

gives the optimal α = 1/
√

2.
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Simple example and demonstration

In general we end up computing the expectation value of the energy in terms of some
parameters α = {α0, α1, . . . , αn and we search for a minimum in parameter space.
This leads to an energy minimization problem.
The elements of the gradient are (Ei is the first derivative wrt to the variational
parameter αi )

Ēi =

fi
ψi

ψ
EL +

Hψi

ψ
− 2Ē

ψi

ψ

fl
(28)

= 2
fi
ψi

ψ
(EL − Ē)

fl
(by Hermiticity). (29)

For our simple model we get the same expression for the first derivative (check it!).
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Simple example and demonstration

Taking the second derivative the Hessian is

Ēij = 2

"fi„
ψij

ψ
+
ψiψj

ψ2

«
(EL − Ē)

fl

−
fi
ψi

ψ

fl
Ēj −

fi
ψj

ψ

fl
Ēi +

fi
ψi

ψ
EL,j

fl#
. (30)

Note that our conjugate gradient approach does need the Hessian! Check again that

the simple models gives the same second derivative with the above expression.
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Simple example and demonstration

We can also minimize the variance. In our simple model the variance is

σ2[α] =
1
2
α4 −

1
4

+
1

32α4
,

with first derivative
dσ2[α]

dα
= 2α3 −

1
8α5

and a second derivative which is always positive

d2σ2[α]

dα2
= 6α2 +

5
8α6
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Simple example and demonstration

The variance of the local energy,

σ2 =

R
d3NR ψ2(EL − Ē)2R

d3NR ψ2
=
D

(EL − Ē)2
E
. (31)

where EL = Hψ/ψ is the local energy, 〈·〉 denotes a ψ2-weighted expectation value,
and Ē = 〈EL〉 is the expectation value of the energy. The derivative of σ2 with respect
to the i th parameter, ci , is given by

(σ2)i = 2

" ˙
EL,i (EL − Ē)

¸
+

fi„
ψi

ψ
−
fi
ψi

ψ

fl«
(EL − Ē)2

fl#

= 2

" ˙
EL,i (EL − Ē)

¸
+

fi
ψi

ψ
E2

L

fl
−
fi
ψi

ψ

flD
E2

L

E
−2Ē

fi
ψi

ψ
(EL − Ē)

fl#
, (32)

where subscript i denotes derivative with respect to ci .
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Conjugate gradient method, our case

In Newton’s method we set ∇f = 0 and we can thus compute the next iteration point
(here the exact result)

x̂− x̂i = Â−1∇f (x̂i ).

Subtracting this equation from that of x̂i+1 we have

x̂i+1 − x̂i = Â−1(∇f (x̂i+1)−∇f (x̂i )).
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Simple example and demonstration

In our case f can be either the energy or the variance. If we choose the energy then we
have

α̂i+1 − α̂i = Â−1(∇E(α̂i+1)−∇E(α̂i )).

In the simple model gradient and the Hessian Â are

d〈EL[α]〉
dα

= α−
1

4α3

and a second derivative which is always positive (meaning that we find a minimum)

Â =
d2〈EL[α]〉

dα2
= 1 +

3
4α4
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Simple example and demonstration

We get then

αi+1 =
4
3
αi −

α4
i

3α3
i+1

,

which can be rewritten as
α4

i+1 −
4
3
αiα

4
i+1 +

1
3
α4

i .

Our code does however not need the value of the Hessian since it produces an

estimate of the Hessian.
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Simple example and code (model.cpp on webpage)

#include "nrutil.h"
using namespace std;
// Here we define various functions called by the main program

double E_function(double *x);
void dE_function(double *x, double *g);
void dfpmin(double p[], int n, double gtol, int *iter, double *fret,

double(*func)(double []), void (*dfunc)(double [], double []));
// Main function begins here
int main()
{

int n, iter;
double gtol, fret;
double alpha;
n = 1;
cout << "Read in guess for alpha" << endl;
cin >> alpha;
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Simple example and code (model.cpp on webpage)

// reserve space in memory for vectors containing the variational
// parameters

double *p = new double [2];
gtol = 1.0e-5;

// now call dfmin and compute the minimum
p[1] = alpha;
dfpmin(p, n, gtol, &iter, &fret,&E_function,&dE_function);
cout << "Value of energy minimum = " << fret << endl;
cout << "Number of iterations = " << iter << endl;
cout << "Value of alpha at minimu = " << p[1] << endl;
delete [] p;
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Simple example and code (model.cpp on webpage)

// this function defines the Energy function
double E_function(double x[])
{

double value = x[1]*x[1]*0.5+1.0/(8*x[1]*x[1]);
return value;

} // end of function to evaluate
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Simple example and code (model.cpp on webpage)

// this function defines the derivative of the energy
void dE_function(double x[], double g[])
{

g[1] = x[1]-1.0/(4*x[1]*x[1]*x[1]);
} // end of function to evaluate

Computational Physics II FYS4410



Topics for Week 8, 16-20 February

Conjugate gradient method, Wave functions and diffusion
Monte Carlo

Wednesday:
Wave functions: Slater determinant and Jastrow part
Thursday:
Conjugate gradient method, demonstration of code
Slater determinant code
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Slater determinants

The potentially most time-consuming part is the evaluation of the gradient and the
Laplacian of an N-particle Slater determinant. We have to differentiate the determinant
with respect to all spatial coordinates of all particles. A brute force differentiation would
involve N · d evaluations of the entire determinant which would even worsen the
already undesirable time scaling, making it Nd · O(N3) ∼ O(d · N4). This poses
serious hindrances to the overall efficiency of our code.
The efficiency can be improved however if we move only one electron at the time. The
Slater determinant matrix D is defined by the matrix elements

dij ≡ φj (xi ) (33)

where φj (ri ) is a single particle wave function. The columns correspond to the position

of a given particle while the rows stand for the various quantum numbers.
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Slater determinants

What we need to realize is that when differentiating a Slater determinant with respect
to some given coordinate, only one row of the corresponding Slater matrix is changed.
Therefore, by recalculating the whole determinant we risk producing redundant
information. The solution turns out to be an algorithm that requires to keep track of the
inverse of the Slater matrix.
Let the current position in phase space be represented by the (N · d)-element vector
rold and the new suggested position by the vector rnew.
The inverse of D can be expressed in terms of its cofactors Cij and its determinant |D|:

d−1
ij =

Cji

|D|
(34)

Notice that the interchanged indices indicate that the matrix of cofactors is to be

transposed.
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Slater determinants

If D is invertible, then we must obviously have D−1D = 1, or explicitly in terms of the
individual elements of D and D−1:

NX
k=1

dik d−1
kj = δij (35)

Consider the ratio, which we shall call R, between |D(rnew)| and |D(rold)|. By definition,
each of these determinants can individually be expressed in terms of the i th row of its
cofactor matrix

R ≡
|D(rnew)|
|D(rold)|

=

PN
j=1 dij (rnew) Cij (rnew)PN
j=1 dij (rold) Cij (rold)

(36)
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Slater determinants

Suppose now that we move only one particle at a time, meaning that rnew differs from
rold by the position of only one, say the i th, particle. This means that D(rnew) and
D(rold) differ only by the entries of the i th row. Recall also that the i th row of a cofactor
matrix C is independent of the entries of the i th row of its corresponding matrix D. In
this particular case we therefore get that the i th row of C(rnew) and C(rold) must be
equal. Explicitly, we have:

Cij (rnew) = Cij (rold) ∀ j ∈ {1, . . . ,N} (37)
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Slater determinants

Inserting this into the numerator of eq. (36) and using eq. (34) to substitute the
cofactors with the elements of the inverse matrix, we get:

R =

PN
j=1 dij (rnew) Cij (rold)PN
j=1 dij (rold) Cij (rold)

=

PN
j=1 dij (rnew) d−1

ji (rold)PN
j=1 dij (rold) d−1

ji (rold)
(38)
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Slater determinants

Now by eq. (35) the denominator of the rightmost expression must be unity, so that we
finally arrive at:

R =
NX

j=1

dij (rnew) d−1
ji (rold) =

NX
j=1

φj (rnew
i ) d−1

ji (rold) (39)

What this means is that in order to get the ratio when only the i th particle has been

moved, we only need to calculate the dot product of the vector`
φ1(rnew

i ), . . . , φN (rnew
i )

´
of single particle wave functions evaluated at this new

position with the i th column of the inverse matrix D−1 evaluated at the original position.

Such an operation has a time scaling of O(N). The only extra thing we need to do is to

maintain the inverse matrix D−1(xold).
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Slater determinants

If the new position rnew is accepted, then the inverse matrix can by suitably updated by
an algorithm having a time scaling of O(N2). This algorithm goes as follows. First we
update all but the i th column of D−1. For each column j 6= i , we first calculate the
quantity:

Sj = (D(rnew)× D−1(rold))ij =
NX

l=1

dil (rnew) D−1
lj (rold) (40)

The new elements of the j th column of D−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold)−
Sj

R
d−1

ki (rold)
∀ k ∈ {1, . . . ,N}
j 6= i (41)
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Slater determinants

Finally the elements of the i th column of D−1 are updated simply as follows:

d−1
ki (rnew) =

1
R

d−1
ki (rold) ∀ k ∈ {1, . . . ,N} (42)

We see from these formulas that the time scaling of an update of D−1 after changing

one row of D is O(N2).
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Slater determinants

The scheme is also applicable for the calculation of the ratios involving derivatives. It

turns out that differentiating the Slater determinant with respect to the coordinates of a

single particle ri changes only the i th row of the corresponding Slater matrix.
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Slater determinants

The gradient and Laplacian can therefore be calculated as follows:

∇i |D(r)|
|D(r)|

=
NX

j=1

∇i dij (r) d−1
ji (r) =

NX
j=1

∇iφj (ri ) d−1
ji (r) (43)

and
∇2

i |D(r)|
|D(r)|

=
NX

j=1

∇2
i dij (r) d−1

ji (r) =
NX

j=1

∇2
i φj (ri ) d−1

ji (r) (44)
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Slater determinants

Thus, to calculate all the derivatives of the Slater determinant, we only need the
derivatives of the single particle wave functions (∇iφj (ri ) and ∇2

i φj (ri )) and the
elements of the corresponding inverse Slater matrix (D−1(ri )). A calculation of a single
derivative is by the above result an O(N) operation. Since there are d · N derivatives,
the time scaling of the total evaluation becomes O(d · N2). With an O(N2) updating
algorithm for the inverse matrix, the total scaling is no worse, which is far better than
the brute force approach yielding O(d · N4).
Important note: In most cases you end with closed form expressions for the
single-particle wave functions. It is then useful to calculate the various derivatives and
make separate functions for them.
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Slater determinant: Explicit expressions for various
Atoms, beryllium

The Slater determinant takes the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) =
1
√

4!

˛̨̨̨
˛̨̨̨ ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

˛̨̨̨
˛̨̨̨ .

The Slater determinant as written is zero since the spatial wave functions for the spin

up and spin down states are equal. But we can rewrite it as the product of two Slater

determinants, one for spin up and one for spin down.
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Slater determinant: Explicit expressions for various
Atoms, beryllium

We can rewrite it as

Φ(r1, r2, , r3, r4, α, β, γ, δ) = Det ↑ (1, 2)Det ↓ (3, 4)− Det ↑ (1, 3)Det ↓ (2, 4)

−Det ↑ (1, 4)Det ↓ (3, 2) + Det ↑ (2, 3)Det ↓ (1, 4)− Det ↑ (2, 4)Det ↓ (1, 3)

+Det ↑ (3, 4)Det ↓ (1, 2),

where we have defined

Det ↑ (1, 2) =
1
√

2

˛̨̨̨
ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

˛̨̨̨
,

and

Det ↓ (3, 4) =
1
√

2

˛̨̨̨
ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

˛̨̨̨
.

The total determinant is still zero!
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Slater determinant: Explicit expressions for various
Atoms, beryllium

We want to avoid to sum over spin variables, in particular when the interaction does not
depend on spin.
It can be shown, see for example Moskowitz and Kalos, Int. J. Quantum Chem. 20
(1981) 1107, that for the variational energy we can approximate the Slater determinant
as

Φ(r1, r2, , r3, r4, α, β, γ, δ) ∝ Det ↑ (1, 2)Det ↓ (3, 4),

or more generally as
Φ(r1, r2, . . . rN ) ∝ Det ↑ Det ↓,

where we have the Slater determinant as the product of a spin up part involving the
number of electrons with spin up only (2 in Beryllium and 5 in neon) and a spin down
part involving the electrons with spin down.
This ansatz is not antisymmetric under the exchange of electrons with opposite spins
but it can be shown that it gives the same expectation value for the energy as the full
Slater determinant.

As long as the Hamiltonian is spin independent, the above is correct.
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Code vmc be.cpp at the webpage

In this code I have included the Slater determinant for the beryllium atom. Note that the
implementation is rather brute force like.

for (i = 0; i < number_particles; i++) {
argument[i] = 0.0;
r_single_particle = 0;
for (j = 0; j < dimension; j++) {
r_single_particle += r[i][j]*r[i][j];

}
argument[i] = sqrt(r_single_particle);

}
// Slater determinant, no factors as they vanish in Metropolis ratio
wf = (psi1s(argument[0])*psi2s(argument[1])

-psi1s(argument[1])*psi2s(argument[0]))*
(psi1s(argument[2])*psi2s(argument[3])
-psi1s(argument[3])*psi2s(argument[2]));

For beryllium we can easily implement the explicit evaluation of the Slater determinant.

The derivatives of the single-particle wave functions can be computed analytically.
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Slater determinants

It is possible to factorize the full determinant |D| into two smaller ones which each can
be identified with ↑ and ↓ respectively:

|D| = |D|↑ · |D|↓ (45)

The combined dimensionality of the two smaller determinants equals the
dimensionality of the full determinant. Such a factorization is advantageous in that it
makes it possible to perform the calculation of the ratio R and the updating of the
inverse matrix separately for |D|↑ and |D|↓:

|D|new

|D|old
=
|D|new
↑

|D|old
↑
·
|D|new
↓

|D|old
↓

(46)
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Slater determinants

This reduces the calculation time by a constant factor. The maximal time reduction
happens in a system of equal numbers of ↑ and ↓ particles, so that the two factorized
determinants are half the size of the original one.
Consider the case of moving only one particle at a time which originally had the
following time scaling for one transition:

OR(N) +Oinverse(N2) (47)

For the factorized determinants one of the two determinants is obviously unaffected by

the change so that it cancels from the ratio R.
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Slater determinants

Therefore, only one determinant of size N/2 is involved in each calculation of R and
update of the inverse matrix. The scaling of each transition then becomes:

OR(N/2) +Oinverse(N2/4) (48)

and the time scaling when the transitions for all N particles are put together:

OR(N2/2) +Oinverse(N3/4) (49)

which gives the same reduction as in the case of moving all particles at once.
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Correlation factor

A correlation function brings about the correlational effects of the two-particle
interaction that are not incorporated by the determinant. Usually it has a functional
form that depends on the positions of multiplets of particles.
Although general n-particle correlations might certainly be worth examining, we limit
ourselves to treat only two-particle correlations. These are expected to be the
dominating ones in atomic and solid state physics. We define the correlation function to
depend only on the distances between pairs of particles, the distance between
particles i and j being (in three dimensions, ri = (xi , yi , zi )) defined as:

rij = |ri − rj | =
q

(ri − rj )2 =
q

(xi − xj )2 + (yi − yj )2 + (zi − zj )2 (50)

Computational Physics II FYS4410



Correlation factor

We assume that two-body correlations are the essential ones (this needs to be
changed if we do nuclear physics) and we restrict the correlation function to have the
following functional form:

J =
Y
i<j

g(rij ) (51)

where g(r) is a function of r . As we seen previously, it is usual to approximate the
correlation part with an exponential form due to the cusp condition, namely

J =
Y
i<j

exp
`
g(rij )

´
= exp

0@X
i<j

g(rij )

1A (52)

In the literature, a correlation function of this from is usually called a Padé-Jastrow

function. The necessary numerical evaluations of the correlation function are in general

less expensive compared to those of the Slater determinant. It is however more difficult

to optimize the code for the correlation function than for the determinant.
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Correlation factor

From the expressions above we see that the total number of different relative distances
rij that we have to maintain is N(N − 1)/2. Viewed as a matrix indexed by (i, j), the set
of all rij makes up the upper triangular part:

r ≡

2666664
� r12 r13 . . . r1N

� r23 . . . r2N

�
. . .

...
� r(N−1)N

�

3777775
(53)
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Correlation factor

The entries can be stored row-wise, starting from r12 and ending with r(N−1)N . The he
corresponding function gij receives the argument r12 can be stored in a similar
row-wise manner

g ≡

2666664
� g(r12) g(r13) . . . g(r1N )

� g(r23) . . . g(r2N )

�
. . .

...
� g(r(N−1)N )

�

3777775
(54)

For simplicity of notation, we define

gij ≡ g(rij ) (55)
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Correlation factor

The quantity of interest is the ratio between the old and the new trial wave functions

R ≡
Jnew

Jold
(56)

and
∇2J

J
,

1
J
∂J
∂xi

(57)

for all dimensions (e.g. (x , y , z)) and with i running over all particles.
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Correlation factor

Let us take a look at the calculation of the ratio R. When all particles are moved at
once, all the gij have to be reevaluated and there is no way to introduce further
optimization. So the evaluation of R scales as O(N2). When moving only one particle
at a time, say the k th, we only change N − 1 of the distances rij , namely those that
have k as one of their indices. In consequence, just as many factors of Jnew and Jold

avoid cancellation
Jnew

Jold
=

k−1Y
i=1

gnew
ik

gold
ik

NY
i=k+1

gnew
ki

gold
ki

(58)
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Correlation factor

In particular for the exponential form

Jnew

Jold
= e∆J (59)

where

∆J =

k−1X
i=1

`
gnew

ik − gold
ik
´

+
NX

i=k+1

`
gnew

ki − gold
ki
´

(60)

The time scaling is thus reduced to O(N). One needs to develop a special algorithm

that iterates only through the elements of the upper triangular matrix g that have k as

an index.
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Correlation factor

The ratios containing the gradient and the Laplacian (see eq. (57)) require a more
involved analysis. We will take advantage of the following relations:

∂

∂xi
gij = −

∂

∂xj
gij (61a)

∂2

∂x2
i

gij =
∂2

∂x2
j

gij (61b)

Computational Physics II FYS4410



Correlation factor

For the first derivative, again only N − 1 terms survive the ratio because the g-terms
that are not differentiated cancel with their corresponding ones in the denominator:

1
J
∂J
∂xk

=

k−1X
i=1

1
gik

∂gik

∂xk
+

NX
i=k+1

1
gki

∂gki

∂xk
(62)

For the exponential form, replacing gij by exp(gij ), we get:

1
J
∂J
∂xk

=

k−1X
i=1

∂gik

∂xk
+

NX
i=k+1

∂gki

∂xk
(63)

Both scale as O(N). We can simplify these relations slightly by using eq. (61a) on the

second sum of each expression.
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Correlation factor

That way, all the derivatives act on the particle represented by the second index of g:

1
J
∂J
∂xk

=

k−1X
i=1

1
gik

∂gik

∂xk
−

NX
i=k+1

1
gki

∂gki

∂xi
(64)

and for the exponential case:

1
J
∂J
∂xk

=

k−1X
i=1

∂gik

∂xk
−

NX
i=k+1

∂gki

∂xi
(65)

Thus we only need to maintain the derivatives with respect to one of the particles of

each g.
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Correlation factor

The result for the double derivative is more complicated.

1
J
∂2J
∂x2

k
=

k−1X
i=1

1
gik

∂2gik

∂x2
k

+
NX

i=k+1

1
gki

∂2gki

∂x2
k

+

+

k−1X
i=1

1
gik

∂gik

∂xk

0BB@k−1X
j=1
j 6=i

1
gjk

∂gjk

∂xk
+

NX
j=k+1

j 6=i

1
gkj

∂gkj

∂xk

1CCA

+
NX

i=k+1

1
gki

∂gki

∂xk

0BB@k−1X
j=1
j 6=i

1
gjk

∂gjk

∂xk
+

NX
j=k+1

j 6=i

1
gkj

∂gkj

∂xk

1CCA
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Correlation factor

For the full Laplacian we must sum together for all particles k and all dimensions
(e.g. (x , y , z)). Let us first apply eqs. (61a) and (61b) in the same manner as we did for
eqs. (64) and (65), switching the partial derivatives from the first to the second index
where necessary. Furthermore, at close inspection it turns out that when summing
over all k , the two first terms involving double derivatives in the above expression
become equal.
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Correlation factor

By this we get (for one dimension):

»
∇2J

J

–
x

= 2
NX

k=1

k−1X
i=1

1
gik

∂2gik

∂x2
k

+
NX

k=1

k−1X
i=1

1
gik

∂gik

∂xk

0BB@k−1X
j=1
j 6=i

1
gjk

∂gjk

∂xk
−

NX
j=k+1

j 6=i

1
gkj

∂gkj

∂xj

1CCA

−
NX

k=1

NX
i=k+1

1
gki

∂gki

∂xi

0BB@k−1X
j=1
j 6=i

1
gjk

∂gjk

∂xk
−

NX
j=k+1

j 6=i

1
gkj

∂gkj

∂xj

1CCA
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Correlation factor

We are still able to include one additional simplification. Consider the second and the

third line, consisting of the first derivatives. For each value of the index i , the index j

runs over all values both smaller and greater than i . In total we therefore get a

double-counting of the cross multiplied terms. What we ought to do is to restrict the

inner sums to run over j > i and multiply the result by 2.
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Correlation factor

After all this deliberation we finally arrive at:

»
∇2J

J

–
x

= 2
NX

k=1

k−1X
i=1

1
gik

∂2gik

∂x2
k

+ 2
NX

k=1

k−1X
i=1

1
gik

∂gik

∂xk

0@ k−1X
j=i+1

1
gjk

∂gjk

∂xk
−

NX
j=k+1

1
gkj

∂gkj

∂xj

1A
+ 2

NX
k=1

NX
i=k+1

1
gki

∂gki

∂xi

0@ NX
j=i+1

1
gkj

∂gkj

∂xj

1A (66)
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Correlation factor

For the exponential form, things turn out slightly simpler. First of all it is useful to notice
that:

∇2J
J

=
“
∇2
X

gij

”
+
“
∇
X

gij

”2
(67)

where the sums go over all allowed i and j . Let us first consider the Laplacian term:

“
∇2
X

gij

”
=

NX
k=1

∇2
k

X
i<j

gij =
NX

k=1

∇2
k

0@k−1X
i=1

gik +
NX

i=k+1

gki

1A (68)
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Correlation factor

The ∇2
k is just a partial Laplacian over all coordinates of the k th particle. This

expression can be split up into separate terms for each dimension. For clarity we
consider just one of those, denoted by x , and apply eq. (61b) as before on the second
sum, to switch the derivative from the first to the second index of gik :

“
∇2
X

gij

”
x

=
NX

k=1

0@k−1X
i=1

∂2gik

∂x2
k

+
NX

i=k+1

∂2gki

∂x2
i

1A (69)
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Correlation factor

As we noticed earlier on with the Laplacian, it turns out that the two resulting double
sums are actually equal. We therefore arrive at:

“
∇2
X

gij

”
x

= 2
NX

k=1

k−1X
i=1

∂2gik

∂x2
k

(70)
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Correlation factor

Now consider the square of the gradient. Again the dimensions are separable and we
consider only one:

“
∇
X

gij

”2

x
=

NX
k=1

0@ ∂

∂xk

X
i<j

gij

1A2

=
NX

k=1

0@k−1X
i=1

∂gik

∂xk
−

NX
i=k+1

∂gki

∂xi

1A2

(71)

In the second of the two inner sums, we have again used eq. (61a) to switch the index

of the partial derivative.
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Correlation factor

Finally we can sum up the result for the Laplacian ratio of the exponential form (for one
dimension):

»
∇2J

J

–
x

= 2
NX

k=1

k−1X
i=1

∂2gik

∂x2
k

+
NX

k=1

0@k−1X
i=1

∂gik

∂xk
−

NX
i=k+1

∂gki

∂xi

1A2

(72)
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Correlation factor

By now we understand that in order to calculate the desired ratios in Eq. (57) we only
need to maintain quantities of the form:

1
gik

∂gik

∂xk

1
gik

∂2gik

∂x2
k

∀ i < k (73)

for all dimensions with the index k running over all particles (for the specific case of J

having the exponential form, we only need the partial derivatives without the g-term in

the denominators).
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Correlation factor

To evaluate the desired ratios the task amounts to assembling the partial ratios

according to the various expressions given so far. And since the same basic

functionality seems to require slightly different calculation schemes we create separate

classes for the generic and the exponential case. In addition, since the ratio R (see

Eq. (56)) is evaluated differently whether only one particle is moved or all, we have

correspondingly made two versions of both the above mentioned classes. This way the

user herself can choose the most efficient evaluation schemes by deciding which of the

available correlation classes to use.
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Correlation factor

One can treat all the required partial ratios to be stored separately for each
differentiated dimension in the familiar form of an upper triangular matrix. As an
example, the first derivatives in the x-dimension can be estimated via2666666666664

� 1
g12

∂g12
∂x2

1
g13

∂g13
∂x3

. . . 1
g1N

∂g1N
∂xN

� 1
g23

∂g23
∂x3

. . . 1
g2N

∂g2N
∂xN

�
. . .

...

� 1
g(N−1)N

∂g(N−1)N
∂xN

�

3777777777775
(74)

and similarly for the second derivatives and all the other dimensions.
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Correlation factor

First and second derivatives are estimated by the standard second order finite
difference scheme, resulting in for the upper differences g+

x26666666664

� g12(x2 + h) g13(x3 + h) . . . g1N (xN + h)

� g23(x3 + h) . . . g2N (xN + h)

�
. . .

...

� g
(N−1)N (xN − h)

�

37777777775
(75)
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Correlation factor

For the lower differences g−x :

26666666664

� g12(x2 − h) g13(x3 − h) . . . g1N (xN − h)

� g23(x3 − h) . . . g2N (xN − h)

�
. . .

...

� g
(N−1)N (xN − h)

�

37777777775
(76)
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Correlation factor

A term from each g, g+ and g− is then enough to evaluate one partial ratio. A first
derivative partial ratio is via the three-point formula

1
gik

∂gik

∂xk
=

1
gik

 
g+

ik − g−ik
2h

!
+O(h2) (77)

and a second derivative partial ratio:

1
gik

∂2gik

∂x2
k

=
1

gik

 
g+

ik − 2gik + g−ik
2h

!
+O(h2) (78)
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Slater Determinant and VMC

Determining a determinant of an N × N matrix by standard Gaussian elimination is of
the order of O(N3) calculations. As there are N · d independent coordinates we need
to evaluate Nd Slater determinants for the gradient (quantum force) and N · d for the
Laplacian (kinetic energy)

With the updating algorithm we need only to invert the Slater determinant matrix once.

This can by calling standard LU decomposition methods.
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How to compute the Slater Determinant

If you choose to implement the above recipe for the computation of the Slater
determinant, you need to LU decompose the Slater matrix. This is described in chapter
4 of the lecture notes.

You need to call the function ludcmp in lib.cpp. You need to transfer the Slater matrix

and its dimension. You get back an LU decomposed matrix.
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LU Decomposition

The LU decomposition method means that we can rewrite this matrix as the product of
two matrices B and C where0BB@

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1CCA =

0BB@
1 0 0 0

b21 1 0 0
b31 b32 1 0
b41 b42 b43 1

1CCA
0BB@

c11 c12 c13 c14
0 c22 c23 c24
0 0 c33 c34
0 0 0 c44

1CCA .

The matrix A ∈ Rn×n has an LU factorization if the determinant is different from zero. If
the LU factorization exists and A is non-singular, then the LU factorization is unique
and the determinant is given by

det{A} = c11c22 . . . cnn.
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Topics for Week 10, 2-6 March

Conjugate gradient method, Wave functions and diffusion
Monte Carlo

Wednesday:
Wave functions: Slater determinant and Jastrow part.
Thursday:
Summary of project 1
Discussion of how to implement the Slater determinant and
correlation part and the conjugate gradient method.
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Structuring the code

During the development of our code we need to make several checks. It is also very
instructive to compute a closed form expression for the local energy. Since our wave
function is rather simple it is straightforward to find an analytic expressions. Consider
first the case of the simple helium function

ΨT (r1, r2) = e−α(r1+r2)

The local energy is for this case

EL1 = (α− Z )

„
1
r1

+
1
r2

«
+

1
r12
− α2

which gives an expectation value for the local energy given by

〈EL1〉 = α2 − 2α
„

Z −
5
16

«
When you use the function dfpmin, it is useful to test your derivatives against this

function.
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Structuring the code

With analytic formulae we can speed up the computation of the correlation. In our case
we write it as

Jβ =
Y
i<j

g(rij ) = exp

8<:X
i<j

arij

1 + βrij

9=;,
which means that the gradient needed for the quantum force and local energy can be

calculated analytically. This will speed up your code since the computation of the

correlation part and the Slater determinant are the most time consuming parts in your

code. You can choose whether you wish to implement this or not.
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Structuring the code

We can test this by computing the local energy for our helium wave function

ψT (r1, r2) = exp (−α(r1 + r2)) exp
„

r12

2(1 + βr12)

«
,

with α and β as variational parameters.
The local energy is for this case

EL2 = EL1 +
1

2(1 + βr12)2


α(r1 + r2)

r12
(1−

r1r2

r1r2
)−

1
2(1 + βr12)2

−
2

r12
+

2β
1 + βr12

ff
It is very useful to test your code against these expressions. It means also that you

don’t need to compute derivative numerically as discussed last week (see slides on the

correlation function and the Slater determinant). You should try the same for the

berylium atom.
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Structuring the code
We have defined the Jastrow factor on exponential form

J(rij ) = e
P

i<j g(rij ),

and that the Slater determinant is given by a product of single-particle wave function

φγ(ri ).

The first derivative is

∇k ΨT (R) = ∇kφ(rk )

24Y
i 6=k

φ(ri )

35 e
P

i<j g(rij ) +
Y

i

φ(ri )e
P

i<j g(rij )
X
j 6=k

∇k g(rij )

The second derivative entering the local energy is

1
ΨT (R)

∇2
k ΨT (R) =

∇2
kφ(rk )

φ(rk )
+
∇kφ(rk )

φ(rk )

0@X
j 6=k

rk

rk
g′(rij )

1A+

X
ij 6=k

(rk − ri )(rk − rj )

rki rkj
g′(rki )g′(rkj ) +

X
j 6=k

 
g′′(rkj ) +

2
rkj

g′(rkj )

!
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Structuring the code

Note well that for example in the expression for the first derivative is

∇k ΨT (R) = ∇kφ(rk )

24Y
i 6=k

φ(ri )

35 e
P

i<j u(rij ) +
Y

i

φ(ri )e
P

i<j u(rij )
X
j 6=k

∇k u(rij )

you need to change it so that you have a Slater determinant!
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Structuring the code

Note well that for example in the expression for the first derivative is

∇k ΨT (R) = ∇kφ(rk )

24Y
i 6=k

φ(ri )

35 e
P

i<j u(rij ) +
Y

i

φ(ri )e
P

i<j u(rij )
X
j 6=k

∇k u(rij )

you need to change it so that you have a Slater determinant!
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Bringing it all together, Metropolis test

In the Metropolis algorithm we need to compute the ratio (without importance sampling
first) between the new and the old wave functions. As a generic example, let the wave
function Ψ consist of the two factors ψ and φ:

Ψ = ψ · φ

To calculate for example the ratio needed by the Metropolis algorithm we can take
advantage of the factorized form to group together the factors belonging to ψ and φ:

Ψnew

Ψold
=
ψnew

ψold
·
φnew

φold

Computational Physics II FYS4410



Bringing it all together, Metropolis test

We need a good algorithm for the determinantal ratio

R =
NX

j=1

dij (rnew) d−1
ji (rold) =

NX
j=1

φj (rnew
i ) d−1

ji (rold)
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Bringing it all together, Metropolis test

If the new position rnew is accepted, then the inverse matrix can by suitably updated by
an algorithm having a time scaling of O(N2). This algorithm goes as follows. First we
update all but the i th column of D−1. For each column j 6= i , we first calculate the
quantity:

Sj = (D(rnew)× D−1(rold))ij =
NX

l=1

dil (rnew) D−1
lj (rold) (79)

The new elements of the j th column of D−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold)−
Sj

R
d−1

ki (rold)
∀ k ∈ {1, . . . ,N}
j 6= i (80)
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Bringing it all together, Metropolis test

Finally the elements of the i th column of D−1 are updated simply as follows:

d−1
ki (rnew) =

1
R

d−1
ki (rold) ∀ k ∈ {1, . . . ,N} (81)

We see from these formulas that the time scaling of an update of D−1 after changing

one row of D is O(N2).
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Bringing it all together, Metropolis test

The final part is then the correlation factor which reads

Jnew

Jold
= e∆J (82)

where

∆J =

k−1X
i=1

`
gnew

ik − gold
ik
´

+
NX

i=k+1

`
gnew

ki − gold
ki
´

(83)
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Bringing it all together, quantum force

The quantum force used in importance sampling takes the form

∇Ψ

Ψ
=

∇ψ

ψ
+

∇φ

φ

We need the derivative of the Jastrow factor and the determinant. The derivative of the
determinant is

∇i |D(r)|
|D(r)|

=
NX

j=1

∇i dij (r) d−1
ji (r) =

NX
j=1

∇iφj (ri ) d−1
ji (r)
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Bringing it all together, quantum force

The general derivative formula of the Jastrow factor is

1
J
∂J
∂xk

=

k−1X
i=1

∂gik

∂xk
+

NX
i=k+1

∂gki

∂xk

However, with our

Jβ =
Y
i<j

g(rij ) = exp

8<:X
i<j

arij

1 + βrij

9=;,
the gradient needed for the quantum force and local energy is easy to compute. We get
for particle k

∇k Jβ
Jβ

=
X
j 6=k

rkj

rkj

a
(1 + βrkj )2

,

which is rather easy to code. Remember to sum over all particles when you compute

the local energy.
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Bringing it all together, Local energy

The local energy

EL =
∇2Ψ

Ψ
− V (r)

where V is typically a two-particle interaction which normally does not act on the wave
function. We can then focus on the kinetic energy part only of the local energy

∇2Ψ

Ψ
=
∇2ψ

ψ
+
∇2φ

φ
+ 2

„
∇ψ

ψ
·

∇φ

φ

«
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Bringing it all together, Local energy

The second derivative of the Slater determinant is

∇2
i |D(r)|
|D(r)|

=
NX

j=1

∇2
i dij (r) d−1

ji (r) =
NX

j=1

∇2
i φj (ri ) d−1

ji (r)
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Bringing it all together, Local energy

The second derivative of the Jastrow factor divided by the Jastrow factor (the way it
enters the kinetic energy) is

»
∇2J

J

–
x

= 2
NX

k=1

k−1X
i=1

∂2gik

∂x2
k

+
NX

k=1

0@k−1X
i=1

∂gik

∂xk
−

NX
i=k+1

∂gki

∂xi

1A2

But we have a simple form for the function, namely

Jβ =
Y
i<j

exp g(rij ) = exp

8<:X
i<j

arij

1 + βrij

9=;,
and it is easy to see that for particle k we have

∇2
k Jβ
Jβ

=
X
ij 6=k

(rk − ri )(rk − rj )

rki rkj
g′(rki )g′(rkj ) +

X
j 6=k

 
g′′(rkj ) +

2
rkj

g′(rkj )

!
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Bringing it all together, Local energy

Using

g(rij ) =
arij

1 + βrij
,

and g′(rkj ) = dg(rkj )/drkj and g′′(rkj ) = d2g(rkj )/dr2
kj we find that for particle k we

have

∇2
k Jβ
Jβ

=
X
ij 6=k

(rk − ri )(rk − rj )

rki rkj

a
(1 + βrki )2

a
(1 + βrkj )2

+
X
j 6=k

 
2a

rkj (1 + βrkj )2
−

2aβ
(1 + βrkj )3

!
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Important feature

For the correlation part

Jβ =
Y
i<j

g(rij ) = exp

8<:X
i<j

arij

1 + βrij

9=;,
we need to take into account whether electrons have equal or opposite spins since we
have to obey the electron-electron cusp condition as well. For Beryllium you can fix
electrons 1 and 2 to have spin up while electrons 3 and 4 have spin down. When the
electrons have equal spins

a = 1/4,

while for opposite spins (as we did for helium)

a = 1/2.
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Problems with neon for VMC

In the standard textbook case one uses spherical coordinates in order to get the
hydrogen-like wave functions

x = rsinθcosφ,

y = rsinθsinφ,

and
z = rcosθ.

The reason we introduce spherical coordinates is the spherical symmetry of the
Coulomb potential

e2

4πε0r
=

e2

4πε0
p

x2 + y2 + z2
,

where we have used r =
p

x2 + y2 + z2. It is not possible to find a separable solution
of the type

ψ(x , y , z) = ψ(x)ψ(y)ψ(z).

However, with spherical coordinates we can find a solution of the form

ψ(r , θ, φ) = R(r)P(θ)F (φ).
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Problems with neon for VMC

The angle-dependent differential equations result in the spherical harmonic functions
as solutions, with quantum numbers l and ml . These functions are given by

Ylml
(θ, φ) = P(θ)F (φ) =

s
(2l + 1)(l −ml )!

4π(l + ml )!
Pml

l (cos(θ)) exp (imlφ),

with Pml
l being the associated Legendre polynomials They can be rewritten as

Ylml
(θ, φ) = sin|ml |(θ)× (polynom(cosθ)) exp (imlφ),
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Problems with neon for VMC

We have the following selected examples

Y00 =

r
1

4π
,

for l = ml = 0,

Y10 =

r
3

4π
cos(θ),

for l = 1 og ml = 0,

Y1±1 =

r
3

8π
sin(θ)exp(±iφ),

for l = 1 og ml = ±1.
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Problems with neon for VMC

A problem with the spherical harmonics is that they are complex. The introduction of
solid harmonics allows the use of real orbital wave-functions for a wide range of
applications. The complex solid harmonics Ylml

(r) are related to the spherical
harmonics Ylml

(r) through
Ylml

(r) = r l Ylml
(r).

By factoring out the leading r -dependency of the radial-function

Rnl (r) = r−l Rnl (r),

we obtain
Ψnlml

(r , θ, φ) = Rnl (r) · Ylml
(r).
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Problems with neon for VMC

For the theoretical development of the real solid harmonics we first express the
complex solid harmonics, Clml

, by (complex) Cartesian coordinates, and arrive at the
real solid harmonics, Slml

, through the unitary transformation 
Slml

Sl,−ml

!
=

1
√

2

 
(−1)m

l 1

−(−1)m
l i i

! 
Clml

Cl,−ml

!
.
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Problems with neon for VMC

This transformation will not alter any physical quantities that are degenerate in the

subspace consisting of opposite magnetic quantum numbers (the angular momentum l

is equal for both these cases). This means for example that the above transformation

does not alter the energies, unless an external magnetic field is applied to the system.

Henceforth, we will use the solid harmonics, and note that changing the spherical

potential beyond the Coulomb potential will not alter the solid harmonics.
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Problems with neon for VMC

We have defined
Ylml

(r) = r l Ylml
(r).

The real-valued spherical harmonics are defined as

Sl0 =

s
4π

2l + 1
Yl0(r),

Slml
= (−1)ml

s
8π

2l + 1
ReYl0(r),

Slml
= (−1)ml

s
8π

2l + 1
ImYl0(r),

for ml > 0.
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Problems with neon for VMC

The lowest-order real solid harmonics are listed in here

Real Solid Harmonics

ml\l 0 1 2 3

+3 1
2

q
5
2 (x2 − 3y2)x

+2 1
2

√
3(x2 − y2) 1

2

√
15(x2 − y2)z

+1 x
√

3xz 1
2

q
3
2 (5z2 − r2)x

0 1 y 1
2 (3z2 − r2) 1

2 (5z2 − 3r2)x

-1 z
√

3yz 1
2

q
3
2 (5z2 − r2)y

-2
√

3xy
√

15xyz

-3 1
2

q
5
2 (3x2 − y2)y
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Testing the Slater determinant for beryllium

It is useful to run first the beryllium case with

No Jastrow factor

Test your algorithm for the determinant for some selected points by comparing
with the analytic expressions below.

Compute also the derivatives (first and second) analytically with the expressions
below and compare these results with your code.

The expression to test is
Det ↑ (1, 2)Det ↓ (3, 4)

where we have defined

Det ↑ (1, 2) =
1
√

2

˛̨̨̨
ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

˛̨̨̨
,

and

Det ↓ (3, 4) =
1
√

2

˛̨̨̨
ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

˛̨̨̨
.

For the Jastrow part, you cna check your code against the closed form expressions for

a simpler factor, say eβr
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Using the conjugate gradient method

Start your program with calling the CGM method (function dfpmin).

This function needs the function for the expectation value of the local energy and
the derivative of the local energy. Change the functions func and dfunc in the
codes below.

Your function func is now the Metropolis part with a call to the local energy
function. For every call to the function func I used 1000 Monte Carlo cycles for
the trial wave function

ΨT (r1, r2) = e−α(r1+r2)

This gave me an expectation value for the energy which is returned by the
function func.

When I call the local energy I also compute the first derivative of the expectaction
value of the local energy

d〈EL[α]〉
dα

= 2
fi
ψi

ψ
(EL[α]− 〈EL[α]〉)

fl
.
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Using the conjugate gradient method

The expectation value for the local energy given by

〈EL〉 = α2 − 2α
„

Z −
5

16

«
You should test your numerical derivative with the derivative of the last expression, that
is

d〈EL[α]〉
dα

= 2α− 2
„

Z −
5
16

«
.
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Simple example and code (model.cpp on webpage)

#include "nrutil.h"
using namespace std;
// Here we define various functions called by the main program

double E_function(double *x);
void dE_function(double *x, double *g);
void dfpmin(double p[], int n, double gtol, int *iter, double *fret,

double(*func)(double []), void (*dfunc)(double [], double []));
// Main function begins here
int main()
{

int n, iter;
double gtol, fret;
double alpha;
n = 1;
cout << "Read in guess for alpha" << endl;
cin >> alpha;
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Simple example and code (model.cpp on webpage)

// reserve space in memory for vectors containing the variational
// parameters

double *p = new double [2];
gtol = 1.0e-5;

// now call dfmin and compute the minimum
p[1] = alpha;
dfpmin(p, n, gtol, &iter, &fret,&E_function,&dE_function);
cout << "Value of energy minimum = " << fret << endl;
cout << "Number of iterations = " << iter << endl;
cout << "Value of alpha at minimu = " << p[1] << endl;
delete [] p;
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Simple example and code (model.cpp on webpage)

// this function defines the Energy function
double E_function(double x[])
{

// Change here by calling your Metropolis function which
// returns the local energy

double value = x[1]*x[1]*0.5+1.0/(8*x[1]*x[1]);

return value;
} // end of function to evaluate

You need to change this function so that you call the local energy for your system. I
used 1000 cycles per call to get a new value of 〈EL[α]〉.
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Simple example and code (model.cpp on webpage)

// this function defines the derivative of the energy
void dE_function(double x[], double g[])
{

// Change here by calling your Metropolis function.
// I compute both the local energy and its derivative for every call to func

g[1] = x[1]-1.0/(4*x[1]*x[1]*x[1]);
} // end of function to evaluate

You need to change this function so that you call the local energy for your system. I

used 1000 cycles per call to get a new value of 〈EL[α]〉. When I compute the local

energy I also compute its derivative. After roughly 10-20 iterations I got a converged

result in terms of α.
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Topics for Week 11, 9-13 March

Hartree-Fock theory and Density functional theory
Wednesday:
Ground state energy of a single Slater determinant
(repetition from the beginning of the semester). Examples
from helium and beryllium atoms.
Repetition of the variational principles and derivation of the
Hartree-Fock equations
Thursday:
Derivation of the Hartree-Fock equations
Project 1: Discussion of how to implement the Slater
determinant and correlation part and the conjugate
gradient method.

Project 2 is presented Wednesday 25 March. The material
discussed for the rest of the course is also covered by
Thijssen’s book chapters 4-6 and 8-9.
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Variational Calculus and Lagrangian Multiplier

The calculus of variations involves problems where the quantity to be minimized or
maximized is an integral.
In the general case we have an integral of the type

E [Φ] =

Z b

a
f (Φ(x),

∂Φ

∂x
, x)dx ,

where E is the quantity which is sought minimized or maximized. The problem is that

although f is a function of the variables Φ, ∂Φ/∂x and x , the exact dependence of Φ

on x is not known. This means again that even though the integral has fixed limits a

and b, the path of integration is not known. In our case the unknown quantities are the

single-particle wave functions and we wish to choose an integration path which makes

the functional E [Φ] stationary. This means that we want to find minima, or maxima or

saddle points. In physics we search normally for minima. Our task is therefore to find

the minimum of E [Φ] so that its variation δE is zero subject to specific constraints. In

our case the constraints appear as the integral which expresses the orthogonality of

the single-particle wave functions. The constraints can be treated via the technique of

Lagrangian multipliers
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Euler-Lagrange equations

We assume the existence of an optimum path, that is a path for which E [Φ] is
stationary. There are infinitely many such paths. The difference between two paths δΦ
is called the variation of Φ.
We call the variation η(x) and it is scaled by a factor α. The function η(x) is arbitrary
except for

η(a) = η(b) = 0,

and we assume that we can model the change in Φ as

Φ(x , α) = Φ(x , 0) + αη(x),

and
δΦ = Φ(x , α)− Φ(x , 0) = αη(x).
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Euler-Lagrange equations

We choose Φ(x , α = 0) as the unkonwn path that will minimize E . The value
Φ(x , α 6= 0) describes a neighbouring path.
We have

E [Φ(α)] =

Z b

a
f (Φ(x , α),

∂Φ(x , α)

∂x
, x)dx .

In the slides I will use the shorthand

Φx (x , α) =
∂Φ(x , α)

∂x
.

In our case a = 0 and b =∞ and we know the value of the wave function.
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Euler-Lagrange equations

The condition for an extreme of

E [Φ(α)] =

Z b

a
f (Φ(x , α),Φx (x , α), x)dx ,

is »
∂E [Φ(α)]

∂x

–
α=0

= 0.

The α dependence is contained in Φ(x , α) and Φx (x , α) meaning that»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ

∂Φ

∂α
+

∂f
∂Φx

∂Φx

∂α

«
dx .

We have defined
∂Φ(x , α)

∂α
= η(x)

and thereby
∂Φx (x , α)

∂α
=

d(η(x))

dx
.

Computational Physics II FYS4410



Euler-Lagrange equations

Using
∂Φ(x , α)

∂α
= η(x),

and
∂Φx (x , α)

∂α
=

d(η(x))

dx
,

in the integral gives»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ

η(x) +
∂f
∂Φx

d(η(x))

dx

«
dx .

Integrate the second term by partsZ b

a

∂f
∂Φx

d(η(x))

dx
dx = η(x)

∂f
∂Φx
|ba −

Z b

a
η(x)

d
dx

∂f
∂Φx

dx ,

and since the first term dissappears due to η(a) = η(b) = 0, we obtain»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ
−

d
dx

∂f
∂Φx

«
η(x)dx = 0.
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Euler-Lagrange equations

»
∂E [Φ(α)]

∂α

–
=

Z b

a

„
∂f
∂Φ
−

d
dx

∂f
∂Φx

«
η(x)dx = 0,

can also be written as

α

»
∂E [Φ(α)]

∂α

–
α=0

=

Z b

a

„
∂f
∂Φ
−

d
dx

∂f
∂Φx

«
δΦ(x)dx = δE = 0.

The condition for a stationary value is thus a partial differential equation

∂f
∂Φ
−

d
dx

∂f
∂Φx

= 0,

known as Euler’s equation. Can easily be generalized to more variables.
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Lagrangian Multipliers

Consider a function of three independent variables f (x , y , z) . For the function f to be
an extreme we have

df = 0.

A necessary and sufficient condition is

∂f
∂x

=
∂f
∂y

=
∂f
∂z

= 0,

due to

df =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz.

In physical problems the variables x , y , z are often subject to constraints (in our case Φ

and the orthogonality constraint) so that they are no longer all independent. It is

possible at least in principle to use each constraint to eliminate one variable and to

proceed with a new and smaller set of independent varables.
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Lagrangian Multipliers

The use of so-called Lagrangian multipliers is an alternative technique when the
elimination of of variables is incovenient or undesirable. Assume that we have an
equation of constraint on the variables x , y , z

φ(x , y , z) = 0,

resulting in

dφ =
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz = 0.

Now we cannot set anymore

∂f
∂x

=
∂f
∂y

=
∂f
∂z

= 0,

if df = 0 is wanted because there are now only two independent variables! Assume x

and y are the independent variables. Then dz is no longer arbitrary.
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Lagrangian Multipliers

However, we can add to

df =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz,

a multiplum of dφ, viz. λdφ, resulting in

df + λdφ = (
∂f
∂z

+ λ
∂φ

∂x
)dx + (

∂f
∂y

+ λ
∂φ

∂y
)dy + (

∂f
∂z

+ λ
∂φ

∂z
)dz = 0.

Our multiplier is chosen so that

∂f
∂z

+ λ
∂φ

∂z
= 0.
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Lagrangian Multipliers

However, we took dx and dy as to be arbitrary and thus we must have

∂f
∂x

+ λ
∂φ

∂x
= 0,

and
∂f
∂y

+ λ
∂φ

∂y
= 0.

When all these equations are satisfied, df = 0. We have four unknowns, x , y , z and λ.
Actually we want only x , y , z, λ need not to be determined, it is therefore often called
Lagrange’s undetermined multiplier. If we have a set of constraints φk we have the
equations

∂f
∂xi

+
X

k

λk
∂φk

∂xi
= 0.
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Variational Calculus and Lagrangian Multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

E =

Z
dxdydzψ∗(x , y , z)Ĥψ(x , y , z),

with the constraint Z
dxdydzψ∗(x , y , z)ψ(x , y , z) = 1,

and a Hamiltonian
Ĥ = −

1
2
∇2 + V (x , y , z).

I will skip the variables x , y , z below, and write for example V (x , y , z) = V .
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Variational Calculus and Lagrangian Multiplier

The integral involving the kinetic energy can be written as, if we assume periodic
boundary conditions or that the function ψ vanishes strongly for large values of x , y , z,Z

dxdydzψ∗
„
−

1
2
∇2
«
ψdxdydz = ψ∗∇ψ|+

Z
dxdydz

1
2
∇ψ∗∇ψ.

Inserting this expression into the expectation value for the energy and taking the
variational minimum we obtain

δE = δ

Z
dxdydz

„
1
2
∇ψ∗∇ψ + Vψ∗ψ

«ff
= 0.
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Variational Calculus and Lagrangian Multiplier

The constraint appears in integral form asZ
dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational minimum we
obtain the final variational equation

δ

Z
dxdydz

„
1
2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ

«ff
= 0.

Introducing the function f

f =
1
2
∇ψ∗∇ψ + Vψ∗ψ − λψ∗ψ =

1
2

(ψ∗xψx + ψ∗yψy + ψ∗zψz ) + Vψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x , y , z and introduced the shorthand ψx ,

ψy and ψz for the various derivatives.
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Variational Calculus and Lagrangian Multiplier

For ψ∗ the Euler equation results in

∂f
∂ψ∗

−
∂

∂x
∂f
∂ψ∗x

−
∂

∂y
∂f
∂ψ∗y

−
∂

∂z
∂f
∂ψ∗z

= 0,

which yields

−
1
2

(ψxx + ψyy + ψzz ) + Vψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system. Then the
last equation is nothing but the standard Schrödinger equation and the variational
approach discussed here provides a powerful method for obtaining approximate
solutions of the wave function.
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Finding the Hartree-Fock functional E [Φ]

We rewrite our Hamiltonian

Ĥ = −
NX

i=1

1
2
∇2

i −
NX

i=1

Z
ri

+
NX

i<j

1
rij
,

as

Ĥ = Ĥ1 + Ĥ2 =
NX

i=1

ĥi +
NX

i<j=1

1
rij
,

ĥi = −
1
2
∇2

i −
Z
ri
.
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Finding the Hartree-Fock functional E [Φ]

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E [Φ] =

Z
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalizedZ
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .
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Finding the Hartree-Fock functional E [Φ]

In the Hartree-Fock method the trial function is the Slater determinant which can be
rewritten as

Ψ(r1, r2, . . . , rN , α, β, . . . , ν) =
1
√

N!

X
P

(−)PPψα(r1)ψβ(r2) . . . ψν(rN ) =
√

N!AΦH ,

where we have introduced the anti-symmetrization operator A defined by the
summation over all possible permutations of two eletrons. It is defined as

A =
1

N!

X
P

(−)PP,

with the the Hartree-function given by the simple product of all possible single-particle
function (two for helium, four for beryllium and ten for neon)

ΦH (r1, r2, . . . , rN , α, β, . . . , ν) = ψα(r1)ψβ(r2) . . . ψν(rN ).
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Finding the Hartree-Fock functional E [Φ]

Both Ĥ1 and Ĥ2 are invariant under electron permutations, and hence commute with A

[H1,A] = [H2,A] = 0.

Furthermore, A satisfies
A2 = A,

since every permutation of the Slater determinant reproduces it.
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Finding the Hartree-Fock functional E [Φ]

The expectation value of Ĥ1Z
Φ∗Ĥ1Φdτ = N!

Z
Φ∗HAĤ1AΦHdτ

is readily reduced to Z
Φ∗Ĥ1Φdτ = N!

Z
Φ∗H Ĥ1AΦHdτ,

which can be rewritten as

Z
Φ∗Ĥ1Φdτ =

NX
i=1

X
P

(−)P
Z

Φ∗H ĥi PΦHdτ.
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Finding the Hartree-Fock functional E [Φ]

The integral vanishes if two or more electrons are permuted in only one of the
Hartree-functions ΦH because the individual orbitals are orthogonal. We obtain then

Z
Φ∗Ĥ1Φdτ =

NX
i=1

Z
Φ∗H ĥi ΦHdτ.

Orthogonality allows us to further simplify the integral, and we arrive at the following
expression for the expectation values of the sum of one-body Hamiltonians

Z
Φ∗Ĥ1Φdτ =

NX
µ=1

Z
ψ∗µ(ri )ĥiψµ(ri )dri ,

or just as Z
Φ∗Ĥ1Φdτ =

NX
µ=1

〈µ|h|µ〉.
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Finding the Hartree-Fock functional E [Φ]

The expectation value of the two-body Hamiltonian is obtained in a similar manner. We
have Z

Φ∗Ĥ2Φdτ = N!

Z
Φ∗HAĤ2AΦHdτ,

which reduces to

Z
Φ∗Ĥ2Φdτ =

NX
i≤j=1

X
P

(−)P
Z

Φ∗H
1
rij

PΦHdτ,

by following the same arguments as for the one-body Hamiltonian. Because of the
dependence on the inter-electronic distance 1/rij , permutations of two electrons no
longer vanish, and we get

Z
Φ∗Ĥ2Φdτ =

NX
i<j=1

Z
Φ∗H

1
rij

(1− Pij )ΦHdτ.

where Pij is the permutation operator that interchanges electrons i and j .
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Finding the Hartree-Fock functional E [Φ]

We use the assumption that the orbitals are orthogonal, and obtain

Z
Φ∗Ĥ2Φdτ =

1
2

NX
µ=1

NX
ν=1

"Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψµ(ri )ψν(rj )dri rj

−
Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψν(ri )ψµ(ri )dxixj

#
.

The first term is the so-called direct term or Hartree term, while the second is due to
the Pauli principle and is called exchange term or Fock term. The factor 1/2 is
introduced because we now run over all pairs twice.
The compact notation is

1
2

NX
µ=1

NX
ν=1

"
〈µν|

1
rij
|µν〉 − 〈µν|

1
rij
|νµ〉

#
.
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Variational Calculus and Lagrangian Multiplier, back to
Hartree-Fock

Our functional is written as

E [Φ] =
NX
µ=1

Z
ψ∗µ(ri )ĥiψµ(ri )dri +

1
2

NX
µ=1

NX
ν=1

"Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψµ(ri )ψν(rj )dri rj

−
Z
ψ∗µ(ri )ψ

∗
ν(rj )

1
rij
ψν(ri )ψµ(ri )dri rj

#
The more compact version is

E [Φ] =
NX
µ=1

〈µ|h|µ〉+
1
2

NX
µ=1

NX
ν=1

"
〈µν|

1
rij
|µν〉 − 〈µν|

1
rij
|νµ〉

#
.
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Variational Strategies

With the given functional, we can perform at least two types of variational strategies.

Vary the Slater determinat by changing the spatial part of the single-particle
wave functions themselves. This is what we will do.

Expand the single-particle functions in a known basis and vary the coefficients,
that is, the new function single-particle wave function |a〉 is written as a linear
expansion in terms of a fixed basis (harmonic oscillator, Laguerre polynomials
etc)

ψa =
X
λ

Caλψλ,

Both cases lead to a new Slater determinant which is related to the previous via a
unitary transformation.

We look at the first case first. The second one is one of the topics for project 2.
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Exercise

1 Consider a Slater determinant built up of single-particle orbitals ψλ, with
λ = 1, 2, . . . ,N.

The unitary transformation
ψa =

X
λ

Caλψλ,

brings us into the new basis. Show that the new basis is orthonormal.

2 Show that the new Slater determinant constructed from the new single-particle
wave functions can be written as the determinant based on the previous basis
and the determinant of the matrix C.

3 Show that the old and the new Slater determinants are equal up to a complex
constant with absolute value unity. (Hint, C is a unitary matrix).
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

If we generalize the Euler-Lagrange equations to more variables and introduce N2

Lagrange multipliers which we denote by εµν , we can write the variational equation for
the functional of E

δE −
NX
µ=1

NX
ν=1

εµνδ

Z
ψ∗µψν = 0.

For the orthogonal wave functions ψµ this reduces to

δE −
NX
µ=1

εµδ

Z
ψ∗µψµ = 0.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Variation with respect to the single-particle wave functions ψµ yields then

NX
µ=1

Z
δψ∗µĥiψµdri +

1
2

NX
µ=1

NX
ν=1

"Z
δψ∗µψ

∗
ν

1
rij
ψµψνdri drj −

Z
δψ∗µψ

∗
ν

1
rij
ψνψµdri drj

#

+
NX
µ=1

Z
ψ∗µĥiδψµdri +

1
2

NX
µ=1

NX
ν=1

"Z
ψ∗µψ

∗
ν

1
rij
δψµψνdri drj −

Z
ψ∗µψ

∗
ν

1
rij
ψνδψµdri drj

#

−
NX
µ=1

Eµ
Z
δψ∗µψµdri −

NX
µ=1

Eµ
Z
ψ∗µδψµdri = 0.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

Although the variations δψ and δψ∗ are not independent, they may in fact be treated as
such, so that the terms dependent on either δψ and δψ∗ individually may be set equal
to zero. To see this, simply replace the arbitrary variation δψ by iδψ, so that δψ∗ is
replaced by −iδψ∗, and combine the two equations. We thus arrive at the
Hartree-Fock equations24−1

2
∇2

i −
Z
ri

+
NX
ν=1

Z
ψ∗ν(rj )

1
rij
ψν(rj )drj

35ψµ(ri )

−

24 NX
ν=1

Z
ψ∗ν(rj )

1
rij
ψµ(rj )drj

35ψν(ri ) = εµψµ(ri ).

Notice that the integration
R

drj implies an integration over the spatial coordinates rj

and a summation over the spin-coordinate of electron j .
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The two first terms are the one-body kinetic energy and the electron-nucleus potential.

The third or direct term is the averaged electronic repulsion of the other electrons. This

term is identical to the Coulomb integral introduced in the simple perturbative approach

to the helium atom. As written, the term includes the ’self-interaction’ of electrons when

i = j . The self-interaction is cancelled in the fourth term, or the exchange term. The

exchange term results from our inclusion of the Pauli principle and the assumed

determinantal form of the wave-function. The effect of exchange is for electrons of

like-spin to avoid each other.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

A theoretically convenient form of the Hartree-Fock equation is to regard the direct and
exchange operator defined through

V d
µ(ri ) =

Z
ψ∗µ(rj )

1
rij
ψµ(rj )drj

and

V ex
µ (ri )g(ri ) =

 Z
ψ∗µ(rj )

1
rij

g(rj )drj

!
ψµ(ri ),

respectively.
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

The function g(ri ) is an arbitrary function, and by the substitution g(ri ) = ψν(ri ) we get

V ex
µ (ri )ψν(ri ) =

 Z
ψ∗µ(rj )

1
rij
ψν(rj )drj

!
ψµ(ri ).
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Hartree-Fock: Variational Calculus and Lagrangian
Multiplier

We may then rewrite the Hartree-Fock equations as

HHF
i ψν(ri ) = ενψν(ri ),

with

HHF
i = hi +

NX
µ=1

V d
µ(ri )−

NX
µ=1

V ex
µ (ri ),

and where hi is the one-body part
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Hartree-Fock: Explicit expression for Direct Term

We want to show first that

V d
µ(ri ) =

Z
ψ∗µ(rj )

1
rij
ψµ(rj )drj

is
V d
µ(ri ) = V d

nl (ri ) =
X
n′ l′

2(2l ′ + 1)

Z ∞
0
|un′ l′ (rj )|2

1
r>

drj

with r> = max(ri , rj ).

Computational Physics II FYS4410



Hartree-Fock: Explicit expression for Direct Term

We need to break down the single-particle wave functions in radial, angular and spin
parts. Note that direct term is diagonal in the spin quantum numbers. The
single-particle wave functions are

ψα(r) = ψnlml sms (r) = φnlml
(r)ξms (s)

with
φnlml

(r) = Rnl (r)Ylml
(r̂)

and we defined unl (r) = rRnl (r). The direct term is, with a factor two from the spin
degrees of freedom gives for a single shell

V d
n′ l′ (ri ) = 2

lX
m′l =−l′

Z ∞
0
|φn′ l′m′l

(rj )|2
1
rij

drj

which reads

V d
n′ l′ (ri ) = 2

Z ∞
0
|un′ l′ (rj )|2

1
rij

drj

lX
m′l =−l′

|Ylm′l
(θj , φj )|2dΩj ,

with dΩj the angular part d(cosθj )dφj .
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Hartree-Fock: Explicit expression for Direct Term

The addition theorem ofthe spherical harmonics yields

lX
m′l =−l′

|Ylm′l
(θj , φj )|2 =

2l ′ + 1
4π

,

resulting in

V d
n′ l′ (ri ) =

2(2l ′ + 1)

4π

Z ∞
0
|un′ l′ (rj )|2

1
rij

drj dΩj .

The quantity rij depends on the angles of particle i and j .
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Hartree-Fock: Explicit expression for Direct Term

The integral over the angles can be performed by expanding 1/rij in terms of spherical
harmonics and using the fact that the functions un′ l′ do not depend on the angles. We
have

1
rij

=
1
ri

∞X
l=0

„
rj

ri

«l
Pl cos(θ)),

if ri > rj or

1
rij

=
1
rj

∞X
l=0

 
ri

rj

!l

Pl cos(θ)),

if rj > ri . In a compact form it reads

1
rij

=
∞X
l=0

 
(r<)l

(r>)l+1

!
Pl cos(θ)),

with r> = max(ri , rj ) and with r< = min(ri , rj ). Pl is the Legendre polynomial and

cos(θ) = cos(θi )cos(θj ) + sin(θi )sin(θj )cos(φi − φj ).
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Hartree-Fock: Explicit expression for Direct Term

We can use the expression for spherical harmonics to express the interaction as

1
rij

=
∞X
l=0

lX
m′l =−l′

 
(r<)l

(r>)l+1

!
Y∗lm′l

(θi , φi )Ylm′l
(θj , φj )

and inserting it we obtain the final expression as

Φ(ri ) =
X
n′ l′

2(2l ′ + 1)

Z ∞
0
|un′ l′ (rj )|2

1
r>

drj

with r> = max(ri , rj ).
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Hartree-Fock: Explicit expression for Exchange Term

Exercise: show that the exchange part can be written as

Fnl (ri ) =
X
n′ l′

l+l′X
λ=|l−l′|

2l ′ + 1
2λ+ 1

< ll ′00|λ0 >2
»Z ∞

0
u∗n′ l′ (rj )

(r<)λ

(r>)λ+1
unl (rj )drj

–
un′ l′ (ri )

with r> = max(ri , rj ) and with r< = min(ri , rj ).

Computational Physics II FYS4410



Hartree-Fock: Explicit expression for Exchange Term

The Clebsch-Gordan coefficient can be written as

〈ll ′00|λ0〉 =
1
2

p
2λ+ 1(1 + (−1)2g)(−1)g

s
(2g − 2l)!(2g − 2l ′)!(2g − 2l ′)!

(2g + 1)!

×
g!

(g − l)!(g − l ′)!(g − λ)!

with 2g = 2l + λ. You can write a small function for this expression or use the enclosed

programs.
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Hartree-Fock: Explicit expressions for various Atoms

We need to discuss how the Hartree-Fock equations look like for helium, beryllium and
neon. (Exercise from last week).
The general equations take the form24−1

2
∇2

i −
Z
ri

+
NX
ν=1

Z
ψ∗ν(rj )

1
rij
ψν(rj )drj

35ψµ(ri )

−

24 NX
ν=1

Z
ψ∗ν(rj )

1
rij
ψµ(rj )drj

35ψν(ri ) = εµψµ(ri ).

Notice that the integration
R

drj implies an integration over the spatial coordinates rj

and a summation over the spin-coordinate of electron j .
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Hartree-Fock: Explicit expressions for various Atoms

A theoretically convenient form of the Hartree-Fock equation is to regard the direct and
exchange operator defined through

V d
µ(ri ) =

Z
ψ∗µ(rj )

1
rij
ψµ(rj )drj

and

V ex
µ (ri )g(ri ) =

 Z
ψ∗µ(rj )

1
rij

g(rj )drj

!
ψµ(ri ),

respectively.
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Hartree-Fock Equations

We may then rewrite the Hartree-Fock equations as

HHF
i ψν(ri ) = ενψν(ri ),

with

HHF
i = hi +

NX
µ=1

V d
µ(ri )−

NX
µ=1

V ex
µ (ri ),

and where hi is the one-body part.
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Hartree-Fock: Explicit expressions for various Atoms,
helium

The Slater determinant for helium reads with two electrons in the 1s state

Φ(r1, r2, α, β) =
1
√

2

˛̨̨̨
ψα(r1) ψα(r2)
ψβ(r1) ψβ(r2)

˛̨̨̨
,

with α = nlml sms = 1001/21/2 and β = nlml sms = 1001/2− 1/2 or using
ms = 1/2 =↑ and ms = −1/2 =↓ as α = nlml sms = 1001/2 ↑ and
β = nlml sms = 1001/2 ↓. Writing out the Slater determinant we obtain

Φ(r1, r2, α, β) =
1
√

2

ˆ
ψα(r1)ψβ(r2)− ψβ(r1)ψγ(r2)

˜
,

and we see that the Slater determinant is antisymmetric with respect to the
permutation of two particles, that is

Φ(r1, r2, α, β) = −Φ(r2, r1, α, β),
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Hartree-Fock: Explicit expressions for various Atoms,
helium

In the derivations of the direct and exchange terms we have not discussed the role of
the electron spin.
Let us introduce

ψnlml sms = φnlml
(r)ξms (s)

with s is the spin (1/2 for electrons), ms is the spin projection ms = ±1/2, and the
spatial part is

φnlml
(r) = Rnl (r)Ylml

(̂r)

with Y the spherical harmonics and unl = rRnl . We have for helium

Φ(r1, r2, α, β) =
1
√

2
φ100(r1)φ100(r2)

ˆ
ξ↑(1)ξ↓(2)− ξ↑(2)ξ↓(1)

˜
,
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Hartree-Fock: Explicit expressions for various Atoms,
helium

The direct term acts on
1
√

2
φ100(r1)φ100(r2)ξ↑(1)ξ↓(2)

while the exchange term acts on

−
1
√

2
φ100(r1)φ100(r2)ξ↑(2)ξ↓(1).

How do these terms get translated into the Hartree and the Fock terms?
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Hartree-Fock: Explicit expressions for various Atoms,
helium

The Hartree term
V d
µ(ri ) =

Z
ψ∗µ(rj )

1
rij
ψµ(rj )drj ,

acts on ψλ(ri ) = φnlml
(ri )ξms (si ), that is it results in

V d
µ(ri )ψλ(ri ) =

 Z
ψ∗µ(rj )

1
rij
ψµ(rj )drj

!
ψλ(ri ),

and accounting for spins we have

V d
nlml↑(ri )ψλ(ri ) =

 Z
ψ∗nlml↑(rj )

1
rij
ψnlml↑(rj )drj

!
ψλ(ri ),

and

V d
nlml↓(ri )ψλ(ri ) =

 Z
ψ∗nlml↓(rj )

1
rij
ψnlml↓(rj )drj

!
ψλ(ri ),
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Hartree-Fock: Explicit expressions for various Atoms,
helium

If the state we act on has spin up, we obtain two terms from the Hartree part.

NX
µ=1

V d
µ(ri ),

and since the interaction does not depend on spin we end up with a total contribution
for helium

NX
µ=1

V d
µ(ri )ψλ(ri ) =

 
2
Z
φ∗100(rj )

1
rij
φ100(rj )drj

!
ψλ(ri ),

one from spin up and one from spin down. Since the energy for spin up or spin down is
the same we can then write the action of the Hartree term as

NX
µ=1

V d
µ(ri )ψλ(ri ) =

 
2
Z
φ∗100(rj )

1
rij
φ100(rj )drj

!
ψ100↑(ri ).

(the spin in ψ100↑ is irrelevant)

Computational Physics II FYS4410



Hartree-Fock: Explicit expressions for various Atoms,
helium

What we need to code for helium is then

Φ(ri )u10 = 2V d
10(ri )u10(ri ) = 2

Z ∞
0
|u10(rj )|2

1
r>

drj )u10(ri ).

with r> = max(ri , rj ). What about the exchange or Fock term

V ex
µ (ri )ψλ(ri ) =

 Z
ψ∗µ(rj )

1
rij
ψλ(rj )drj

!
ψµ(ri )?
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Hartree-Fock: Explicit expressions for various Atoms,
helium

We must be careful here with

V ex
µ (ri )ψλ(ri ) =

 Z
ψ∗µ(rj )

1
rij
ψλ(rj )drj

!
ψµ(ri ),

because the spins of µ and λ have to be the same due to the constraint

〈sµmµ
s |sλmλ

s 〉 = δmµs ,m
λ
s
.

This means that if mµ
s =↑ then mλ

s =↑ and if mµ
s =↓ then mλ

s =↓. That is

V ex
µ (ri )ψλ(ri ) = δmµs ,m

λ
s

 Z
ψ∗µ(rj )

1
rij
ψλ(rj )drj

!
ψµ(ri ),
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Hartree-Fock: Explicit expressions for various Atoms,
helium

The consequence is that for the 1s ↑ (and the same for 1s ↓) state we get only one
contribution from the Fock term

NX
µ=1

V ex
µ (ri )ψλ(ri ),

NX
µ=1

V ex
µ (ri )ψ100↑(ri ) = δmµs ,↑

 Z
ψ∗µ(rj )

1
rij
ψ100↑(rj )drj

!
ψµ(ri ),

resulting in

NX
µ=1

V ex
µ (ri )ψ100↑(ri ) =

 Z
ψ∗100↑(rj )

1
rij
ψ100↑(rj )drj

!
ψ100↑(ri ).
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Hartree-Fock: Explicit expressions for various Atoms,
helium

The final Fock term for helium is then

NX
µ=1

V ex
µ (ri )ψ100↑(ri ) =

 Z
ψ∗100↑(rj )

1
rij
ψ100↑(rj )drj

!
ψ100↑(ri ),

which is exactly the same as the Hartree term except for a factor of 2. Else the integral
is the same. We can then write the differential equation„

−
1
2

d2

dr2
+

l(l + 1)

2r2
−

2
r

+ Φnl (r)− Fnl (r)

«
unl (r) = enl unl (r).

as „
−

1
2

d2

dr2
+

l(l + 1)

2r2
−

2
r

+ 2V d
10(r)

«
u10(r)− V ex

10 (r) = e10u10(r),

or „
−

1
2

d2

dr2
−

2
r

+ V d
10(r)

«
u10(r) = e10u10(r),

since l = 0. The shorthand V ex
10 (r) contains the 1s wave function and can be

dangerous later!
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Hartree-Fock: Explicit expressions for various Atoms,
beryllium

The expression we have obtained are independent of the spin projections and we have
skipped them in the equations. Last week’s exercise was to derive the corresponding
equations for beryllium, with two electrons in 1s as in helium but now also two
electrons in 2s.
The Slater determinant takes the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) =
1
√

4!

˛̨̨̨
˛̨̨̨ ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

˛̨̨̨
˛̨̨̨ ,
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Hartree-Fock: Explicit expressions for various Atoms,
beryllium

When we now spell out the Hartree-Fock equations we get two coupled differential
equations, one for u10 and one for u20.
The 1s wave function has the same Hartree-Fock contribution as in helium for the 1s
state, but the 2s state gives two times the Hartree term and one time the Fock term.
That is we get

NX
µ=1

V d
µ(ri )ψ100↑(ri ) = 2

Z ∞
0

drj

 
φ∗100(rj )

1
rij
φ100(rj ) + φ∗200(rj )

1
rij
φ200(rj )

!
ψ100↑(ri )

= (2V d
10(ri ) + 2V d

20(ri ))ψ100↑(ri )

for the Hartree part.
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Hartree-Fock: Explicit expressions for various Atoms,
beryllium

For the Fock term we get (we fix the spin)

NX
µ=1

V ex
µ (ri )ψ100↑(ri ) =

Z ∞
0

drjφ
∗
100(rj )

1
rij
φ100(rj )ψ100↑(ri )+

Z ∞
0

drjφ
∗
200(rj )

1
rij
φ100(rj )ψ200↑(ri ) = V ex

10 (ri ) + V ex
20 (ri ).

The first term is the same as we have for the Hartree term with 1s except the factor of
two. The final differential equation is„

−
1
2

d2

dr2
−

4
r

+ V d
10(r) + 2V d

20(r)

«
u10(r)− V ex

20 (r) = e10u10(r).

Note again that the V ex
20 (r) contains the 1s function in the integral, that is

V ex
20 (r) =

Z ∞
0

drjφ
∗
200(rj )

1
r − rj

φ100(rj )ψ200↑(r).
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Hartree-Fock: Explicit expressions for various Atoms,
beryllium

The 2s wave function obtains the following Hartree term (recall that the interaction has
no spin dependence)

NX
µ=1

V d
µ(ri )ψ200↑(ri ) = 2

Z ∞
0

drj

 
φ∗100(rj )

1
rij
φ100(rj ) + φ∗200(rj )

1
rij
φ200(rj )

!
ψ200↑(ri ) =

(2V d
10(ri ) + 2V d

20(ri ))ψ200↑(ri )
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Hartree-Fock: Explicit expressions for various Atoms,
beryllium

For the Fock term we get

NX
µ=1

V ex
µ (ri )ψ200↑(ri ) =

Z ∞
0

drjφ
∗
100(rj )

1
rij
φ200(rj )ψ100↑(ri )+

Z ∞
0

drjφ
∗
200(rj )

1
rij
φ200(rj )ψ200↑(ri ) = V ex

10 (ri ) + V ex
20 (ri )

The second term is the same as we have for the Hartree term with 2s. The final
differential equation is„

−
1
2

d2

dr2
−

4
r

+ 2V d
10(r) + V d

20(r)

«
u20(r)− V ex

10 (r) = e20u20(r).

Note again that the V ex
10 (r) contains the 2s function in the integral, that is

V ex
10 (r) =

Z ∞
0

drjφ
∗
100(rj )

1
r − rj

φ200(rj )ψ100↑(r).
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Hartree-Fock: Final expressions for beryllium

We have two coupled differential equations„
−

1
2

d2

dr2
−

4
r

+ V d
10(r) + 2V d

20(r)

«
u10(r)− V ex

20 (r) = e10u10(r),

and „
−

1
2

d2

dr2
−

4
r

+ 2V d
10(r) + V d

20(r)

«
u20(r)− V ex

10 (r) = e20u20(r).

Recall again that the interaction does not depend on spin. This means that the
single-particle energies and single-particle function u do not depend on spin. Also

Exercise: derive the equivalent expressions for neon.
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Hartree-Fock: Final expressions for neon

Exercise: fill in the missing parts„
−

1
2

d2

dr2
−

10
r

+ V d
10(r) + 2V d

20(r)+?

«
u10(r)− V ex

20 (r)+? = e10u10(r),

and „
−

1
2

d2

dr2
−

10
r

+ 2V d
10(r) + V d

20(r)+?

«
u20(r)− V ex

10 (r)+? = e20u20(r).

and„
−

1
2

d2

dr2
+

2
2r2
−

10
r

+ 2V d
10(r) + 2V d

20(r)+?

«
u21(r)−V ex

10 (r)−V ex
20 (r)+? = e21u21(r).
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Useful equations

The 1s hydrogen like wave function

R10(r) = 2
„

Z
a0

«3/2
exp (−Zr/a0) = u10/r

The total energy for helium (not the Hartree or Fock terms) from the direct and the
exchange term should give 5Z/8.
The single-particle energy with no interactions should give −Z 2/2n2.
The 2s hydrogen-like wave function is

R20(r) = 2
„

Z
2a0

«3/2 „
1−

Zr
2a0

«
exp (−Zr/2a0) = u20/r

and the 2p hydrogen -like wave function is

R21(r) =
1
√

3

„
Z

2a0

«3/2 Zr
a0

exp (−Zr/2a0) = u21/r

We use a0 = 1.
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Effective Charge and first Iteration

If we compute the total energy of the helium atom with the function

R10(r) = 2
„

Z
a0

«3/2
exp (−Zr/a0) = u10/r ,

as a trial single-particle wave fuction, we obtain a total energy (one-body and two-body)

E [Z ] = Z 2 − 4Z +
5
8

Z .

The minimum is not at Z = 2. Take the derivative wrt Z and we find that the minimum
is at

Z = 2−
5

16
= 1.6875

and represents an optimal effective charge. When we do the Hartree-Fock calculations

and use the optimal single-particle wave function in a variational Monte Carlo

calculation, we should have the wave function calculated at the optimal value.
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Hartree-Fock by varying the coefficients of a wave
function expansion

Another possibility is to expand the single-particle functions in a known basis and vary
the coefficients, that is, the new single-particle wave function is written as a linear
expansion in terms of a fixed chosen orthogonal basis (for example harmonic oscillator,
Laguerre polynomials etc)

ψa =
X
λ

Caλψλ. (84)

In this case we vary the coefficients Caλ. If the basis has infinitely many solutions, we
need to truncate the above sum. In all our equations we assume a truncation has been
made.
The single-particle wave functions ψλ(r), defined by the quantum numbers λ and r are
defined as the overlap

ψλ(r) = 〈r|λ〉.
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Hartree-Fock by varying the coefficients of a wave
function expansion

We will omit the radial dependence of the wave functions and introduce first the
following shorthands for the Hartree and Fock integrals

〈µν|V |µν〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj ,

and
〈µν|V |νµ〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(ri )dri rj .
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Hartree-Fock by varying the coefficients of a wave
function expansion

Since the interaction is invariant under the interchange of two particles it means for
example that we have

〈µν|V |µν〉 = 〈νµ|V |νµ〉,

or in the more general case

〈µν|V |στ〉 = 〈νµ|V |τσ〉.
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Hartree-Fock by varying the coefficients of a wave
function expansion

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .
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Hartree-Fock by varying the coefficients of a wave
function expansion

With these notations we rewrite the Hartree-Fock functional as

Z
Φ∗Ĥ1Φdτ =

1
2

AX
µ=1

AX
ν=1

〈µν|V |µν〉AS . (85)

Combining Eqs. (13) and (85) we obtain the energy functional

E [Φ] =
NX
µ=1

〈µ|h|µ〉+
1
2

NX
µ=1

NX
ν=1

〈µν|V |µν〉AS . (86)

which we will use as our starting point for the Hartree-Fock calculations.
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Hartree-Fock by varying the coefficients of a wave
function expansion

If we vary the above energy functional with respect to the basis functions |µ〉, this
corresponds to what was done in the previous case. We are however interested in
defining a new basis defined in terms of a chosen basis as defined in Eq. (84). We can
then rewrite the energy functional as

E [Ψ] =
NX

a=1

〈a|h|a〉+
1
2

NX
ab=1

〈ab|V |ab〉AS , (87)

where Ψ is the new Slater determinant defined by the new basis of Eq. (84).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Using Eq. (84) we can rewrite Eq. (87) as

E [Ψ] =
NX

a=1

X
αβ

C∗aαCaβ〈α|h|β〉+
1
2

NX
ab=1

X
αβγδ

C∗aαC∗bβCaγCbδ〈αβ|V |γδ〉AS . (88)
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Hartree-Fock by varying the coefficients of a wave
function expansion

We wish now to minimize the above functional. We introduce again a set of Lagrange
multipliers, noting that since 〈a|b〉 = δa,b and 〈α|β〉 = δα,β , the coefficients Caγ obey
the relation

〈a|b〉 = δa,b =
X
αβ

C∗aαCaβ〈α|β〉 =
X
α

C∗aαCaα,

which allows us to define a functional to be minimized that reads

E [Ψ]−
NX

a=1

εa
X
α

C∗aαCaα. (89)
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Hartree-Fock by varying the coefficients of a wave
function expansion

Minimizing with respect to C∗kα, remembering that C∗kα and Ckα are independent, we
obtain

d
dC∗kα

"
E [Ψ]−

X
a
εa
X
α

C∗aαCaα

#
= 0, (90)

which yields for every single-particle state k the following Hartree-Fock equations

X
γ

Ckγ〈α|h|γ〉+
NX

a=1

X
βγδ

C∗aβCaδCkγ〈αβ|V |γδ〉AS = εk Ckα. (91)
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Hartree-Fock by varying the coefficients of a wave
function expansion

We can rewrite this equation as

X
γ

8<:〈α|h|γ〉+
NX
a

X
βδ

C∗aβCaδ〈αβ|V |γδ〉AS

9=;Ckγ = εk Ckα. (92)

Note that the sums over greek indices run over the number of basis set functions (in

principle an infinite number).
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Hartree-Fock by varying the coefficients of a wave
function expansion

Defining

hHF
αγ = 〈α|h|γ〉+

NX
a=1

X
βδ

C∗aβCaδ〈αβ|V |γδ〉AS ,

we can rewrite the new equations asX
γ

hHF
αγCkγ = εk Ckα. (93)

Note again that the sums over greek indices run over the number of basis set functions

(in principle an infinite number).
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Hartree-Fock by varying the coefficients of a wave
function expansion

The advantage of this approach is that we can calculate and tabulate the matrix
elements α|h|γ〉 and 〈αβ|V |γδ〉AS once and for all. If the basis |α〉 is chosen properly,
then the matrix elements can also serve as a good starting point for a Hartree-Fock
calculation. Eq. (93) is nothing but an eigenvalue problem. The eigenvectors are
defined by the coefficients Ckγ .

The size of the matrices to diagonalize are seldomly larger than 100× 100 and can be

solved by the standard eigenvalue methods that are discussed in chapter 12 of the

lecture notes. Jacobi’s method is enough!! Project 2 deals with a parallelization of

Jacobi’s method.
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Hartree-Fock by varying the coefficients of a wave
function expansion

For closed shell atoms it is natural to consider the spin-orbitals as paired. For example,

two 1s orbitals with different spin have the same spatial wave-function, but orthogonal

spin functions. For open-shell atoms two procedures are commonly used; the

restricted Hartree-Fock (RHF) and unrestricted Hartree-Fock (UHF). In RHF all the

electrons except those occupying open-shell orbitals are forced to occupy doubly

occupied spatial orbitals, while in UHF all orbitals are treated independently. The UHF,

of course, yields a lower variational energy than the RHF formalism. One disadvantage

of the UHF over the RHF, is that whereas the RHF wave function is an eigenfunction of

S2, the UHF function is not; that is, the total spin angular momentum is not a

well-defined quantity for a UHL wave-function. Here we limit our attention to closed

shell RHF’s, and show how the coupled HF equations may be turned into a matrix

problem by expressing the spin-orbitals using known sets of basis functions.
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Hartree-Fock by varying the coefficients of a wave
function expansion

In principle, a complete set of basis functions must be used to represent spin-orbitals

exactly, but this is not computationally feasible. A given finite set of basis functions is,

due to the incompleteness of the basis set, associated with a basis-set truncation error.

The limiting HF energy, with truncation error equal to zero, will be referred to as the

Hartree-Fock limit.
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Hartree-Fock by varying the coefficients of a wave
function expansion

The computational time depends on the number of basis-functions and of the difficulty

in computing the integrals of both the Fock matrix and the overlap matrix. Therefore we

wish to keep the number of basis functions as low as possible and choose the

basis-functions cleverly. By cleverly we mean that the truncation error should be kept

as low as possible, and that the computation of the matrix elements of both the overlap

and the Fock matrices should not be too time consuming.
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Hartree-Fock by varying the coefficients of a wave
function expansion

One choice of basis functions are the so-called Slater type orbitals (STO). They are
defined as

Ψnlml
(r , θ, φ) = N rneff−1e

Zeff ρ
neff Ylml

(θ, φ). (94)

Here N is a normalization constant that for the purpose of basis set expansion may be
put into the unknown ciµ’s, Ylml

is a spherical harmonic and ρ = r/a0.

We will discuss these in more detail in connection with project 2.
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Topics for Week 12, 16-20 March

Hartree-Fock theory and Density functional theory
Wednesday:
Derivation of the Hartree-Fock equations using a Slater
basis for the single-particle wave functions. Preparation for
project 2.
Thursday:
Derivation of the Hartree-Fock equations and methods for
diagonalizing eigenvalue problems.
Project 1: Discussion of how to implement the Slater
determinant and correlation part and the conjugate
gradient method.

Project 2 is presented Wednesday 25 March.
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Topics for Week 13, 23-27 March

Hartree-Fock theory and Density functional theory
Wednesday:
Discussion of project 2, Hartree-Fock theory, wave
functions and computation of Coulomb matrix elements.
Start discussion of density functional theory.
Thursday:
Project 1: Continuation on how to implement the Slater
determinant and correlation part and the conjugate
gradient method.
Discussion of project 2 as well, with practicalities about the
Hartree-Fock equations and density functional theory.

The material discussed for the rest of the course is also
covered by Thijssen’s book chapters 4-6 and 8-9.
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Structure of project 2

Project 2 deals with the following topics:
Hartree-Fock calculation of the Beryllium atom. To do that
one needs

1 Choice of basis, discussed today: Slater orbitals and
Hydrogen-like orbitals.

2 Diagonalization of an eigenvalue problem in order to find
the coefficients.

3 Computation of the Coulomb matrix elements. Since we
limit ourselves to Beryllium, we need only l = 0 waves.
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Structure of project 2

Project 2 deals with the following topics:
The Hartree-Fock solutions are in turn used in the
Variational Monte Carlo code developed in project 1. That
means that we do not need vary α. The variational
calculation is then limited to the Jastrow factor. We will look
at different Jastrow factors.
The second part of the project consists of using the wave
function from the Monte Carlo calculation to obtain the
density of the ground state. This density is then used to
define a density functional. We will make comparisons with
standard approximations to density functional theory
approaches like the local density approximation.
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Structure of project 2

The structure of the Hartree-Fock part involves
1 Choice of basis, discussed today: Slater orbitals and

Hydrogen-like orbitals. Here we need a function to
compute the Laguerre polynomials for Hydrogen-like
orbitals. This function is available at the webpage as
laguerre.cpp, see under project 2.

2 Diagonalization of an eigenvalue problem in order to find
the coefficients. One can use Jacobi’s method or
Householder’s with Givens’ transformations, see chapter
12 of lecture notes.

3 Computation of the Coulomb matrix elements. Since we
limit ourselves to Beryllium, we need only l = 0 waves.
Here you need to develop a program which sets up the
matrix elements using Gaussian quadrature (chapter 7 of
lecture notes).

Computational Physics II FYS4410



Hartree-Fock: Explicit expressions for the Coulomb
terms

We need to compute the integral for the direct term

〈αβ|V |γδ〉 =

Z Z
ψ∗α(r1)ψ∗β(r2)

1
r12
ψγ(r1)ψδ(r2)dr1dr2

and the exchange term We need to compute the integral for the direct term

〈αβ|V |δγ〉 =

Z Z
ψ∗α(r1)ψ∗β(r2)

1
r12
ψδ(r1)ψγ(r2)dr1dr2

Note well that spin is included in the quantum numbers αβγδ, but the interaction does

not affect spin.
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Hartree-Fock: Explicit expression for Direct Term

We need to break down the single-particle wave functions in radial, angular and spin
parts. Note that direct term is diagonal in the spin quantum numbers. The
single-particle wave functions are

ψα(r) = ψnlml sms (r) = φnlml
(r)ξms (s)

with
φnlml

(r) = Rnl (r)Ylml
(r̂)
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Hartree-Fock: Explicit expression for Direct Term

The addition theorem of the spherical harmonics yields

lX
ml =−l

Y∗lml
(θi , φi )Ylml

(θj , φj ) =
2l + 1

4π
Pl (cos (θ))

with
cos(θ) = cos(θi )cos(θj ) + sin(θi )sin(θj )cos(φi − φj ).

The quantity rij in the Coulomb interaction depends on the angles of particle i and j .
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Hartree-Fock: Explicit expression for Direct Term

The integral over the angles can be performed by expanding 1/rij in terms of spherical
harmonics and using the fact that the functions Rnl do not depend on the angles. We
have

1
rij

=
1
ri

∞X
l=0

„
rj

ri

«l
Pl cos(θ)),

if ri > rj or

1
rij

=
1
rj

∞X
l=0

 
ri

rj

!l

Pl cos(θ)),

if rj > ri . In a compact form it reads

1
rij

=
∞X
l=0

 
(r<)l

(r>)l+1

!
Pl cos(θ)),

with r> = max(ri , rj ) and with r< = min(ri , rj ). Pl is the Legendre polynomial and

cos(θ) = cos(θi )cos(θj ) + sin(θi )sin(θj )cos(φi − φj ).
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Hartree-Fock: Explicit expression for Direct Term

We can use the expression for spherical harmonics to express the interaction as

1
rij

=
∞X
l=0

lX
ml =−l

4π
2l + 1

 
(r<)l

(r>)l+1

!
Y∗lml

(θi , φi )Ylml
(θj , φj )

and inserting it we obtain for the direct term

∞X
l=0

lX
ml =−l

4π
2l + 1

Z
r2
1 dr1

Z
r2
2 dr2R∗nα lα (r1)R∗nβ lβ

(r2)
(r<)l

(r>)l+1
Rnγ lγ (r1)Rnδ lδ (r2)

×
Z

dΩ1Y∗lml
(θ1, φ1)Y∗lαmα (θ1, φ1)Ylγmγ (θ1, φ1)

×
Z

dΩ2Ylml
(θ2, φ2)Y∗lβmβ

(θ2, φ2)Ylδmδ (θ2, φ2)
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Hartree-Fock: Explicit expression for Exchange term

Similarly, we get for the exchange term the following expression

∞X
l=0

lX
ml =−l

4π
2l + 1

Z
r2
1 dr1

Z
r2
2 dr2R∗nα lα (r1)R∗nβ lβ

(r2)
(r<)l

(r>)l+1
Rnγ lγ (r2)Rnδ lδ (r1)

×
Z

dΩ1Y∗lml
(θ1, φ1)Y∗lαmα (θ1, φ1)Ylδmδ (θ1, φ1)

×
Z

dΩ2Ylml
(θ2, φ2)Y∗lβmβ

(θ2, φ2)Ylγmγ (θ2, φ2)
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Hartree-Fock: Explicit expression for Direct Term of
Beryllium

In our case we will only deal with particles with lα = 0. In this case we have that

Y00 =
1
√

4π
,

and inserting it we get

∞X
l=0

lX
ml =−l

4π
2l + 1

Z
r2
1 dr1

Z
r2
2 dr2R∗nα0(r1)R∗nβ0(r2)

(r<)l

(r>)l+1
Rnγ0(r1)Rnδ0(r2)

×
Z

dΩ1Y∗lml
(θ1, φ1)Y∗00Y00

Z
dΩ2Ylml

(θ2, φ2)Y∗00Y00

which becomes

∞X
l=0

lX
ml =−l

1
2l + 1

Z
r2
1 dr1

Z
r2
2 dr2R∗nα0(r1)R∗nβ0(r2)

(r<)l

(r>)l+1
Rnγ0(r1)Rnδ0(r2)

×
Z

dΩ1Y∗lml
(θ1, φ1)Y00

Z
dΩ2Ylml

(θ2, φ2)Y00
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Hartree-Fock: Explicit expression for Direct Term of
Beryllium

Using the orthogonality relation of spherical harmonicsZ
dΩ1Y∗l′m′l

(θ1, φ1)Ylml
(θ1, φ1) = δl,l′δml ,m′l

,

we can rewrite

∞X
l=0

lX
ml =−l

1
2l + 1

Z
r2
1 dr1

Z
r2
2 dr2R∗nα0(r1)R∗nβ0(r2)

(r<)l

(r>)l+1
Rnγ0(r1)Rnδ0(r2)

×
Z

dΩ1Y∗lml
(θ1, φ1)Y00

Z
dΩ2Ylml

(θ2, φ2)Y00

as

∞X
l=0

lX
ml =−l

1
2l + 1

Z
r2
1 dr1

Z
r2
2 dr2R∗nα0(r1)R∗nβ0(r2)

(r<)l

(r>)l+1
Rnγ0(r1)Rnδ0(r2)δl,0δml ,0,

resulting in Z
r2
1 dr1

Z
r2
2 dr2R∗nα0(r1)R∗nβ0(r2)

1
(r>)

Rnγ0(r1)Rnδ0(r2)
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Hartree-Fock: Explicit expression for Direct Term of
Beryllium

The direct matrix elements that we need are then simply given by a double integralZ
r2
1 dr1

Z
r2
2 dr2R∗nα0(r1)R∗nβ0(r2)

1
(r>)

Rnγ0(r1)Rnδ0(r2)

This integral can be solved once and for all using hydrogenic-like wave functions
by solving the above double integral using Gaussian quadrature (see chapter 7
of lecture notes).

These elements should then be stored and looked up every time they are
needed in the Hartree-Fock calculation.

Exercise: find the corresponding matrix element for the exchange part.
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Hartree-Fock: Simplification of the direct term

As an exercise, show that you can simplify the integralZ
r2
1 dr1

Z
r2
2 dr2R∗nα0(r1)R∗nβ0(r2)

1
(r>)

Rnγ0(r1)Rnδ0(r2)

asZ ∞
0

r2
1 dr1R∗nα0(r1)Rnγ0(r1)

"
1

(r1)

Z r1

0
r2
2 dr2R∗nβ0(r2)Rnδ0(r2) +

Z ∞
r1

r2dr2R∗nβ0(r2)Rnδ0(r2)

#
.
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Hartree-Fock: Single-particle wave functions

As basis functions for our calculations we will use hydrogenic like functions. In project 2
we need only the radial part since the spherical harmonics for s-waves are rather
simple. Our radial wave functions are

Rn0(r) =

„
2Z
n

«3/2
s

(n − 1)!

2n × n!
L1

n−1(
2Z
n

) exp (−
Zr
n

),

with energies −Z 2/2n2. A function for computing the generalized Laguerre

polynomials L1
n−1( 2Z

n ) is provided at the webpage of the course under the link of

project 2. We will use these functions to solve the Hartree-Fock problem for Beryllium.
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Hartree-Fock: Single-particle wave functions

When we have finished the Hartree-Fock calculations, it will be useful to parameterize
our solutions in terms of the nodeless Slater-type orbitals (STO). In our case we will
use so-called node-dependent solutions given by

Ψnlml
(r , θ, φ) = N rneff−1e

Zeff ρ
neff Ylml

(θ, φ).

Here N is a normalization constant, Ylml
is a spherical harmonic and ρ = r/a0. Such

parameterizations exit in the literature. For Beryllium we can use

RSTO
10 (r) = N10 exp (−3.6848r)

and
RSTO

20 (r) = N20r exp (−1.9120r/2)

Using these values in the Slater determinant for Beryllium, with no Jastrow factor you

should get -14.573 a.u. for the ground state energy.
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Topics for Week 16, April 13-17

Density functional theory (DFT)
Wednesday:
Repetition of the basics of DFT
Proof of Hohenberg and Sham’s theorem on unique
density functional (Phys. Rev. 136, B864 (1964).
The local density approximation and the electron gas
model
Thursday:
Electron gas, local density approximation and density
functional theory.
Discussion of project 2, with practicalities about the
Hartree-Fock equations and the computation of the
Coulomb term.
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Density Functional Theory (DFT)

Hohenberg and Kohn proved that the total energy of a system including that of the
many-body effects of electrons (exchange and correlation) in the presence of static
external potential (for example, the atomic nuclei) is a unique functional of the charge
density. The minimum value of the total energy functional is the ground state energy of
the system. The electronic charge density which yields this minimum defines the
ground state energy.
In Hartree-Fock theory one works with large basis sets. This poses a problem for large
systems. An alternative to the HF methods is DFT. DFT takes into account electron
correlations but is less demanding computationally than full scale diagonalization or
Monte Carlo methods.
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Density Functional Theory

The electronic energy E is said to be a functional of the electronic density, E [ρ], in the
sense that for a given function ρ(r), there is a single corresponding energy. The
Hohenberg-Kohn theorem confirms that such a functional exists, but does not tell us
the form of the functional. As shown by Kohn and Sham, the exact ground-state energy
E of an N-electron system can be written as

E [ρ] = −
1
2

NX
i=1

Z
Ψ∗i (r1)∇2

1Ψi (r1)dr1−
Z

Z
r1
ρ(r1)dr1+

1
2

Z
ρ(r1)ρ(r2)

r12
dr1dr2+EEXC [ρ]

with Ψi the Kohn-Sham (KS) orbitals.
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Density Functional Theory

The ground-state charge density is given by

ρ(r) =
NX

i=1

|Ψi (r)|2,

where the sum is over the occupied Kohn-Sham orbitals. The last term, EEXC [ρ], is the

exchange-correlation energy which in theory takes into account all non-classical

electron-electron interaction. However, we do not know how to obtain this term exactly,

and are forced to approximate it. The KS orbitals are found by solving the Kohn-Sham

equations, which can be found by applying a variational principle to the electronic

energy E [ρ]. This approach is similar to the one used for obtaining the HF equation.
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Density Functional Theory

The KS equations reads
−

1
2
∇2

1 −
Z
r1

+

Z
ρ(r2)

r12
dr2 + VEXC(r1)

ff
Ψi (r1) = εi Ψi (r1)

where εi are the KS orbital energies, and where the exchange-correlation potential is
given by

VEXC [ρ] =
δEEXC [ρ]

δρ
.
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Density Functional Theory

The KS equations are solved in a self-consistent fashion. A variety of basis set
functions can be used, and the experience gained in HF calculations are often useful.
The computational time needed for a DFT calculation formally scales as the third
power of the number of basis functions.
The main source of error in DFT usually arises from the approximate nature of EEXC . In
the local density approximation (LDA) it is approximated as

EEXC =

Z
ρ(r)εEXC [ρ(r)]dr,

where εEXC [ρ(r)] is the exchange-correlation energy per electron in a homogeneous

electron gas of constant density. The LDA approach is clearly an approximation as the

charge is not continuously distributed. To account for the inhomogeneity of the electron

density, a nonlocal correction involving the gradient of ρ is often added to the

exchange-correlation energy.
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