Particle Physics FYS4560

F. Ould-Saada Fysikk Institutt, Universitetet i Oslo

Project 1 To be delivered – via email - 13. February 2017

1 – SM and beyond: Allowed, forbidden and discovery processes

- 1. State whether the following processes are allowed or not.
 - 1. Classify them according to the underlying interaction and draw the corresponding Feynman graphs.
 - 2. For each particle decay, indicate the lifetime and the branching ratio.
 - 3. What conservation laws, invariance principles, or other mechanisms account for the suppressing or forbidding of some processes.
 - 4. Why are processes 3, 4, 8, 10, 11, 14 and 18 of particular importance? Justify and tell more.

2-Top quark and W-boson

- 1. Start by introducing the CKM matrix and the role of the W boson
 - 1. Which of the matrix elements are related to B-Bbar mixings
 - 2. How are these measured experimentally.
- 2. Discuss top-quark production in electron-positron, proton-proton and proton-antiproton collisions
 - 1. Consider single top and top-anti-top
 - 2. Corresponding Feynman graphs?
- 3. How does the top decay
 - 1. Feynman diagram(s)
 - 2. How is top identified experimentally?
 - 1. Consider all possible categories of final states
 - 2. Find an ATLAS display of a top candidate and describe/comment it.
- 4. Top production is often considered as an important SM background to various searches for new physics.
 - 1. Discuss the supersymmetric process: $pp \rightarrow chi^+_1 chi^0 2$ leading to WZ + 2chi⁰₁ where chi⁰₁ is the latest supersymmetric particle not interacting in the detector
 - 2. Which kinnematical requirements allow to reduce the top background?

3 – Gauge theories

- **1**. Discuss the classification of particles in the SM
 - 1. How are the SM symmetries behind related to conservation laws.
 - 2. Discuss the classification of particles in Grand Unified Theories
- Define the gauge principle and apply it to Quantum Chromo-Dynamics, QCD
 - 1. Go through all steps in detail as you have done for QED
 - 2. Derive the QCD Lagrangian
- 2. Make a detailed comparison of QCD and QED
 - 1. Conceptually
 - 2. Experimentally
- 3. Deduce the Electroweak Lagrangian based on QED and QCD formulation
 - 1. Ignore the gauge boson masses
 - 2. Where are the complications?