Particle Physics FYS4560

F. Ould-Saada Fysikk Institutt, Universitetet i Oslo

Project 1 To be delivered – via email – by 10. February 2018

Item 1 – SM and beyond: Allowed, forbidden and discovery processes

1. State whether the following processes are allowed or not.

- 1. Classify them according to the underlying interaction and draw the corresponding Feynman graphs.
- 2. For each particle decay, indicate the lifetime and the branching ratio.
- 3. What conservation laws, invariance principles, or other mechanisms account for the suppressing or forbidding of some processes.
- 4. Why are processes 3, 4, 8, 10, 11, 14 and 18 of particular importance? Justify and tell more.

1. $e^+e^- \rightarrow q\overline{q}gg$	2. $gg \rightarrow e^+e^-$	3. $e^+e^- \rightarrow \tilde{l}^+\tilde{l}^-$
4. $p\overline{p} \rightarrow l^+ l^- X$	5. $\tau^+ \rightarrow \mu^+ \nu_e \overline{\nu}_{\tau}$	6. $K^- p \rightarrow \Omega^- K^+ K^0$
7. $v_e e^- \rightarrow v_e e^- \gamma$	8. $pp \rightarrow l^+ l^- l^+ l^- X$	9. $e^+e^- \rightarrow HH\gamma$
10. $q\overline{q} \rightarrow W^+W^-Z$	11. $e^+e^- \rightarrow ZZZ$	$12. e^+ e^- \to H \to gg$
13. $e^+e^- \rightarrow v \overline{v} \gamma \gamma$	14. $gg \rightarrow t\bar{t}HH$	15. $e^+e^- \rightarrow Y(3s) \rightarrow B^0\overline{B}^0$
16. $q\overline{q} \rightarrow gge^+e^-$	17. $gg \rightarrow H \rightarrow Z\gamma$	18. $ep \rightarrow J / \psi + X$
19. $D^0 \leftrightarrow \overline{D}^0$	20. $e^+e^- \rightarrow Z^0 t \overline{t}$	

Item 2 – Let us see with the LHC

- The two peculiar event displays below (Figure 1 and Figure 2) stem both from Lead-Lead heavy ion collisions recorded by the ATLAS detector at the LHC.
 - 1. Briefly describe the two events with emphasis on their peculiarities.
 - 2. *Light-by-light scattering*: Write lowest-order possible Feynman diagrams of the following two processes
 - Compare the properties of photons and of gluons. Infer the main differences between the electromagnetic (QED) and strong (QCD) coupling constants a_{EM} and a_S. Describe asymptotic freedom and colour confinement.
 - 4. Jet quenching: What is quark-gluon plasma and what are the two necessary conditions to produce it experimentally? Discuss one experimental signature of such a new state of matter that includes jets.

Pb-pb collision events recorded by ATLAS

EXPERIMENT

Item 3 – New physics

1. New physics

 Which of the following reactions are allowed in or are beyond the Standard Model (SM) and why?

$$p \rightarrow \pi^{0} + e^{+}$$

$$p \rightarrow \pi^{+} + \overline{v}_{e}$$

$$e^{+}e^{-} \rightarrow \tilde{l}^{+}\tilde{l}^{-} \rightarrow l^{+}\chi^{0}l^{-}\chi^{0} \quad (2)$$

$$nn \rightarrow pp + e^{-}e^{-}\overline{v}_{e}\overline{v}_{e} \quad (3)$$

$$nn \rightarrow pp + e^{-}e^{-} \quad (4)$$

- 2. Discuss possible new physics scenarios that would predict the beyond-SM processes.
- 3. Write down the Feynman diagrams for each of the processes above. What would be the corresponding experimental signatures?

Item 4 – CKM Mass matrix, Top and bottom quarks

- 1. Start by introducing the CKM matrix and the role of the W boson
 - 1. Which of the matrix elements are related to B-Bbar mixings
 - 2. How are these measured experimentally.
 - 2. Consider B-meson decays
 - 1. Draw the Feynman diagrams of the following decays

$$B^- \rightarrow D^0 K^{*-}$$
; $B^- \rightarrow D^0 \rho^-$

2. Estimate the ratios of the two decay widths

 $\frac{\Gamma(B^{-} \to D^{0}K^{*-})}{\Gamma(B^{-} \to D^{0}\rho^{-})}$

- 3. Discuss top-quark production in electron-positron, proton-proton and proton-antiproton collisions
 - 1. Consider single top and top-anti-top and give the corresponding Feynman graphs?
 - 2. How does the top-quark decay and why?

Item 5 – the Higgs boson

- How can the *Higgs boson* be produced in e⁺e⁻ and in proton-proton collisions? Give two main Feynman diagrams for each case.
- 2. Assuming a Higgs boson of mass 125 GeV is produced through the Higgs-strahlung process,
 - what is the centre of mass energy threshold for creating both the Z and Higgs bosons at rest?
 - 2. What would be (approximately) the threshold in the case of proton-antiproton collisions? Make simple assumptions on the parton distribution functions in the proton/antiproton after commenting on the Figure

Item 5 – Higgs boson discovery

1. Higgs discovery

- Explain how the ATLAS and CMS experiments at the LHC discovered the Higgs boson in its decays to pairs of gauge bosons (gg and ZZ*).
- 2. Study the distribution of the invariant mass of 4 leptons measured by ATLAS in the Figure.
- Which processes contribute to the Higgs signal and to the Standard Model backgrounds? Draw Feynman diagrams. Discuss in particular the Z and ZZ* blue contributions.

Item 6 – Gauge theories

- 1. Discuss the classification of particles in the SM
 - 1. How are the SM symmetries behind related to conservation laws.
 - 2. Discuss the classification of particles in Grand Unified Theories
- 1. Define the gauge principle and apply it to Quantum Chromo-Dynamics, QCD
 - 1. Go through all steps in detail as you have done for QED
 - 2. Derive the QCD Lagrangian
- 2. Make a detailed comparison of QCD and QED (*no need to repeat what was in Item 1 above*)
 - 1. Conceptually
 - 2. Experimentally
- 3. Deduce the Electroweak Lagrangian based on QED and QCD formulation
 - 1. Ignore the gauge boson masses
 - 2. Where are the complications?