Assignment #3. September 12, 2017

- 1) Exercise 3.5 page 88
- 2) Exercise 5.1 pages 183 184
- 3) From 2016 exam:
 - a) Define the bidirectional reflectance distribution function (BRDF): $\rho(\nu, -\widehat{\Omega}', \widehat{\Omega})$.
 - b) The incident radiance on a surface with a BRDF = $\rho(\nu, -\widehat{\Omega}', \widehat{\Omega})$ is $I_{\nu}^{-}(\widehat{\Omega}')$. Find an expression for the reflected radiance $I_{\nu r}^{+}(\widehat{\Omega})$.
 - c) Assume that the incident radiance is uniform: $I_{\nu}^{-}(\widehat{\Omega}') = \text{constant} = I$, and that the surface is Lambertian so that $\rho(\nu, -\widehat{\Omega}', \widehat{\Omega}) = \rho_L(\nu)$.

Show that the reflected irradiance is: $F_{vr}^{+} = \pi^2 \, \rho_L(v) \, I$.