FYS4630/FYS9630

Assignment \#6 Tuesday October 10, 2017

1) The two-stream equations for a homogeneous atmosphere and isotropic scattering phase function is:

$$
\begin{aligned}
\bar{\mu} \frac{d I^{+}(\tau)}{d \tau} & =I^{+}(\tau)-\frac{\bar{\omega}}{2} I^{+}(\tau)-\frac{\bar{\omega}}{2} I^{-}(\tau)-(1-\bar{\omega}) B \\
-\bar{\mu} \frac{d I^{-}(\tau)}{d \tau} & =I^{-}(\tau)-\frac{\bar{\omega}}{2} I^{+}(\tau)-\frac{\bar{\omega}}{2} I^{-}(\tau)-(1-\bar{\omega}) B
\end{aligned}
$$

We assume uniform illumination at the top of the atmosphere: $I^{-}(\tau=0)=\mathfrak{J}=$ constant and a non-reflecting lower boundary, $I^{+}\left(\tau=\tau^{*}\right)=0$. (This is prototype problem 1)

Solve the two-stream equations above for $\bar{\omega}=1$ (conservative scattering) and show that:

$$
\begin{gathered}
I^{+}(\tau)=\frac{\mathfrak{J} \cdot\left(\tau^{*}-\tau\right)}{2 \bar{\mu}+\tau^{*}} \\
I^{-}(\tau)=\frac{\mathfrak{J} \cdot\left[2 \bar{\mu}+\left(\tau^{*}-\tau\right)\right]}{2 \bar{\mu}+\tau^{*}} \\
S(\tau)=\frac{\mathfrak{J} \cdot\left[\bar{\mu}+\left(\tau^{*}-\tau\right)\right]}{2 \bar{\mu}+\tau^{*}} \\
F(\tau)=-\frac{4 \pi \bar{\mu}^{2} \mathfrak{J}}{2 \bar{\mu}+\tau^{*}} \\
H(\tau)=0
\end{gathered}
$$

2) Derive Eq.(7.7) on page 229. Specifically find $I_{d}^{-}\left(\tau, \mu=\mu_{0}, \varphi\right)$. Also derive Eq.(7.8) on page 230.
