UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in: FYS4630 and FYS9630

Transport of radiation in the atmosphere

Day of exam:

Exam hours:

09:00 – 13:00

This examination paper consists of 4 pages

Appendices: None

Permitted materials: Calculator,

Rottmann: Matematisk formelsamling (all editions)

Make sure that your copy of this examination paper is complete before answering.

Problem 1

- a) Define the spectral net flux, F_{ν} , and the spectral hemispherical fluxes, F_{ν}^{+} and F_{ν}^{-} .
- b) Define the spectral intensity, I_{ν} .

Derive the relationship between F_{ν} and I_{ν} .

Problem 2

a) Define the spectral directional emittance, $\varepsilon(\nu, \widehat{\Omega}, T_s)$ for a surface.

Show that the spectral flux emittance can be written as

$$\varepsilon(\nu, 2\pi, T_s) = \frac{1}{\pi} \int_{+}^{\pi} d\omega \cos\theta \ \varepsilon(\nu, \widehat{\Omega}, T_s)$$

b) What is a grey body?

A circular disk of radius R is a grey body. Show that the outward flux, at a point lying on the axis of the disk a distance z from the center of the disk is given by

$$F_{\nu}(z) = \frac{\pi \varepsilon B_{\nu} R^2}{z^2 + R^2}$$

where B_{ν} is the Planck function at frequency v.

Problem 3

a) The azimuthally averaged radiative transfer equation is

$$u\frac{dI(\tau,u)}{d\tau} = I(\tau,u) - \frac{a}{2} \int_{-1}^{1} du' p(u',u) I(\tau,u')$$

The crudest way to handle the problem with strong forward scattering is to approximate the phase function as follows:

$$\hat{p}(u',u) = C \cdot f \cdot \delta(u'-u) + (1-f)$$

Where δ is a Dirac δ -function and f is the strength of the forward-scattering peak, 0 < f < 1.

Show that the constant C = 2.

b) Show that the δ -N –scaled radiative transfer equation can be written as:

$$u \frac{dI(\hat{\tau}, u)}{d\hat{\tau}} = I(\hat{\tau}, u) - \frac{\hat{a}}{2} \int_{-1}^{1} du' I(\hat{\tau}, u')$$

c) Compare \hat{a} and a, and $d\hat{\tau}$ and $d\tau$.

What is the advantage of using δ -N-scaling from a computational point of view?

d) Give a physical interpretation of the δ -N scaled radiative transfer equation.

Problem 4

a) The azimuthally averaged radiative transfer equation with a thermal source function is:

$$u \frac{dI(\tau, u)}{d\tau} = I(\tau, u) - \frac{a}{2} \int_{-1}^{1} d\mu \, p(\tau, u) \, I(\tau, u') - (1 - a)B(\tau)$$

How is a defined? Give a physical interpretation of a. What are possible values of a?

Write down the corresponding radiative transfer equations for the hemispherical intensities $I^+(\tau,\mu)$ and $I^-(\tau,\mu)$.

b) Assume an isothermal plane-parallel medium (slab). The vertical optical depth τ is as usual measured from the "top" of the medium ($\tau = 0$) to the "bottom" ($\tau = \tau^*$). Assume no scattering and that $I^-(\tau = 0, \mu) = 0$. Solve the radiative transfer equation and find the intensity at vertical optical depth τ : $I^-(\tau, \mu)$.

Problem 5

- a) Define the bidirectional reflectance distribution function (BRDF): $\rho(\nu, -\widehat{\Omega}', \widehat{\Omega})$.
- b) The incident intensity on a surface with a BRDF = $\rho(\nu, -\widehat{\Omega}', \widehat{\Omega})$ is $I_{\nu}^{-}(\widehat{\Omega}')$.

Find an expression for the reflected intensity $I_{vr}^+(\widehat{\Omega})$.

c) Assume that the incident intensity is uniform: $I_{\nu}^{-}(\widehat{\Omega}') = \text{constant} = I$. The surface is now Lambertian so that $\rho(\nu, -\widehat{\Omega}', \widehat{\Omega}) = \rho_L(\nu)$.

Show that the reflected flux is : $F_{\nu r}^{+} = \pi^2 \, \rho_L(\nu) \, I$.

Problem 6

a) The two-stream equations for anisotropic scattering can be written as

$$\bar{\mu} \frac{dI^+}{d\tau} = I^+ - a(1-b)I^+ - abI^-$$

$$-\bar{\mu} \frac{dI^{-}}{d\tau} = I^{-} - a(1-b)I^{-} - abI^{+}$$

b is the backscattering coefficient:

$$b = \frac{1}{2} \sum_{l=0}^{\infty} (-1)^l (2l+1) \chi_l \left[\int_0^1 d\mu \, P_l(\bar{\mu}) \right]^2$$

Assume a cloud to be a plane-parallel slab that scatters radiation conservatively (a = 1). Let $\bar{\mu} = \frac{1}{\sqrt{3}}$ and keep only the two first terms in the expansion series for b.

Find b.

Show that the two-stream equations can be written as:

$$\bar{\mu} \frac{d(I^+ - I^-)}{d\tau} = 0$$

$$\bar{\mu} \frac{d(I^+ + I^-)}{d\tau} = (1 - g)(I^+ - I^-)$$

- b) Solve the equations in a) and find $I^-(\tau^*)$. τ^* is the vertical optical depth at the bottom of the cloud (the ground). Use the boundary condition $I^-(\tau=0) = \text{constant} = I$ and $I^+(\tau^*) = 0$.
- c) The intensity of direct radiation at τ^* is $I_{dir}(\tau^*) = I e^{-\tau^*/\mu_0}$.

What is the downward *diffuse* intensity $I_{diff}^-(\tau^*)$?

When the cloud optical thickness (τ^*) increases from zero the intensity will increase, reach a maximum, and then decrease as the cloud becomes optically thick. Use the solution for $I_{diff}^-(\tau^*)$ to argue that such a maximum must exist. (Don't find the value of this maximum!)