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Problem 1  

 

a) Define the spectral net flux, 𝐹𝜈, and the spectral hemispherical fluxes, 𝐹𝜈
+ and 𝐹𝜈

−. 

 

b) Define the spectral intensity, 𝐼𝜈.  

 

Derive the relationship between 𝐹𝜈 and 𝐼𝜈. 

 

 

 

 

Problem 2  

  

a) Define the spectral directional emittance, 𝜀(𝜈, Ω̂, 𝑇𝑠) for a surface. 

 

Show that the spectral flux emittance can be written as 

 

𝜀(𝜈, 2𝜋, 𝑇𝑠) =  
1

𝜋
∫ 𝑑𝜔 cos 𝜃 𝜀(𝜈, Ω̂ , 𝑇𝑠)

+

 

 

b) What is a grey body? 

 

A circular disk of radius R is a grey body. Show that the outward flux, at a point lying on 

the axis of the disk a distance z from the center of the disk is given by 
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𝐹𝜈(𝑧) =
𝜋𝜀𝐵𝜈𝑅2

𝑧2 + 𝑅2
 

 

 where 𝐵𝜈 is the Planck function at frequency ν. 

 

 

 

 

Problem 3 

 

a) The azimuthally averaged radiative transfer equation is 

 

𝑢
𝑑𝐼(𝜏, 𝑢)

𝑑𝜏
= 𝐼(𝜏, 𝑢) −  

𝑎

2
∫ 𝑑𝑢′𝑝(𝑢′, 𝑢) 𝐼(𝜏, 𝑢′)

1

−1

 

 

The crudest way to handle the problem with strong forward scattering is to approximate the 

phase function as follows: 

 

𝑝̂ (𝑢′, 𝑢) = 𝐶 ∙ 𝑓 ∙  𝛿(𝑢′ − 𝑢) + (1 − 𝑓) 

 

 where δ is a Dirac δ-function and f is the strength of the forward-scattering peak, 

 0 < f  < 1.  

 

Show that the constant C = 2. 

 

b) Show that the δ-N –scaled radiative transfer equation can be written as: 

 

𝑢 
𝑑𝐼(𝜏̂, 𝑢)

𝑑𝜏̂
= 𝐼(𝜏̂, 𝑢) −  

𝑎̂

2
 ∫ 𝑑𝑢′ 𝐼(𝜏̂, 𝑢′)

1

−1

 

 

 

 

 

c)  Compare 𝑎̂ and a, and 𝑑𝜏̂ and 𝑑𝜏. 
 

What is the advantage of using δ-N-scaling from a computational point of view? 

 

 

d) Give a physical interpretation of the δ-N scaled radiative transfer equation. 
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Problem 4 

 

a) The azimuthally averaged radiative transfer equation with a thermal source function is: 

 

𝑢 
𝑑𝐼(𝜏, 𝑢)

𝑑𝜏
= 𝐼(𝜏, 𝑢) −  

𝑎

2
 ∫ 𝑑𝑢′ 𝑝(𝜏, 𝑢′, 𝑢) 𝐼(𝜏, 𝑢′)  −   (1 − 𝑎)𝐵(𝜏)

1

−1

 

 

How is a defined? Give a physical interpretation of a. What are possible values of a? 

 

Write down the corresponding radiative transfer equations for the hemispherical intensities 

𝐼+(𝜏, 𝜇) and 𝐼−(𝜏, 𝜇). 

 

 

b) Assume an isothermal plane-parallel medium (slab). The vertical optical depth τ is as usual 

measured from the “top” of the medium (τ = 0) to the “bottom” (τ = τ*). Assume no 

scattering and that 𝐼−(𝜏 = 0, 𝜇) = 0. Solve the radiative transfer equation and find the 

intensity at vertical optical depth τ:  𝐼−(𝜏, 𝜇). 
 

 

Problem 5 

 

a) Define the bidirectional reflectance distribution function (BRDF):  𝜌(𝜈, −Ω̂′, Ω̂) . 

 

b) The incident intensity on a surface with a BRDF = 𝜌(𝜈, −Ω̂′, Ω̂) is 𝐼𝜈
−(Ω̂′) . 

 

Find an expression for the reflected intensity 𝐼𝜈𝑟
+ (Ω̂). 

 

c) Assume that the incident intensity is uniform:  𝐼𝜈
−(Ω̂′) = constant =  𝐼, and that the 

surface is Lambertian so that 𝜌(𝜈, −Ω̂′, Ω̂) = 𝜌𝐿(𝜈) . 

 

 

Show that the reflected flux is: 𝐹𝜈𝑟
+ =  𝜋2 𝜌𝐿(𝜈) 𝐼 . 

 

 

Problem 6 

 

a) The two-stream equations for anisotropic scattering can be written as 

 

𝜇̅  
𝑑𝐼+

𝑑𝜏
=  𝐼+ − 𝑎(1 − 𝑏)𝐼+ − 𝑎𝑏𝐼− 

 

−𝜇̅  
𝑑𝐼−

𝑑𝜏
=  𝐼− − 𝑎(1 − 𝑏)𝐼− − 𝑎𝑏𝐼+ 

 

b is the backscattering coefficient:  
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𝑏 =  
1

2
∑(−1)𝑙

∞

𝑙=0

 (2𝑙 + 1)𝜒𝑙  [∫ 𝑑𝜇 𝑃𝑙(𝜇)

1

0

]

2

 

 

 

Find b when keeping only the first two terms in the series expansion above. 

 

b) Assume a cloud to be a plane-parallel slab that scatters radiation conservatively (a = 1).  

The cloud particles have an asymmetry factor g and a backscattering coefficient  

b = (1 – g) /2. 

 

                  Show that the two-stream equations can be written as: 

 

𝜇̅  
𝑑(𝐼+ −  𝐼−)

𝑑𝜏
= 0 

 

𝜇̅  
𝑑(𝐼+ + 𝐼−)

𝑑𝜏
= (1 − 𝑔) (𝐼+ −  𝐼−) 

  

 

c) Solve the equations in b) and find 𝐼−(𝜏∗). 𝜏∗ is the vertical optical depth at the bottom of 

the cloud (the ground).  Use the boundary conditions  𝐼−(𝜏 = 0) = constant = 𝐼 and 

𝐼+(𝜏∗) = 0. 

 

 

d) The intensity of direct radiation at 𝜏∗ is 𝐼𝑑𝑖𝑟(𝜏∗) = 𝐼 𝑒−𝜏∗/𝜇0. Show that the downward 

diffuse intensity 𝐼𝑑𝑖𝑓𝑓
− (𝜏∗) is given by: 

 

𝐼𝑑𝑖𝑓𝑓
− (𝜏∗) = 𝐼 (1 − 

𝜏∗

𝜏∗ + 
2𝜇̅

1 − 𝑔

−  𝑒−𝜏∗/𝜇0) 

 

When the cloud optical thickness (𝜏∗) increases from zero the intensity will increase, 

reach a maximum, and then decrease as the cloud becomes optically thick. Use the 

solution for 𝐼𝑑𝑖𝑓𝑓
− (𝜏∗) to argue that such a maximum must exist. (Don’t find the value of 

this maximum!) 


