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There are many ways in which imaging systems can be evaluated. The aim of the present paper is to provide an overview of a
number of selected approaches to evaluating imaging systems, offen encountered by the medical physicist, and discuss their
validity and reliability. Specifically, it will cover (i) characterisation of an imaging system in terms of its detective quantum
efficiency using linear-systems analysis; (ii) attempts to calculate relevant measures directly in images using the Rose model
and the pixel signal-to-noise ratio; (jii) task-based methods incorporating human observers such as receiver-operating charac-
teristics and (iv) visual grading-based methods using experienced radiologists as observers,

INTRODUCTION
Operationalisation—or: what was actually measured?

Operationalisation is the process of defining measur-
able variables thought to describe the phenomenon
which is the subject of study. The operationalisation
process is of the utmost importance in any scientific
task since the reliability and validity of the results
from a study are strongly connected to the success of
the operationalisation. The reliability describes the
precision of the measurement; a high reliability
demanding small stochastic errors. The validity
describes how well the variables describe the
phenomenon; a high validity demanding a small sys-
tematic error. Successful operationalisation therefore
requires both high validity and high reliability.

Image quality in medical imaging is a phenom-
enon of enormous complexity. It is extremely task
dependent—the demands on noise level, resolution
and contrast differing from discipline-to-discipline.
It also involves many processes that are not fully
understood and described, such as the effects of
image processing and the anatomical background in
an image on the signal detection and interpretation
by the human observer, It is therefore easy to under-
stand the difficulty in defining a general image
quality measure that has high validity. On the other
hand, a measure with high validity for a specific
task has the inherent property of being less generali-
sable. This difficulty in performing successful opera-
tionalisation for an image guality measure has led to
the diverse methods of evaluating imaging systems
in use today.

The purpose of the present paper is to provide an
overview over some common methods for evaluating
imaging systems from an operationalisation point of
view, i.e. to discuss the validity and reliability associ-
ated with the methods and hence their suitability for

different practical applications. The overview is not
intended to cover the field, but will focus on a limited
number of groups of methods encountered by the
medical physicist in routine work or research. The
groups contain (i) methods related to linear-systems
analysis (LSA), (ii) quantitative measurements in
images, (iii) receiver-operating characteristics (ROC)
analysis and (4) visual grading.

LSA FOCUSED ON DETECTIVE QUANTUM
EFFICIENCY

A desire to describe the imaging properties of an
imaging system in an objective way, without taking
the specific imaging task into account, has led to the
application of LSA to medical imaging systems.
LSA, based on linear-systems theory™”, can be used
to give measures of the ability of the system to pass
a signal, as well as of the noise characteristics of the
system. The reasoning behind the use of LSA is to
give general and detailed descriptions of the imaging
system in terms of properties that are believed to
influence the clinical performance of the system.
Since the 1940s, many attempts have been made
to quantify the efficiency of radiation detectors®. In
the first attempts, the quantum efficiency was based
on the ratio of the number of output events to the
number of input events, and was termed the respon-
sive quantum efficiency (RQE). However, the RQE
has several drawbacks, the major one being that it
‘links the in;_out/ output numbers in quantity but not
in quality®. Amplification anywhere along the
signal chain increases the RQE by a proportional
amount, which leads to the fact that the RQE does
not have an upper limit. It is therefore impossible to
compare a real detector with an ideal one in order
to obtain an absolute quality measure. However, by
comparing the fluctuations at the output stage to
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those at the input stage, 2 measure with an upper
limit of unity is obtained for a linear system. Based
on the ratio of fluctuations, the detective quantum
efficiency (DQE) can be defined as follows:

SNR?
DQE :WR";‘. 1

where SNR,, is the signal-to-noise ratio at the
output stage and SNR,, that at the input stage. The
DQE is as such closely connected to the quantum
nature of radiation. A measurement of radiation is
always associated with an uncertainty, but by com-
paring the SNR at the output and input stages, the
inherent fluctuations of the radiation are excluded
from the characterisation of the detector, and the
detector is compared with an ideal detector—a
detector that detects all incoming quanta without
adding any noise to the signal.

Although being a fundamental property of a
detector, the DQE expressed as in Eq. (1) does not
give enough information about an imaging system to
be useful, since it does not take the resolution prop-
erties of the detector into account. This problem can
be solved by expressing the DQE as a function of
spatial frequency:

__ SNR(x, v)iul

~ SNR(w,v)3 @

DQE(y, v)

where u and v denote orthogonal spatial frequencies
for a two-dimensional imaging system. As such, the
DQE describes the efficiency of the imaging detector
completely since, for any given spatial frequency, it
states the efficiency of the system in detecting that
frequency compared with that of the ideal detector,
which is ideal both in terms of detection and localis-
ation of the incoming signal. Thus, the DQE
describes the efficiency of an imaging system in the
sense that it describes to what extent it utilises the
information given as input to it. That the DQE
takes both the sensitivity and resolution properties
of an imaging system into account can be made
even more explicit be expressing the DQE in the fol-
lowing way®:

MTF(x, v)?

N —— 3
NNPS(x, v)SNRZ, @)

DQE(x,v)

where the MTF is the modulation transfer function
of the system, describing to what extent the ampli-
tude of a given spatial frequency passing through
the system is preserved, and the NNPS is the nor-
malised noise power spectrum, which describes the
variance of image intensity spread over the spatial
frequencies in the image.

The use of the DQE as a fundamental measure of
the imaging properties of a detector has shown a
steady increase in recent years (Figure 1). The DQE
concept is natural in any situation where the image
quality is dependent on the number of detected
photons. It has been widely used in projection radi-
ography®~", where it is commonly accepted to be
the most important measure of the imaging proper-
ties of a detector, but has also been proposed and
used in CT® and nuclear medicine®. However, the
DQE as a measure of how the imaging systern main-
tains the SNR is general and should be applicable to
any imaging system. Furthermore, it has been
argued that the DQE is a better measure of the res-
olution properties of an imaging system than the
MTE"%. As the sharpness of a digital image can be
altered using image processing, the MTF of the
system does not describe the sharpness in the final
image. As the amount of contrast enhancement that
can be applied is limited by the noise, the DQE
better describes the resolution that can be obtained.

The use of DQE for characterising the imaging
properties of a detector is almost undisputed.
However, it must be remembered that the DQE is
only a descriptor of a single component in the
imaging chain, namely the detector. Firstly, it gives
little information about the final appearance of the
resulting image, which is dependent on, for example,
dose level, image processing and display character-
istics. For example, regarding the importance of
image processing, Sund ef al"" performed a study
in which the DQE of four different digital radio-
graphic systems were compared with the clinical
image quality, determined by letting experienced
radiologists rate their opinion about the quality of
chest radiographs collected with the four systems at
similar dose levels and presented on one and the
same monitor. A low correlation between the DQE
of the system and the radiologists’ impression of the
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Figure 1. The number of published papers per year with
‘DQE’ as a keyword, according to a search in PubMed on
1 November 2009,
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images was found. The major reason for such a
finding is that the human is a limited observer,
meaning that not only the information content in an
image but also the appearance of an image is of
importance. In the study by Sund et al, the differ-
ence in image processing between the systems appar-
ently was of larger importance for the clinical image
quality than the difference in noise level resulting
from the difference in DQE. Secondly, the detection
of pathology may not be mainly hindered by sto-
chastic noise such as quantum noise. For many
detection tasks in radiography, for example, it has
been shown that it is the anatomical back%round
that limits the performance of the observert !'=29,
Thus, the influence of the DQE on the image
quality may be small for many examinations, as the
DQE does not take the anatomical background into
account. This also means that for a given system, the
parameter setting resulting in the highest DQE may
not be the optimal setting of the system. For systems
where the stochastic noise level is higher, such as CT
or gamma camera systems, the importance of the
DQE on the resulting clinical image may be higher,
meaning that the validity in the use of the DQE as a
predictor of the clinical usefulness of a system is
higher, but as long as the anatomy of the patient
itself disturbs the observer, it cannot be taken for
granted that a system with higher DQE results in a
better performance in the clinical task.

In an attempt to take the anatomical background
into account, the concept of a generalised DQE has
been proposed®’. For the generalised DQE, not
only the stochastic noise sources contribute to the
noise power but also the power spectrum of the ana-
tomical background is included. In the same way, as
the conventional DQE is related to an observer for
which the anatomical background has no effect on
detection at all, the generalised DQE is related to an
observer for which the entire anatomical background
acts as random noise. However, as it has been shown
that the extent to which the anatomical background
acts as random noise for a human observer substan-
tially differs between different combinations of type
of pathology and type of background>'®, ranging
from having almost no effect at all to almost com-
pletely acting as random noise, it is not obvious that
the generalised DQE in general actually is more
related to the human observer than is the conven-
tional DQE.

Linear-systems analysis, with emphasis on the
determination of DQE, has mainly been used to
compare the imaging properties of different detec-
tors. However, it has also been proposed as part of
quality assurance programmes to ensure that a
certain level of image quality is maintained®??®, A
substantial amount of effort has been made over the
years to ensure that DQE determinations can be per-
formed in a reliable way. Until recently, evident

deviations between different methods of determining
DQE have been reported, mainly due to differences
in the MTF determination® . However, there now
exist standards for DQE determinations in general
radiography®®, mammography®” as  well as
dynamic imaging®, for which the reliability has
been shown to be high®®. The validity of the above-
mentioned standards in providing accurate data on
the information transfer abilities of the imaging
detector is high, whereas, as discussed above, the val-
idity of using the DQE as a measure of the entire
imaging system is lower.

THE ROSE MODEL AND PIXEL SNR

A common simplistic approach to describe the visi-
bility of an object in an image is to determine the
ratio of the mean signal of the object (the difference
between the average pixel value in the object and the
average pixel value in the background) and the pixel
standard deviation in the background. This SNR,
referred to as pixel SNR, or SNR,, is sometimes
used as a measure of image quality. As will be
described below, the validity of this measure of
image quality is very limited.

Although frequently used for objects of different
size, the SNR, is the special case when the Rose
model® is applied to an object with a size given by
one pixel. The Rose model is an attempt to describe
how the human observer detects a flat-topped sharp-
edged signal of area A in a uniform background
containing uncorrelated Poisson noise. The count
level in the background is (n,) expected number of
photons per unit area, whereas the signal contains
(Ang) extra photons per unit area, resulting in a con-
trast C = (Ang}/(ny) for the object. The Rose model
SNR for such an object is defined as follows®):

SNRRose = C vV A(nb)- (4)

The Rose model has been shown to agree well
with the human observer, given that the Tequire-
ments of the model are fulfilled. Rose aimed to find
a threshold value for the SNRgy for an object to
be visible for a human observer. Commonly, it is
stated that a threshold value of 5 is needed for the
object to be detected. Although the detection of an
object is dependent on the confidence threshold of
the observer, the given threshold value corresponds
well with the typical threshold used by the human
observer. In Figure 2, a number of disc-like objects
of different size and contrast are presented in a
uniform  background containing uncorrelated
Poisson noise. As can be seen, the objects for which
the SNRg,. is above five match closely those that
are detected by the human eye.
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(a) (b) (c)

Figure 2. (a) An image containing 10 x 10 disc-like objects, grouped into columns by increasing size (radius =2, 4,6, ...,

20 pixels) and rows by increasing contrast (C=0.5, 1, 1.5,.

-+, 3 %), embedded in a constant background pixel value of

100. (b) The image in (a) afler an exchange to a uniform background containing uncorrelated noise sampled from a

Poisson distribution with a mean of 100. (c) An image containing the discs in (a) for which the SNRRqse in (b) is 5 or

higher. Note that the discs in (c), predicted by the Rose model to be detectable, correspond well with the discs that
actually are visible in (b).

As described above, the SNR, is related to the
Rose model, being equal to SNRge. when the
object has the size of one pixel and the requirements
of the Rose model are fulfilled. Thus, the SNR,, is a
decent description of the possibility for a human
observer in detecting an object of size one pixel in a
background of uncorrelated Poisson noise. However,
as the SNR, does not take the size of the object into
account, its correlation with the human observer is
in general low. The SNR,, for the objects in each
row in Figure 2b is constant, clearly demonstrating
that SNR,, is not a relevant measure for objects of
different size. Furthermore, the SNR;, is often used
as a measure of image quality when several of the
requirements for the Rose model are not fulfilled.
For example, the SNR, is often determined in
images containing noise other than uncorrelated
Poisson noise. As the human observer is sensitive for
the texture of the noise, the noise description used in
SNR, (the standard deviation of the pixel fluctu-
ations) is overly simplistic. This can be seen in
Figure 3, where the same objects are embedded in
two different backgrounds with different noise
texture, but the same pixel standard deviation of the
noise. Clearly, the objects in Figure 3b are better
visualised than the objects in Figure 3a, although
the SNR;, is the same in the two images. A third fre-
quent misconception relates to the pixel size. Given
the same imaging conditions, the SNR,, is lower in
an image with smaller pixels. Based on this, it is
often stated that it is necessary to use a larger
number of photons for the image if a smaller pixel
size is used in the image. However, the human obser-
ver, usually not interested in single pixel values, inte-
grates information over an area in an image and is
rarely affected by the pixel-to-pixel fluctuations.

(a) (b)

Figure 3. (a) The image in Figure 2b after smoothing with
a 5 x 5 boxear filter. (b) The image in Figure 2a after an
exchange to a unilorm background containing uncorrelated
noise sampled from a Poisson distribution with a2 mean of
2500, resulting in the same pixel standard deviation of the
noise as in (a). The SNR, is equal for all objects in the
same rows in (a) and (b), clearly showing that the SNR,, is
not a relevant measure for objects of different size or noise
with different texture,

Thus, the validity of the statement that smaller
pixels require a higher dose is in general low. A
fourth limitation of the SNR,, is that if the ROI used
to determine the standard deviation is positioned in
a region of the image where non-homogeneous
anatomy is present, the varation in pixel value
related to the anatomy may heavily influence the
measure. The anatomical background rarely affects
the human observer as if it had been pure
noise!>'®)

Thus, the SNR,, is related to an observer that
decides whether a signal is present or not by looking
at the deviation of a single pixel value in the object
from the pixel-to-pixel fluctuations in the
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background, without taking into account the size of
the object, the size of the pixels or the texture of the
noise. Such an observer has very little in common
with the human observer. Consequently, the validity
of using SNR,, as a meaningful measure of image
quality is in general very low and its use should be
avoided in the comparison of different imaging
systems or different image processing techniques etc.
However, as the reliability of the measure in general
is high, it may be suitable for, for example, con-
stancy control, as the purpose of such a programme
is to detect changes over time.

ROC ANALYSIS

The fundamental task for an observer in medical
imaging is to state whether an image belongs to a
healthy patient or whether the patient has a disease.
This has led to the need for characterising the per-
formance of the observer. An intuitive measure of
the quality of the observer might be the number of
correct responses. However, such a measure has a
serious drawback in that it is strongly dependent on
the prevalence of signal (or disease). As an example,
imagine an image data set corresponding to a selec-
tion of patients of which only 1 % suffers from a
specific disease, If the observer in this case would
state that the patient is healthy in all cases, he
would, despite the failure of not detecting a single
pathological case, end up with the impressive
number of 99 % correct responses. Thus, it is easily
understood that a relevant measure needs to be
independent of the prevalence of signal. Sensitivity

Probability

N

X X X X,
Decision axis

(a)

(the probability that a patient with an actua] disease
is determined as having a disease by the observer)
and specificity (the probability that a healthy patient
is determined as being healthy by the observer) are
two common measures that fulfil the requirement of
independence of the prevalence of signal. However,
for a given observer the sensitivity and the specificity
are closely correlated in that an increase in sensi-
tivity, stemming from a change in the decision
threshold in most cases, inevitably results in a
decreasc in specificity. This dependency on decision
threshold leads to difficulties in comparing different
observers.

However, the varying choices of the decision
threshold are the essence of ROC analysis. The
method provides a natural distinction between the
inherent detectability of the signal (or disease) and
the judgement of the observer, reflected in the posi-
tioning of the decision threshold. By deliberately
varying the decision thresholds, the trade-offs
between the true positive fraction (TPF = sensi-
tivity) and the false positive fraction (FPF=1 —
specificity) can be established. In Figure 4a, four
such choices of decision thresholds are shown. (A
confidence scale with five steps leads to four decision
thresholds) In principle, an infinite number of
decision thresholds can be considered, thus generat-
ing a continuous ROC curve with the TPF given as
a function of the FPF (Figure 4b). Such curves
allow one to directly compare the inherent diagnos-
tic capabilities of different diagnostic procedures. A
more accurate procedure will generate a curve closer
to the top left comer than a less accurate one.

0.5
0.8 -
0.7 4
0.6 4

TPF

0.5 1
0.4 4
03
0.2
0.1

0

0 01020304 0506 07 08 09 1
FPF

(b)

Figure 4. (a) Probability distributions (A: no signal present, B: signal present) for a detection task showing four levels of

decision thresholds X, ~X,. Values of X < X; correspond to the first rating category (1), X; < X £ X, to the second (2),

etc. and X > X to the last (5). (b) The resulting ROC curve, giving the TPF as a [unction of the FPE The four operating
points corresponding to the four decision thresholds in (2) are given by the diamonds in (b).
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Curves situated on or near the diagonal represent
totally non-informative procedures, the results of
which are no better than pure guesswork. Thus, an
ROC curve describes all possible compromises
between true positive and false positive decisions
inherent in a diagnostic procedure. Like sensitivity
and specificity, it is independent of the prevalence of
signal (or disease). Furthermore, ROC analysis is
independent of any effect that different decision
thresholds might have on the diagnostic process.

The accuracy index most often used is the area
under the ROC curve, 4,, for which the range of
values is [0.5, 1.0], where 0.5 represents detection
governed by chance only and 1.0 represents perfect
detection. As such, it is a useful quantitative
measure of the performance of the observer. In fact,
the accuracy index A, has a direct relation to statisti-
cal decision theory. It can be shown®™ to be equal
to the proportion of correct choices in two alterna-
tive forced-choice experiments, in which the observer
is presented with two images—one image containing
a signal, the other not-—at the same time, with the
task of deciding which of the two images contains
the signal.

The most complete way of performing an ROC
study comparing different modalities is to let a
number of readers interpret the same cases in all
modalities. Such a study design, commonly referred
to as the multiple-reader multiple-case (MRMC)
study design, is needed to be able to generalise the
conclusions of a study to the population of readers
and cases, but has the inherent property that the
observer data are correlated, which makes the stat-
istical analysis cumbersome. However, a method of
correctly analysing such correlated ROC data has
been described by Dorfman, Berbaum and Metz
(DBM) using a jack-knifing approach®, and the
DBM MRMC ROC methodology is generally con-
sidered the method-of-choice for ROC analysis.

Although ROC analysis is often referred to as the
gold standard of evaluating performance in medical
imaging, there are weaknesses when it is applied to
localisation tasks. For example, if an observer misses
the single true lesion in an image but erroneously
identifies another location as containing a lesion, the
observer makes two mistakes: a false negative
(misses the true lesion) and a false positive (reports a
non-lesion). However, the two mistakes effectively
cancel out each other, and on the case level the
observer is scored with a true positive. In the free-
response paradigm, first being recognised as impor-
tant for medical imaging by Bunch er al®¥, the
analysis is conducted on the lesion level instead of
on the case level, the so-called free-response ROC
(FROC) analysis. The observer marks suspicious
regions in each case, which may be either lesion
localisations (if the mark coincides with a true
lesion, which may be referred to as a true positive

mark) or non-lesion localisations (if the mark does
not coincide with a true lesion, which may be
referred to as a false positive mark) The FROC
curve is a plot of a lesion localisation fraction (the
ratio of the number of lesion localisations and the
number of lesions) versus non-lesion localisation
fraction (the ratio of the number non-lesion localis-
ations and the number of cases) as the threshold
confidence level is varied, and is the FROC counter-
part to the ROC curve in ROC analysis. In the same
way, as ROC analysis had difficulties in correctly
analysing data from an MRMC ROC study prior to
the DBM approach, using the FROC curve for ana-
lysing MRMC FROC studies initially proved to be
difficult. However, this was recently solved with the
jackknife alternative FROC (JAFROC) analysis®®,
which applies to MRMC FROC studies in the same
way as the DBM appliess to MRMC ROC
studies”™®. Solving the problem of correctly analys-
ing the correlated data from an MRMC FROC
study, JAFROC analysis proved to be a valuable
analysis method that has earned great interest®7—49,
A positive side effect of performing the analysis on
the lesion level instead of on the case level is also
the increased statistical power™®.

Due to the scientific soundness, well-established
statistical analysis and close connection to the clini-
cal task, ROC and ROC-rlated methods such as
JAFROC analysis are suitable for large-scale image
quality trials, in order to compare, for example,
different modalities in terms of detectability of
specific pathology. However, although conducting
these types of experiments are the gold standard for
image quality evaluation, concerns have been raised
regarding their clinical relevance. For example, the
observers—although being, for example, experienced
radiologists—may behave differently in the labora-
tory situation resulting from the experiment com-
pared with in the clinical environment“®. Also,
conducting these types of studies may be cumber-
some, since they are based on the establishment of
truth for all cases and normally require a large
number of cases in order to produce statistically sig-
nificant results (meaning that the reliability is rela-
tively low). For these reasons, ROC-related methods
may not be the method of choice for the local
optimisation task at a radiology department where
the infention is to find, for example, the optimal
image processing setting or dose level for a given
examination.

VISUAL GRADING

A different approach to assessing image quality,
involving human observers, is to Iet the observers
rate the visibility of details in an image. Performing
such a study in a controlled scientific manner is
usually termed visual grading. Using visual grading
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of the reproduction of important anatomical struc-
tures in clinical images for evaluating image quality
has become an established method for several
reasons. First of all, the validity of such studies can
be assumed to be high if the anatomical structures
are selected based on their clinical relevance and if
the observers are experienced radiologists. Second,
visual grading methods have in special cases been
shown to agree both with detection studies using
human observers“®*? and with advanced calcu-
lations of the physical image quality®~>. This is
important, and validates in some way the assump-
tion that the possibility to detect pathology corre-
lates to the reproduction of anatomy—the basic idea
of visual grading. Discrepancies between the
methods have been reported®”, but have been
explained with the different tasks for the methods
rather than low validity for visual grading. Third,
visual grading studies are relatively easy to conduct,
especially in comparison with ROC studies, which is
important when optimising equipment at the local
level. How to perform visual grading studies has
been extensively described®*%), and the learning
threshold for conducting such studies is low. Fourth,
the time consumption is moderate, at least for the
observers, which means that it is realistic to believe
that these methods can be implemented at almost
any hospital. The workload on each participating
radiologist is typically in the order of a few hours,
which means that a study is easy to justify from an
economical perspective for the hospital,

Arguments against the use of visual grading are
often presented. Some of these relate to the subjec-
tive nature of the task and state that studies of this
type amount to a ‘beauty-contest’®”, meaning that
they are prone to bias. For example, in a clinical
trial of screen—film combinations in portable chest
radiography where the observers were asked to indi-
cate their preference without any criteria, they
usually chose the modality in use in their depart-
ment at the time®®). However, according to
Kundel®” the images of the highest diagnostic
quality are those that enable the observer ‘to most
accurately report diagnostically relevant structures
and features’. To reduce the risk of bias, an inter-
national group of well-established radiologists and
physicists developed the European quality cri-
teria® =%, which for specific examinations in
general radiography, paediatric radiography and CT
state important anatomical landmarks and their
needed level of reproduction to aid accurate diagno-
sis (see Table 1 for an example of image criteria for
an examination). Letting experienced radiologists
rate the visibility of these landmarks is a study
design closely related to the description of diagnostic
image quality by Kundel.

Visual grading based on the European quality cri-
teria or similar criteria has been used extensively,

Table 1. Image criteria for a posteroanterior (PA) chest
radiograph from European guidelines®®,

Tmage Description

criterion

L Performed at full inspiration (as assessed by
the position of the ribs above the
diaphragm—either 6 anteriorly or 10
posteriorly) and with suspended respiration
Symmetrical reproduction of the thorax as
shown by the central position of the spinous
process between the medial ends of the
clavicles

Medial border of the scapulae to be outside
the lung fields

Reproduction of the whole rib cage above the
diaphragm

Visually sharp reproduction of the vascular
pattern in the whole lung, particularly the
peripheral vessels

Visually sharp reproduction of:

(a) the trachea and proximal bronchi,

(b) the borders of the heart and aorta,

(c) the diaphragm and lateral costo-phrenic
angles

1.1.7 Visualisation of the retrocardiac lung and the
mediastinum
Visualisation of the spine through the heart

shadow

1.1.8

Some criteria depend on correct positioning and
cooperation of the patient, whereas others reflect technical
performance of the imaging system. The latter are suitable
for visual grading studies,

Visualisation: characteristic features are detectable but
details are not fully reproduced; features just visible,

Reproduction: Details of anatomical structures are
visible but not necessarily clearly defined; details emerging,

Visually sharp reproduction: anatomical details are
clearly defined; details clear.

mainly in studies evaluating different settings—such
as dose level, beam quality or image processing—of
a given equipment or comparing different equip-
ments with each other. Visual grading can be per-
formed either by using the image criteria themselves,
and letting the observers state whether they are ful-
filled or not, or by identifying the anatomical struc-
tures that are most relevant to the criteria and
letting the observers rate the visibility of these struc-
tures on a multi-step rating scale. The former is
usually referred to as image criteria scoring and the
resulting proportion of fulfilled criteria (usually aver-
aged over all observers, cases and criteria) is referred
to as an image criteria score (ICS). The latter is
usually referred to as visual grading analysis (VGA)
and can either be performed in a relative manner,
where each image is compared with a reference
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image and the observer states whether the details in
the image are reproduced better or worse than in the
reference image, or in an absolute manner, where the
observer gives a statement about the visibility of
each detail on an absolute scale. For the analysis of
the data collected in a VGA study, numerical values
of the given ratings are often used to calculate a rela-
tive visual grading analysis score (VGAS) or an
absolute VGAS, depending on the type of study, by
averaging the given ratings over all cases, observers
and structures.

The above-mentioned ways of analysing visual
grading data can be questioned in at least two ways.
The first refers to whether a complex phenomenon
such as image quality really can be reduced to a
single number, even if it is based on the visibility of
relevant structures in a clinical image. However,
more details can be obtained from a visual grading
study if the summation over structures/criteria is
omitted and a score is obtained for each structure/
criterion. Since the visibility of different structures is
sensitive to variations in contrast, resolution and
noise in different ways, a separate analysis of each
criterion or structure may reveal information that is
hidden in the total score. The second objection
refers to the way the originally qualitative (ordinal)
scales are attributed quantitative properties®®:¢3%4).
The central limit theorem states that the mean value
of a variable that can take the value of either zero or
unity, such as the ICS, is normally distributed for
large samples®”. However, although the scale steps
used in a VGA study may have been labelled with
numerical values, they still belong to an ordinal
scale. Calculating the mean value of data belonging
to an ordinal scale, as is done for the VGAS, is a
statistically forbidden (or meaningless) operation as
such statistics imply knowledge of more than the
relative rank order of data®®. This has earned some
interest in recent years and attempts to analyse
visual grading data without violating the statistical
limitations of ordinal data have resulted in the devel-
opment of visual grading characteristics (VGC)
analysis®® and visual grading regression (VGR)®?.
Both methods treat the scale steps as ordinal and no
assumptions about the distribution of the data need
to be made. The basic VGC study is an expanded
image criteria scoring study in which the observer
uses a multi-step rating scale to state his opinion
about the fulfilment of an image quality criterion®®,
In this way VGC can be interpreted as a repeated
image criteria scoring, where the observer changes
his threshold for the fulfilment of each criterion in a
similar way as when the scale steps in a ROC study
are used by the observer to state the confidence of
each decision. By plotting the cumulative distri-
butions of the rating data for two compared systems
against each other, a VGC curve is obtained which
gives the ICS for one system (the evaluated system)

as a function of the ICS for another system (the
reference system), The area under the VGC curve
(AUCvqc) can be used as a measure of the differ-
ence in image quality between the two systems,
where an AUCygc of 0.5 indicates an overall equal
image quality for the two systems, an AUCyqe <
0.5 indicates that the image quality is higher for the
reference system and an AUCyge > 0.5 indicates
that the image quality is higher for the evaluated
system. The ordinal data from a conventional absol-
ute VGA study can also be analysed using the VGC
approach. In VGR, ordinal logistic regression is
applied to data from single-image and image-pair
experiments with visual grading scores selected on
an ordinal scale. The approach is applicable for situ-
ations where, for example, the effects of the chojce
of imaging equipment and post-processing method
are to be studied simultaneously, while controlling
for potentially confounding variables such as patient
and observer identity. Hopefully, VGC analysis or
VGR will in the coming years be expanded to enable
MRMC visual grading studies to be accurately ana-
lysed in the same way as the DBM approach solves
MRMC ROC studies and the JAFROC approach
solves MRMC FROC studies.

As described above, the validity of a visnal
grading study is in general accepted to be high, as is
it closely related to the general clinical task in
medical imaging of assessing whether pathology is
present or not in an image; for this task to be ful-
filled it is essential that the anatomy be adequately
reproduced. However, the reliability is in general
relatively low and usually a large number of cases
are needed, as in ROC analysis, However, as visual
grading is commonly based on images of normal
patients, collecting as large a number of cases as
needed is relatively straightforward.

GENERAL DISCUSSION

In the present paper, an attempt has been made to
provide an overview over some common methods for
evaluating imaging systems from an operationalisa-
tion point of view, ic. to discuss the validity and
reliability associated with the methods and hence
their suitability for different practical applications.
There is a danger in mixing the concepts of validity
and reliability in such a way that one is led to
believe that a high reliability implies also a high
validity. The reliability of a measurement can be
very high, but the validity still non-existent if con-
clusions are drawn about a phenomenon the
measure does not describe. This is especially poign-
ant in medical imaging. An example is the use of
LSA to evaluate system performance by describing
the imaging properties of an imaging system through
the use of the quantity DQE. This quantity can be
determined with high reliability and the validity in
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terms of systematic errors is acceptable, as is dis-
cussed above. However, if the results are used to
draw conclusions about phenomena other than that
used as the basis for the original operationalisation,
namely the transfer of SNR, the validity is naturally
immediately reduced. Using the DQE as a measure
of the clinical performance of a system without
establishing the relationship between this quantity
and measures taking into account the complete
imaging chain, involving image processing, display
and the response of the observer, is therefore an
approach with low validity. The DQE should not be
underestimated since the imaging properties of the
detector constitute an important link in the imaging
chain. However, in situations where the clinical
image quality is more affected by disturbing ana-
tomical structure than by quantum noise and system
noise, the DQE is a less important parameter, There
is therefore a risk of overestimating the importance
of the DQE in such a way that it is assumed that a
system with a higher DQE always results in higher
clinical image quality. The validity of the DQE must
be assessed in all clinical situations if it is to be used
as a measure of clinical system performance.

Regarding quantitative measurements in images, it
is the opinion of the author that these should be
restricted to constancy control. In contrast to LSA,
which is mostly used with the intention to describe
the imaging system itself excluding the observer,
measurements in an image are often used as a surro-
gate for human observers, Till date, there does not
exist a model observer that correlates well with the
performance of the human observer over the range
of complex image backgrounds that do exist in
medical images. Especially the frequently used
SNR;, has been shown to have very little in common
with the human observer. Thus, these types of calcu-
lations should be avoided in situations where the
purpose is to compare different types of images.
However, quantitative measurements are useful for
constancy control. The inherent fluctuations in a
human observer usually make the number of obser-
vations needed to achieve reliable results high.
Nevertheless, the combination of a single observer
and a single image is frequently used in quality
assurance programmes when, for example, a medical
physicist tries to determine whether the low-contrast
visibility for given equipment has deteriorated over
time. It has been shown that simple calculations
directly in images have a much better chance of
accurately detecting such a change than human
observers©”:¢®,

To conclude, the inherent fluctuations in a human
observer imply that all methods that involve human
observers have limited reliability, meaning that a
large number of observations are usually needed in
order to obtain reliable results. On the other hand,
as clinical images are evaluated by humans, human

observers are mostly needed to obtain results that
are valid for the entire imaging system. Although a
lot of research over the years has aimed at bridging
the gap between human observers, model observers
and physical measurements, there is still a ot of
work to be done until the goal is reached. Until
then, when trying to evaluate an imaging system, it
may be of value to bear in mind the words on a sign
that Einstein kept on his wall: “Not everything that
counts can be counted; not everything that can be
counted counts’®*,

ACKNOWLEDGEMENTS

The author would like to thank Angelica Svalkvist
and Lars Gunnar Ménsson for their contribution to
the present work.

REFERENCES

1. Cunningham, I. A. dpplied linear-systems theory. In:
Handbook of Medical Imaging. Vol. 1 Physics and
Psychophysics, Beutel, J, Kundel, H. L. and Van
Metter, R. L. Eds (Bellingham: SPIE Press) pp.
79-159 (2000).

2. Dainty, J. C. and Shaw, R. Image Science; Principles,
Analysis and Evaluation of Photographic-Type Tmaging
Processes (London: Academic Press) (1974).

3. Dobbins, J. T. IIL. Image quality metrics for digital
systems. In: Handbook of Medical Imaging. Vol. 1
Physics and Psychophysic, Beutel, J, Kundel, H. L.
and Van Metter, R. L. Eds (Bellingham: SPIE Press)
pp. 161-222 (2000).

4. Tapiovaara, M. J. and Wagner, R. F. SNR and DQE
analysis of broad spectrum x-ray imaging. Phys. Med.
Biol. 30, 519-529 (1985).

5. Dobbins, I T. III, Ergun, D. L., Rutz, L., Hinshaw,
D. A., Blume, H. and Clark, D. C. DQE(Sf) of four
generations of computed radiography acquisition devices.
Med. Phys. 22, 1581-1593 (1995).

6. Granfors, P R. and Aufrichtig, R. Performance of a
41 x 41-cm’ amorphous silicon flat panel x-ray detector
Jor radiographic imaging appplications. Med. Phys. 27,
1324-1331 (2000).

7. Béth, M., Sund, P and Ménsson, L. G. Evaluation of
the imaging properties of two generations of a CCD-
based system for digital chest radiography. Med. Phys.
29, 2286~-2297 (2002),

8. Tward, D. I and Siewerdsen, J. H. Cascaded systems
analysis of the 3D noise transfer characteristics of flat-
panel cone-beam CT. Med. Phys 35, 5510-5529
(2008). |

9. Starck, S.-A., Béth, M. and Carlsson, S. The use af
detective quantum efficiency (DQE) in evaluating the
performance of gamma camera systems. Phys. Med.
Biol. 50, 16011609 (2005).

10. Moy, I. P. Signal-to-noise ratio and spatial resolution in
x-ray electronic imagers: is the MTF a relevant
parameter? Med. Phys. 27, 86-93 (2000).

11. Sund, P, Bith, M., Kheddache, S. and Ménsson, L. G.
Comparison of visual grading analysis and determination
of detective quantum efficiency for evaluating system

34

0102 'Z Jequieydag uo Areiqr ojsQ Jo Alstaaun je Bio sjeuinolpiojxo’pdi (ol papeojumoq



12.

14,

15:

18.

20.

2L

22.

23

24,

25

26.

EVALUATING IMAGING SYSTEMS

performance in digital chest radiography. Eur. Radiol.
14, 48-58 (2004),

Samei, E., Flynn, M. J. and Eyler, W. R. Detection of
subtle lung nodules: relative influence of quantum and
anatomic noise on chest radiographs. Radiology 213,
727-734 (1999).

. Bochud, FE O, Valley, J-F, Verdun, E R., Hessler, C.

and Schnyder, P. Estimation of the noisy component of
anatomical backgrounds. Med. Phys. 26, 1365-1370
(1999).

Burgess, A. E,, Jacobson, FE L. and Judy, P E Human
observer detection experiments with mammograms and
power-law noise. Med. Phys. 28, 419-437 (2001).

Bith, M., Hikansson, M., Borjesson, S., Kheddache,
S., Grahn, A., Ruschin, M., Tingberg, A., Mattsson, S.
and Ménsson, L. G. Nodule detection in digital chest
radiography: introduction to the RADIUS chest trial.
Radiat. Prot. Dosimetry 114, 85-91 (2005).

. Hikansson, M., Bath, M., Bérjesson, S., Kheddache,

S., Flinck, A., Ullman, G. and Ménsson, L. G. Nodule
detection in digital chest radiography: effect of nodule
location. Radiat. Prot. Dosimetry 114, 92-96 (2005).

. Hékansson, M., Bath, M., Bérjesson, S., Kheddache, S.,

Allansdotter Johnsson, A. and Ménsson, L. G. Nodule
detection in digital chest radiography: effect of system
noise. Radiat. Prot. Dosimetry 114, 97— 101 (2005).

Bith, M., Hakansson, M., Bérjesson, S., Kheddache,
S., Grahn, A., Bochud, E O., Verdun, F R. and
Mansson, L. G. Nodule detection in digital chest radi-
ography: part of image background acting as pure noise.
Radiat. Prot. Dosimetry 114, 102—108 (2005).

. Bath, M., Hakansson, M., B6tesson, S., Hoeschen,

C., Tischenko, O., Kheddache, S., Vikgren, J. and
Mansson, L. G. Nodule detection in digital chest radi-
ography: effect of anatomical noise. Radiat. Prot.
Dosimetry 114, 109-113 (2005).

Hiakansson, M., Bath, M., Bérjesson, S., Kheddache,
S., Grahn, A., Ruschin, M., Tingberg, A., Mattsson, S.
and Ménsson, L. G. Nodule detection in digital chest
radiography: summary of the RADIUS chest trial.
Radiat. Prot. Dosimetry 114, 114-120 (2005),

Richard, 8., Siewerdsen, J. H., Jaffray, D. A., Moseley,
D. I and Bakhtiar, B. Generalized DQE analysis of
radiographic and dual-energy imaging using flai panel
detectors. Med. Phys. 32, 1397-1413 (2005).
Cunningham, 1. A. Use of the detective guantum effi-
ciency in a quality assurance program. Proc. SPIE 6913,
p691331 (2007).

Schegerer, A. A., Schlatt, H., Renger, B., Dietz, W,
Brunner, C. and Hoeschen, C. Quality control of CT
system: a new, objective approach. Radiat. Prot. Dosim.
139, 439442 (2010).

Illers, H., Buhr, E., Giinther-Kohfahl, S. and Neitzel,
U. Measurement of the modulation transfer function of
digital X-ray detectors with an opague edge-test device.
Radiat. Prot. Dosimetry 114, 214-219 (2005).

Neitzel, U., Giinther-Kohfahl, S., Borasi, G. and
Samei, E. Determination of the detective quantum effi-
ciency of a digital x-ray detector comparison of three
evaluations using a common image data set. Med. Phys,
31, 2205-2211 (2004).

International Electrotechnical Commission. Medical
electrical equipmeni—characteristics of digital X-ray

217.

28.

29.

30.

31

32.

33.

34.

35,

36.

37

38.

39.

41.

o

35

imaging devices—Part 1: determination of the detective
gquantum efficiency. IEC 62220-1 (Geneva: IEC) (2003).
International Electrotechnical Commission. Medical
electrical equipment—characteristics of digital X-ray
imaging devices—~Part 1-2: determination of the detec-
tive quantum efficiency—detectors used in mammogra-
phy. IEC 62220-1-2 (Geneva: IEC) (2007).

International Electrotechnical Commission. AMedical
electrical equipment—characteristics of digital X-ray
imaging devices—Part 1-3: determination of the detec-
tive quantum efficiency—detectors used in dynamic
imaging. IEC 62220-1-3 (Geneva: IEC) (2008).

Tllers, H., Buhr, H. and Hoeschen, C. Measurement of
the detective quantum efficiency (DQE) of digital Xoray
detectors according to the novel standard IEC 62220-1.
Radiat. Prot. Dosimetry 114, 39—44 (2005).

Rose, A. The sensitivity performance of the hwman eye
on an absolute scale. ]. Opt. Soc. Am. 38, 196-208
(1948).

Burgess, A. E. The Rose model, revisited. 1. Opt. Soc.
Am. A 16, 633646 (1999).

Green, D. M. and Swets, J. A. Signal Detection Theory
And Psychophysics (New York: Wiley) (1966).
Dorfman, D. D., Berbaum, K. S. and Metz, C. E.
ROC characteristic rating analysis: generalization to the
population of readers and patients with the jackknife
method. Invest. Radiol. 27, 723—731 (1992).

Bunch, P C., Hamilton, J. F, Sanderson, G. K. and
Simmons, A. H. A4 free-response approach to the measure-
ment and characterization of radiographic-observer per-
Jormance. J. Appl. Photogr. Eng. 4, 166-171 (1978).
Chakraborty, D. P and Berbaum, K. S. Observer
studies involving detection and localization. modeling,
analysis and validation. Med. Phys. 31, 2313-2330
(2004),

Chakraborty, D. B 4 status report on free-response
analysis. Radiat. Prot. Dosimetry. Epub ahead of print
January 18 doi:10.1093/rpd/ncp305 (2010).

Penedo, M. er al. Free-response receiver operating
characteristic evaluation of lossy JPEG2000 and object-
based set partitioning in hierarchical trees compression
of digitzed mammograms. Radiology 237, 450457
(2005).

Brennan, P. C., McEntee, M., Evanoff, M., Phillips, P,
O’Connor, W. T. and Manning, D. J. Ambient lighting:
effect of illumination on soft-copy viewing of radiographs
of the wrist. Am. ] Roentgenol. 188, W177-W180
(2007).

Ruschin, M. et al. Dose dependence of mass and micro-
calcification detection in digital mammography: free
response  human  observer studies. Med. Phys. 34,
400~407 (2007).

Svahn, T, Hemdal, B., Ruschin, M., Chakraborty,
D. P, Andersson, I, Tingberg, A. and Mattsson, S.
Dose reduction and its influence on diagnostic accuracy
and radiation risk in digital mammography: an observer
study using an anthropomorphic breast phantom.
Br. J. Radiol. 80, 557-562 (2007).

Brennan, P C., Ryan, J, Evanoff, M., Toomey, R.,
O’Beime, A., Manning, D., Chakraborty, D. B and
McEntee, M. The impact of acoustic noise found within
clinical departments on radiology performance. Acad.
Radiol. 15, 472-476 (2008).

0102 'Z Jequisdag uo Areiqr] ojsQ jo Asiaaun Je Bio'sjeuinolpiogxo pdi LWoJj papeojumog]



42.

43,

45.

46.

47.

48.

49.

50.

5k

52

53.

54.

M. BATH

Vikgren, J, Zachrisson, S., Svalkvist, A., Johnsson, A.
A., Boijsen, M., Flinck, A., Kheddache, S. and Bath,
M. Comparison of chest tomosynthesis and chest radi-
ography for detection of pulmonary nodules: human
observer study of clinical cases. Radiology 249,
1034-1041 (2008). )
Zachrisson, §., Vikgren, 1., Svalkvist, A., Johnsson, A.
A., Boisen, M., Flinck, A, Minsson, L. G,
Kheddache, S. and Bith, M. Effect of clinical experi-
ence of chest tomosynthesis on detection pulmonary
nodules. Acta Radiol. 50, 884891 (2009),

. Chakraborty, D. P. Validation and statistical power com-

parison of methods for analyzing free-response observer
performance studies. Acad. Radiol. 15, 1554—1566
(2008).

Gur, D., Bandos, A. 1., Furhman, C. R., Klym, A. H.,
King, JI. L. and Rockette, H. E. The prevalence effect in
a laboratory environment: changing the confidence
ratings. Acad. Radiol. 14, 49-53 (2007).

Sund, P, Herrmann, C., Tingberg, A., Kheddache, S,
Mansson, L. G, Almén, A. and Mattsson, S.
Comparison of two methods for evaluating image
quality of chest radiographs. Proc. SPIE 3981, 251-257
(2000).

Tingberg, A., Herrmann, C., Lanhede, B., Almén, A.,
Besjakov, I, Mattsson, S., Sund, P, Kheddache, S. and
Mansson, L. G. Comparison of two methods Jfor evalu-
ation of the image quality of lumbar spine radiographs.
Radiat. Prot. Dosimetry 90, 165168 (2000).
Sandborg, M., McVey, G., Dance, D. R. and Alm
Carlsson, G. Comparison of model predictions of image
quality with results of clinical trigls in chest and lumbar
Spine screen-film imaging. Radiat. Prot. Dosimetry 90,
173-176 (2000).

Sandborg, M. er al. Demonstration of correlations
between clinical and physical image quality measures in
chest and lumbar spine screen-film radiography.
Br. J. Radiol. 74, 520528 (2001).

Sandborg, M., Tingberg, A., Ullman, G., Darnce,
D. R. and Alm Carlson, G. Comparison of clinical and
Pphysical measures of image quality in chest and pelvis
computed radiography ar different tube voltages. Med.
Phys. 33, 4169-4175 (2006).

Tingberg, A., Bith, M., Hikansson, M., Medin, I,
Besjakov, J, Sandborg, M., Alm-Carlsson, G,
Mattsson, S, and Mansson, L. G. Evaluation of image
quality of lumbar spine images: a comparison between
FFE and VGA. Radiat. Prot. Dosimetry 114, 53-61
(2005).

Ménsson, L.G. Evaluation of radiographic procedures—
investigations  related to chest imaging. Thesis,
Géteborg, Géteborg University (1994).

Ménsson, L. G. Methods for the evaluation of image
quality: a review. Radiat. Prot. Dosimetry 90, 89-99
(2000).

Tingberg, A. Quantifying the quality of medical X-ray
images—an evaluation based on normal anatomy for

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

=)

67.

68.

69.

36

lumbar spine and chest images. Thesis, Lund, Lund
University {2000).
Bith, M. Imaging properiies of digital radiographic
systems—development, application and assessment of
evaluation methods based on linear-systems theory.
Thesis, Géteborg, Géteborg University (2003).
Bith, M. and Ménsson, L. G. Visual grading character-
istics (VGC) analysis: a non-parametric rank-invariant
statistical method for image quality evaluation.
Br. . Radiol. 80, 169-176 (2007).
Chakraborty, D. P. Problems with the differential recei-
ver operating characteristic (DROC) method. Proc.
SPIE 5372, 138~143 (2004).
Vucich, 1., Goodenough, D. J,, Lewicki, A., Briefel, E.
and Weaver, K.E. Use of anatomical criteria in screenf
Jilm selection for portable chest x-ray procedures. In:
Optimization of Chest Radiography. HHS Publication
80-8124. Cameron, J. Ed. (Rockville, MD: FDA) pp.
237-248 (1980).
Kundel, H. L. Images, image quality and observer per-
Jormance. Radiology 132, 265-271 (1979).
Commission of the European Communities. European
guidelines on quality criteria for diagnostic radiographic
images. Report EUR 16260 EN (Luxembourg: Office
for official publications of the European Communities)
(1996).
Commission of the European Communities. European
guidelines on quality criteria for diagnostic radiographic
images in paediatrics, Report EUR 16261 EN
(Luxembourg: Office for official publications of the
European Communities) (1996).
Commission of the European Communities. Eyropean
guidelines on quality criteria for computed tomography.
Report EUR 16262 EN (Luxembourg: Office for official
publications of the European Communities) (1996).
Geijer, H., Verdonck, B., Beckman, K. -W,
Andersson, T and Persliden, J. Digital radiography of
scoliosis with a scanning method: initial evaluation.
Radiology 218, 402-410 (2001).
Smedby, O. and Fredriksson, M. Visual grading
regression—analysing data from visual grading exper-
iments with regression models. Br. J. Radiol. (accepted
for publication 2009) [DOI: 10.1259/bjr/ 35254923]
Altman, D. G. Practical Statistics For Medical
Research (London: Chapman&Hall) (1991).
Stevens, S. 8. On the theory of scales of measurement.
Science 103, 677-680 (1946).
Tapiovaara, M. 1. and Sandborg, M. How should low-
contrast detail detectability be measured in Sluoroscopy?
Med. Phys. 31, 2564-2576 (2004).
Thilander-Klang, A., Ledenius, K., Hansson, J., Sund, P
and Bith, M. Evaluation of subjective assessment of the
low-contrast visibility in constancy control of computed
tomography. Radiat. Prot. Dosim. 139, 449454 (2010).
McKee, M. Not everything that counts can be counted;
not everything that can be counted counts. BMJ 328,
153 (2004).

0102 'Z Jequiaydas uo Aieiqry 0sQ Jo Alisiaaiup Je B10°s[euinolpiogxo pds wouy papeojumog



