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1. Motivation

Motivation

Marshall and Plumb (2008)

- Derivation of the general equation of motion
- Different horizontal wind forms
- General circulation of atmosphere/ ocean



2. Basics

Equations of fluid motions

e Hydrodynamics* focuses on moving liquids and gases.

e Hydrodynamics and thermodynamics are fundamental for meteorology
and oceanography.

e Equations of fluid motions for the atmosphere and ocean are constituted
by macroscopic conservation laws for substances, impulses and internal
energy (hydrodynamics and thermodynamics).

The characteristics of very small volume elements are looked at (e.g.
overall mass, average speed).

Derivation of hydrodynamics is based on the conservation of momentum,
mass and energy.

*hydro (greek): water



2. Basics

State variables for atmosphere and ocean

u Wind u = (u, v, w)
T Temperature
p Pressure

Specifically for the atmosphere:

q Specific humidity
Specifically for the ocean:

S Salinity

inm/s
in° CorK
in N/m?=1 Pa (1 hPa = 102Pa = 1 mbar)

in kg water vapour/kg moist air

in kg salt/kg seawater

(often the salt content is expressed in practical
salinity unit: psu = kg salt/1,000 kg seawater).

9



2. Basics

Differentiation following the motion -

Euler — Lagrange derivatives
Example: wind blows over hill, cloud forms at the _,/«?\

ridge of the lee wave; steady state assumption eq.
cloud does not change in time.

Eulerian derivative (after Euler; 1707-1783):

aC
ot fixed point in space = O'
Leonhard Euler (CH)

Lagrangian derivative (after Lagrange; 1736-1813):

oC C=C(x,yzt): e.g. cloud amount
6t fixed particle + O; %z partial derivatives; other variables

are kept fixed during the differentiation

Joseph-Louis Lagrange (1)

10



2. Basics

Differentiation following the motion -
Euler and Lagrange perspectives

Euler perspective: The control volume is anchored stationary within the coordinate
system, e.g. a cube through which the air or the seawater flows through.

Lagrange perspective: The control volume is an air or seawater parcel that always consists
of the same particles and which moves along with the wind or the current.

Fixed box

Euler in space T
; IA.V T(xpt), u(Xy ) Thwk) uxuty) __,.___,/"\/

Parcel of air/
trajectory

Lagrange Q =Xt v ereeenensnes »Q /

L]
----------
."
.

z
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2. Basics

Euler and Lagrangian differentiation

Think about examples in your everyday life
for Euler's and Lagrange's differentiation.
Discuss in groups of 2 and give one example.

12



2. Basics

Differentiation following the motion
mathematically

For arbitrary small variations:

infinitesimal small size

{6 Greek small delta
6C-—6t+ 5 +—5y+—6z ,

Insert 6x = udt,

aC aC a0C 0C> . 0y =vat,

(SC)fixed particle _ (a ua +v E T+ w 0z 0z = wdt

Dividing by 6t and in limit of small variations:

daC oc ocC DC
(E) fixed particle — E_l_ —+U 5 + Waz ~ Dt

D D _ 8 8 8 o _ 9,
D_t' D—t—a+u5+va+W£:at+u V

Advection term of a quantity: "u -V <...>“ 13



2. Basics

Differentiation following the motion
mathematically

Lagrangian (or material, substantial or total) derivative
(after Lagrange; 1736-1813):

(D) _a+ua+va+wa |
— | : = - - - u = (uv,w) velocity vector
Dt fixed particle ot Ox dy 0z B (i a a) 5 Y |
V= (a’@’z) gradient operator,
called “nabla”

_ 0 _ i
=a+uV (61)

“Time rate of change of some characteristic of a particular element
of fluid, which in general is changing its position.”

Eulerian derivative (after Euler; 1707-1783):

0
gt/ fixed point

“Time rate of change of some characteristic at a fixed point in space
but with constantly changing fluid element because the fluid is moving.” 14



2. Basics

Forward trajectories
started @850 hPa:

- top: between
26.04.-29.04.1986

- bottom: between
30.04.-05.05.1986

4

4

2.5.

1.5.

304.

8.4,

27 4.

294,304,

Differentiation following the motion -
Lagrangian perspective

Example: nuclear reactor
accident Chernobyl on
26.04.1986, 01:30 am

Trajectories (=flight path)
are used for the prediction
of air movement.

Kraus (2004) 15



Where is the missing Malaysian Airline MH370 (8 March 2014)?
Particle locations 16 months before reaching La Réunion

AFRICA

AUSTRALTA

80"E

Area of all 95 percant Surface current, average < Paths of selected Only model panticles eriginating from this
particles of the particles over 16 month: 15 kmjday " model particles region 16 months before were considered

GEOMAR press release from 1. September 2015




2.2 Basics - Mathematical add ons September 13, 2016

2.2 Basics - Mathematical add ons

- Nomenclature
- Vector operations
- Nabla operator

17



2.2 Mathematical add ons

Nomenclature summary

e 6 :Greek small delta, infinitesimal small size,

e.g. 6V:=small air volume.

o %: partial derivative of a quantity with respect to

a coordinate, e.g. x
° % total differential, derivative of a quantity
with respect to all dependent coordinates (x,z,y)

e 5; = % +w'V : Lagrangian (or total) derivative

18



2.2 Mathematical add ons

Vector operations
- Multiplication with a scalar a -

/VX\ /avx\
av=va=av,=va=av, |=|av, .
y wind
\Vz ) \avz y, Q‘x vector
« With a scalar multiplication the vector stays a
vector.
» Each element of a vector is multiplied individually with a
scalar a.

* The vector extends (or shortens) itself by the factor a.
« Convention: With the multiplication scalar — vector we

don’t use a point (like with scalar — scalar).
19



2.2 Mathematical add ons

Vector operations
- Scalar product -

/VX\ /fx\
V-f=f-v=|v, || f, =V, fo v, f v, f = fv =) fv =fy,
V) \ T2

« The scalar product of two vectors is a scalar.
 Itis multiplied component-wise, then added.
« Convention: The scalar product is marked by a multiplication sign (-).

« Itis at a maximum with parallel vectors and disappears when the
vectors are perpendicular to each other.

_hl

\7-1?:\\7”1?‘00305

a)

<
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2.2 Mathematical add ons

Vector operations — vector product

i ] Kk
C=dxb=-bxd=la, a, a|=i(ab,-ab,)+]j(@b —ab,)+k(ab,-ab,)
b, b, b,
a,b, —a,b,
= asz_axbz
a,b, —ab,
c|=|axb|=[alb|sina ¢ LaAC LD N—
Lz
| | -
« The vector product of two vectors is again a vector. o

Gk, N

« Convention: The vector product or cross product is marked by an “x".

« If @ isturnedto b on the fastest route possible, the vector (from the
vector product) points in the direction in which a right-hand screw
would move (right hand rule).

« With parallel vectors, it disappears, and it reaches its maximum when the
two vectors are at right angles to each other!

= b=t
N\

ul
\n\y

|

L\ |
\p\

i
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2.2 Mathematical add ons

Nabla operator — spatial gradient

) = . * Nabla is a (vector) operator that works to
Nabla - Operator V : the right.
/%\ * It only results in a value if it stands left of
v v A | oo an arithmetic expression.
withV =V =0, = &
\agj * If it stands to the right of an arithmetic
: expression, it keeps its operator function

(and “waits” for application).

Graphically:
- Pooling of the spatial gradients towards the spatial coordinate axes - vector
- Gradient points towards the largest increase of the quantity.

- Amount is the magnitude of the derivative pointing towards the largest increase.

22



2.2 Mathematical add ons

Product with a
Scalar, vector

Scalar product “”,

scalar

Vector product “x,

vector

Nabla operator

are
T — _ aT _| o
VT =grad T = =5 [T
0
kﬁz) \E)
" i — A = 0 5U 5V aW
Vii=divus=s| 2|1V |=—+_—+—
; oX oy 0z
— W
) \W)
(ow_ov
(2) (u) [T k gy gvzv
= u
Vxil=roti=|<|x|v|[=|l2 £ < _
oy ox oy o1 5 5
Z)\w) ju v w af/ 56

OX oYy

Unit vectors:
I: X direction
j: y direction
k: z direction

23



2.2 Mathematical add ons

Nabla operator — algorithmes:

Note: Nabla is a (vector) operator, i.e. the sequence must not be changed here!

24

(GT\ /%\ /T%
aT _| @ U " _ 0
= WT—VTiTV— T@
Kaz) \%) \T%)
V-lU=divQ= % Y :8u+8v+8w
o | | oX oy 0oz
\0z/ \ J
-+
/u\ (%\
G-V=|v||2 v iwl
wlle oX oYy Oz
Y/ \az/




2.2 Mathematical add ons

Characteristics of horizontal wind

Divergence Convergence
Y y
| _to 8t e _to
| J | |
| _ } I e I
| | lto i.F X ! : 1to+5t i X
} i b I | i I i
| | - 2
: . |
! | | |
V-u, >0 V-u, <0
ou Jv
\v - =24 =
UH 9z + 9y

25



2.2 Mathematical add ons

Characteristics of horizontal wind

Rotation and vorticity™* a ER—

(*comes from the word “vortex”) wind
Rotation

-+

Rotation of horizontal flow: l I
rotu = V xu \\

N
v




2.2 Basics - Vorticity

Rotation of a vector field
- Vector product of the Nabla operator with a vector -

(ow_ov
) 2 (u) i ] k ga’ gvzv
Vxﬁzrotﬁz%xv =|-Z % 2= _
\%/ KW) u v w @_6_u N
(o3)
Definition vorticity
The rotation of a flow field is constituted by
rotu=V xu The vorticity is a scalar!

The vorticity C is defined as a vertical component of the velocity fields’s rotation.

oV ou
C : Greek ,Zeta" é’:k.vxu:___

OX oYy



2.2 Basics - Vorticity

Relative vorticity (:

Rotation relative to the earth.

Absolute vorticity n:

Sum of relative vorticity
and planetary vorticity.

Vorticity

é’:k-qu:@—a—u

OX oy

( . Zeta

77:4’4- f n : Eta
f : Coriolis parameter

Rotation in an absolute coordinate system oriented towards a fixed star.

Planetary vorticity f:

Contribution of earth rotation.

f=2Qsing

f: Coriolis parameter, @: latitude, Q: angular velocity
Q =2n/24h is the angular velocity of the earth rotation.

Application examples: e.g. vorticity advection in synoptic; strength of a vortex

(e.g. stratospheric polar vortex); stratosphere: vorticity correlates with ozone.

28



2.2 Basics - Vorticity

Vorticity (NH)

Curvature vorticity

(VK;)
L a.)
AN
Tropopause
STJ
— o
Shear vorticity V4 J/E\ >
N
- ——
>0 <0
b)
Surface ——J
X

Examples

STJ: Sub-
tropical Jet

Note: In general, the horizontal wind field contains both the curvature as well
as the shear forces (varying strengths of winds on the verticals).



228sss- oy \NH stratospheric polar vortex
Potential vorticity unit (PVU) at ~20 km altitude

PY@B500K 97010612(+192)

Filament

Stratospheric
polar vortex

Edge of vortex

- High vorticity (PV) in the centre of the polar vortex (low pressure centre).
- Greatest PV gradient at the edge of the polar vortex (= wind maximum).

30



Lecture Outline—Ch. 6

Ch. 6 - The equations of fluid motions
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*Addition, not in book.
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3. Equations of motion - nonrotating fluid

3. Equations of motion - nonrotating fluid

l.  Laws of motion for a fluid parcel in x-,y-,z-
directions (applying Newton’s 1. and 2. law)

II. Conservation of mass

I1l. Law of thermodynamics (including motion)

—5 equations for the evolution of the fluid (5 unknowns:
(u, p, T))

32



3. Equations of motion - nonrotating fluid

Momentum conservation

The conservation of momentum is represented by
Newton’s first law (“Lex prima”):

(momentum = mass - velocity)

momentum = const. at absence of forces

Momentum sentence (“Lex secunda”):

temporal change in momentum = Force

(mass - acceleration = Force)

du

M — = F t: time; M: mass; u: velocity vector F: Force vector

dt -



3. Equations of motion - nonrotating fluid

fluid parcel - cube

f,lx %ﬁx.y %Sy.z 4 ;Bz:|~-_

‘ 1 1 1.}
{x - 8%,y + 5By, 2~ 552

z » -
y /,.
[4’ ( 1e ) R

x X ;-ﬁx.y oY, Z fzhz] |_x&—;-6x.y -;-{‘-y.z %82]

Figure 6.2: An elementary fluid parcel, conveniently chosen to be a
cube of sides dx, , dy, , dz, centered on (x, , v, , z). The parcel is
moving with velocity u.

Marshall and Plumb (2008)
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3. Equations of motion - nonrotating fluid

Forces on a fluid parcel

p o6x 8y 6z l;—ltl =F (Eq.6-2)

A
[ |

Du Ju u ou ou
Dt~ ot t Uox +V6y+waz
du
—E + (u V) u
p: density

(6x, 6y, 8z): fluid parcel with infinitesimal dimensions
6M: mass of the parcel; 6M = p 6x §y 6z

u: parcel velocity

F: net force

1, 1. 1350 u
ZX Y 8y 2+ 58z)

Ix %ax,y : %By,z %Ml/
z .
y
||

1 1 $a)
x \X— g8y - by, z- 33z

/
I\» x

fio s 1 1\
[x + 28,y — 5by, z - 552)

Figure 6.2: An elementary fluid parcel, conveniently chosen to be a
cube of sides dx, , dy, , dz, centered on (x, , v, , z). The parcel is
moving with velocity u.

Marshall and Plumb (2008)
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3. Equations of motion - nonrotating fluid

Gravity

The gravitational force, géM, is
directed downward: CRTEg—— / u

Fgravity= —8pPZ 0x 5}7 6z (Eq.6-3) /
Fgravity:GravitationaIforce (x - Loxy + 1oy, 2z Loz /

M: mass z

. . y 7 _v ‘
g: gravity acceleration, g = const. Q»x (- Zox.y - Loy, z— La2) (e 7 Sy - Bhria—2%0)
E: dep5|ty . . . Figure 6.2: An elementary fluid parcel, conveniently chosen to be a
Z: unit vector in upward direction cube of sides dx, , dy, , dz, centered on (x, , v, , z). The parcel is

moving with velocity u.

Marshall and Plumb (2008)

36



3. Equations of motion - nonrotating fluid

Pressure gradient force

x-component of the pressure force is: x—Loxy - Loy, 2 + Jaz) /

ox
FA)=p-A=p (x- 7{’5% z) 0y 0z pressure force gq—grecsesure
F(B)=p-B=—p (x+=,2) 8y 6z (inward) = (inward)
F.=F(4) + F(B) = /

Apply Taylor expansion (A.2.1) at midpoint of ZIA,V

parcel and neglect small terms (see book): x (x-goxy-gevzogae)  (xe gy geyzo g
ap Figure 6.3: Pressure gradient forces acting on the fluid parcel. The
F =—— 6 X 6 y 8 VA pressure of the surrounding fluid applies a force to the right on face A
X dx and to the left on face B.

Marshall and Plumb (2008)
Apply for all sides (y and z).

37

p: pressure



3. Equations of motion - nonrotating fluid

Pressure gradient force

F = (F,F,F)

pressure

__(9p dp Op
- (ax’ay’az)5x5y52

Ix %hx,y %hy,z : -%EZJ

| f—

[ s 1 B
Ix 20K ¥ 50y, Z 52»2_!

=—UVp 6x 8y 6z (Eq. 6-4)

z
y

(x - 14 1 1) 1, Ta 1.0
X |x-Zdxy- 3y, z - 58z [x + 38x.y - 58y, z - 5oz

Figure 6.3: Pressure gradient forces acting on the fluid parcel. The
pressure of the surrounding fluid applies a force to the right on face A
and to the left on face B.

Marshall and Plumb (2008)

38

p: pressure



3. Equations of motion - nonrotating fluid

Friction force

- Friction force operates on the earth’s surface,
- the greater the surface roughness, the higher the friction force,
- the greater the wind velocity, the higher the friction force,

- friction force takes effect in vertical distances of ¥ 100 m up to
1,000 m (= atmospheric boundary layer Chapter 7).

Ffriction =P F ox 6)’ 0z (Eq 6'5)

F: frictional force per unit mass (see book chapters 7.4.2 and 10.1)
p: density

39



GEF1100—Autumn 2016 15.09.2016

GEF 1100 — Klimasystemet

Chapter 6: The equations :%tm:)s.phere\,Oce%,‘ y

and Climate Dynamics

° e An Introductory Text A
O uia motion PR
»
John Marshall « R. Alan Plumb

Prof. Dr. Kirstin Krtiiger (MetOs, UiO)
Email: kkrueger@geo.uio.no

{49 UiO ¢ University of Oslo 40



Lecture Outline—Ch. 6
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3. Equations of motion - nonrotating fluid

Equations of motion

e All three forces together in Eq. 6-2 gives:
p O0x 0y 0z % =F + F

pressure gravity +F friction

e Re-arranging leads to equation of motion for fluid
parcels:

— + Vp + gZ F (Equation 6-6)

p: density

u: velocity vector

F: Force vector

F: frictional force per unit mass
p: pressure

g: gravity acceleration

Z: unit vector in z-direction



3. Equations of motion - nonrotating fluid

Equations of motion — component form

(Eq. 6-6) in Cartesian coordinates: Y
X
. —+u—+v—+w—+la—p =F, (6-73)
0x oy 0z pox ST X
ov LA o _ _
+ ax+ ay+ aZ+pay —?y (6-7b)
. a—W+ Wy Wy 1P Lo F,  (6-7¢)
0x oy 0z poz 5= ¢
u: zonal velocity
v.meridional velocity
w . vertical velocity
p: density
F: frictional force per unit mass
p: pressure 43

g: gravity acceleration



3. Equations of motion - nonrotating fluid

Hydrostatic balance

- - . . Dw ..
If friction F, and vertical acceleration - are negligible, we

derive from the vertical eq. of motion (6-7c) the hydrostatic
balance (Ch.3, Eq.3-3):

Balance between vertical pressure

ap gradient and gravitational force!
a, ,0 g (Eq' 6-8) “Pressure decreases with height in

0z
proportion to the weight of the
overlying atmosphere.”

Note: This approximation holds for large-scale atmospheric
and oceanic circulation with weak vertical motions.

D Dw ow ow ow ow 44

E:Lagrangian derivative D = T +u Y +v E + WE




4. Conservation of mass

Conservation of mass
— continuity equation

Conserved quantity:
A quantity of which the derivative equals zero.

Conservation of mass for liquids is also called
continuity equation.

45



4. Conservation of mass

Conservation of mass

(x 20X, Y — 2By, Z 4 %&z) oy

gL
382 I

z _, -
y ; /
| 1 | ' 1 1

x {x -;-Sx,y %ﬁy,z 50z {x 4 %Sx,y 79, Z — 2]

i o 1
(x Z0X, Y + zbY, Z

Figure 6.4: The mass of fluid contained in the fixed volume,
pox dy &z, can be changed by fluxes of mass out of and into the
volume, as marked by the arrows.

Marshall and Plumb (2008)
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4. Conservation of mass

Conservation of mass -1

Mass continuity requires:
pU | pu

2 (p 6x 8y 62) =L 5x 8y 62 —T P T
|

{x—2ox.y + 38y.2- 382)| S
= | ¥ 4

= (net mass flux into the volume)

Yy

1 1 1
x |x -2y - Zby,z

X 1 1 1,
thl I:mzhx,y 78,2 -~ 552

Figure 6.4: The mass of fluid contained in the fixed volume,

° Mass ﬂUX in X'direCtion per Unit tlme into the VOlume pox dy oz, can be changed by fluxes of mass out of and into the
1 volume, as marked by the arrows.
[pu] (x —3 Sx,y, z) Sy 6z

« mass flux in x-direction per unit time out of the volume Marshall and Plumb (2008)
1
[pu] (x +2 6x,y, Z) Sy 6z

47



4. Conservation of mass

Conservation of mass -2

net mass flux in x-direction into the volume is then
(employing Taylor expansion A.2.2):

)
—a(pu) dx 8y 6z,

net mass flux in y- and z- direction accordingly (see book).

Net mass flux into the volume:
—V-(pu)6xdydz,

substituting into mass continuity:

2 (p 6x 8y §2) = — V- (pu) 5x 8y 5z

‘//’ /
|x 20X, Y %&y, Z+ —;'ﬁl:' ,// /
pUu u

':x %5x,y~%hy,z %bz] r 4

Y

1. 1 1, 1 1 1,
x 1x-Z8xy 0y, 2 56z [x + zx,y Y, 2 55z

Figure 6.4: The mass of fluid contained in the fixed volume,
pox dy dz, can be changed by fluxes of mass out of and into the
volume, as marked by the arrows.

Marshall and Plumb (2008)

48



4. Conservation of mass

Conservation of mass -3

* |eads to equation of continuity: gyt i) 2
0 pu ‘ ~|pu
=+ V- (pu) =0 (Eq. 6-9), — > P >

, 1
1% 5‘-.“x,y i %&y,z il V4
&

which has the form of conservation law: )
: {x ;isx,y %hy.z ;ﬁzl Ixc;.\x,y %hy,z ;'ﬁzl
Figure 6.4: The mass of fluid contained in the fixed volume,

0 Concentration ,
+ V- ( f lux) = 0. pox dy &z, can be changed by fluxes of mass out of and into the
ot volume, as marked by the arrows.

Marshall and Plumb (2008)

* Using D/Dt (Eq. 6-1) and V - (pu)=pV -u+u-Vp (see A.2.2)
we can rewrite:

L+ pV-u=0 (Eq. 6-10)

49
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4. Conservation of mass

Approximations for continuity equation:
incompressible - compressible flows

e |Incompressible flow (e.g. ocean):

Ju , dv , Oow
V'U—aﬁ‘gﬁ‘g—() (Eq.6-11)

e Compressible flow (e.g. air, p varies)

expressed in pressure coordinate p applying
hydrostatic assumption:

Ju , dv ., Oow
Vp-up —a+5+£— 0 (Eq.6-12)

50



5. Thermodynamic equation

Thermodynamic equation

e Temperature evolution can be derived from first law of
thermodynamics (Ch.4, 4-2):

DQ DT 1 Dp
— = Cp — — — — (Eq. 6-13)
Dt Dt p Dt

e |f the heating rate is zero (ll))—(t2 =0, Ch. 4.3.1) then:

DT 1 Dp The temperature of a parcel will decrease/ increase
— in ascent/ descent with decreasing/increasing pressure.
Dt pc, Dt / g/ gp

—> Introduction of potential temperature 6 (Eq. 4-17)
p

p: density

p: pressure; p,= 1000 hPa
¢, : specific heat at constant pressure K=R/Cp

T: temperature R: gas constant for dry air

Q: heat

DC. diabatic heating rate per unit mass
Dt 51



5. Thermodynamic equation

Thermodynamic equation - potential temperature

e Eqg. 6-13 for potential temperature @ (see book for details):

Do K 22
— = (3) Dt (Eq. 6-14)
Dt D, c,

Note: For adiabatic motions (6Q = 0) 0 is conserved.

Q: heat

DQ . : : .
D—(‘z: diabatic heating rate per unit mass 55
¢, : specific heat at constant pressure

T: temperature



Potential Temperatu re (K)
400 600

13 - 80032
| | I |
30 p— - 24
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2
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1000

|
-
(wny) epninyy

tropopause - 8

' 0

200

220

240 260 280
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February 24, 1999 75°W, 40°N
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Summary 3.-5.)

Summary

—5 equations for the evolution of the fluid (5 unknowns)

ou, 0w 0w ou iy  _ _
Ia.)at+uax+vay+waz+pax =F, (6-73)

v, v, v v 10p )
lb')at+uax+vay+waz+pay =F, (6 7b)

ow ., ow. ow. ow 10, _ _
Ic.)at+uax+vay+I/Vaz+paz+g—fl-"Z (6-7¢)
1) g—’t’ + 7 (pu) =0 (6-9 or 6-11/6-12)
)2 = ¢, = — = 2L (6-13 or 6-14)

Dt Dt p Dt

Restrictions:

- application to average motion is often incorrect i.e. turbulence,
- fixed coordinate system. o4



e Eulerian — Lagrangian derivations/ perspectives.

e Equations of motion on a non-rotating fllL)lid: Pressure gradient
force, gravitational force and friction force act. D—‘: + 5 Vb +gz="F

e 5 equations for the evolution of the fluid with 5 unknowns
(u,v,w,p,T): equations of motion (3), conservation of mass (1),
thermodynamic equation (1)
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Lecture Outline—Ch. 6

Ch. 6 - The equations of fluid motions

1. Motivation

2. Basics
2.1 Lagrange - Euler
2.2*Mathematical add ons, Vorticity

3. Equation of motion for a nonrotating fluid
3.1 Forces
3.2 Equations of motion
3.3 Hydrostatic balance

4. Conversation of mass
5. Thermodynamic equation

6. Equation of motion for a rotating fluid
6.1 Forces
6.2 Equations of motion

7. Take home messages

*Addition, not in book.
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5. Equations of motion - rotating fluid

Forces on rotating sphere

Fictitious forces:

- occur in revolving/accelerating system
(e.g. car in curve)
- occur on the earth’s surface

(Fixed system on earth’s surface forms an accelerated system,
because a circular motion is performed once a day. Movement of
earth around the sun compared to earth’s rotation is insignificant.)

- Coriolis force

- Centrifugal force




3. Equations of motion - nonrotating fluid

Coordinate systems in meteorology

e (Cartesian coordinates (x,y,z)
e Spherical polar coordinates (A,,z)

e Height coordinates:
geometrical altitude (z),

pressure (p) and
potential temperature (0)

Figure 6.19: At latitude ¢ and longitude 4, we define a
local coordinate system such that the three coordinates
in the (x, , y. , z) directions point (eastward, northward,
upward): dx = a cos ¢di ; dy = ady ; dz = dz, where a
is the radius of the Earth. The velocityisu = (u, , v, , W)
in the directions (X, , ¥, , Z). See also Appendix A.2.3.

a : radius; Q (Greek: omega): rotation vector
spherical polar coordinates: @: latitude, A: longitude, z: radial distance



5. Equations of motion - rotating fluid

Inertial - rotating frames

Qxr
/ u, g :, s Uin
3 Jrot
Y
¥ Marshall and Plumb (2008)
Inertial Rotating

Figure 6.9: On the left is the velocity vector of a particle u_ in the
inertial frame. On the right is the view from the rotating frame. The
particle has velocity u_, in the rotating frame. The relation between
u,andu_isu, =u_ +Qxr where Q xris the velocity of a
particle fixed (not moving) in the rotating frame at position vector r.
The relationship between the rate of change of any vector A in the
rotating frame and the change of A as seen in the inertial frame is
given by: (DAIDt),. = (DAIDI),, + Q x A.

1 : position vector; Q (Greek: omega): rotation vector



5. Equations of motion - rotating fluid

Transformation into rotating coordinates

Consider figure 6.9:

()
CD Uy =U,,, +OQXr (Eq. 6-24)
Qxr
T ”//,::}a Yin We set A =r. The transformation rule for D/Dt acting
u” on a vector is given by:
rot
DA) . (DA)
e |—) =|— + OX A Eq. 6-26
(Dt in Dt/ ot ( 9 )

Then we set A— u;, in Eq. 6-26 using 6-24, we derive:

(D_“m)m _ [(E)r()t + Q x] (w,, + QA xr)

Dt Dt
D
= ( “mf) +20Xu,,+OQxXQAX7r (Eq. 6-27)
Dt Jrot
T : position vector Dr
A: any vector (E) t= u,, 60
T0

(): rotation vector



5. Equations of motion - rotating fluid

Rotating equations of motion

Dt J;
equation of motion) we derive in rotating frame, dropping
subscript “rot”:

Substituting (D“in) from Eq. 6-27 into Eq. 6-6 (inertial frame

Du 1 A
E+;|7p+gz—?-" (Eq. 6-6)

u: velocity vector, t: time, p: pressure, g: gravity acceleration,Z: unit vector in z-direction 61
Q: rotation vector, F: frictional force per unit mass



5. Equations of motion - rotating fluid

Coriolis acceleration

TQ NH (viewed from above the Northpole):
Q) > 0: rotation anticlockwise

e ~ SH (viewed from above the Southpole):

P

|"/. /‘1_3-\2‘9% Q < 0: rotation clockwise
L » W

Absence of other forces:

Figure 6.10: A fluid parcel moving with

velocity u_, in a rotating frame experiences a Du
Coriolis acceleration, -2Q x u_, directed “to — =—2Q0 XU Eq.6-31
the right” of u_, if, as here, Q is directed Dt
upwards, corresponding to anticlockwise
rotation. 0 0
Q= (Qy> = <Q coscp) : Angular velocity
Q, Qsin @

Marshall and Plumb (2008)
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5. Equations of motion - rotating fluid

Coriolis force on the sphere — Coriolis parameter

Assuming that 1) ), is negligible as Qu << g; 2) w<<u, leads to:

—20 X u =(—2Qsin@uv, 2Qsinp u,0)  (Eg. 6-41)
=fzXU
Coriolis parameter f:
f =2Qsing (Eg. 6-42)

Note that (1 sin ¢ is the vertical component of the Earths rotation rate;
only component that matters.

TABLE 6.1. Values of the Coriolis parameter, / = 2Qsing (Eq. 6 42), and its
meridional gradient, f = dfldy = 2Q/a cos¢ (Eq. 10-10), tabulated as a function of
latitude. Here Q is the rotation rate of the Earth and ¢ is the radius of the Earth.
Latitude f(x107s™) B(x10™"s™ m")
90° 1.46 0
60° 1.26 1.14
45° 1.03 1.61
0=7.27x105s1 30° 0.73 1.98
a=6.37x 10 m 10° 0.25 2.25
0° 0 2.28

Marshall and Plumb (2008)



5. Equations of motion - rotating fluid

Directional movemen

Aquator 0°

15

W T
SIN L 4 |
4N

Coriolis force

<

N

TS T
e NN

y/aaa

|

30°

——

R

|

In direction of movement,
N

NH:

deflection of air
particles to the right

SH:

Naws
Y/
177"

75*
S

Schematic picture for Coriolis force

— ———

N
_

deflection of air
particles to the left

takes place.

64



Rotation: Cyclonic — Anticyclonic

We call a rotating movement “cyclonic’, if it follows the same rotational
direction as the earth.

As f > 0, in the NH, the rotary movement is:

>0 cyclonic, motion in g
anti-clockwise direction, low pressure

¢ <0 :anticyclonic, motion in 2
clockwise direction > high pressure

What is the rotary motion like in the SH?

In the SH, because of 7< 0, it is exactly the opposite.

¢ . vorticity
f . Coriolis parameter
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Centrifugal force — Centripetal force

* Directed radially outward. Angular velocity Q
* If no other forces are
present the particle

would accelerate outwards. —>» Centrifugal force F¢

Body (mass M
Centre y( )

* Fictitious force, balanced
by Centripetal force

Fc=—Mx(2xr)

Fep=-Fc
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5. Equations of motion - rotating fluid

Rotating equations of motion

Substituting (2

> ) from Eq. 6-27 into Eq. 6-6 (inertial frame
equation of motion ) we derive in rotating frame, dropping
subscript “rot”:

Du

1 .
o +;Vp +gZ—T (Eq. 6-6)

\ J \ J
\ ; ) \ ; ) Y v I

Pressure  Gravi- Coriolis Centrifugal  Friction
gradient tational acceleration acceleration acceleration
accel. accel.

u: velocity vector, t: time, p: pressure, g: gravity acceleration,Z: unit vector in z-direction

67
Q: rotation vector, F: frictional force per unit mass



5. Equations of motion - rotating fluid

Centrifugal acceleration - modified gravitational

potential
Q2%r?
Combine the gradient of Centrifugal potential —QQ X 1 X r = \7( . ) and
Gravitational potential gz = V(gz) in Eq. 6-28:
Du 1
o T VP VP =—20xu+F Eq. 6-29
Y J \ 7 J \ Y J \_'_,
Pressure  Gravitational Coriolis Friction
gradient  +Centrifugal acceleration acceleration
accel. accelerations
Q2%r?
where: @ = gz — Eq. 6-30

@D (Greek “Phi“) is a modified (by centrifugal accelerations)
gravitational potential “measured” in the rotating frame.
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5. Equations of motion - rotating fluid

...on the sphere

Q
‘) e “Shallow atmosphere” approx. (a+z = a):
2 r=(a+z)cose = a cosp, hence Eq. 6-30
£ $ becomes:
g*
o o Q%a®cos?o
= g7 —
‘Pa 5 2

Definition of geopotential surfaces:

Q2%a?cos?¢@

2g

%

Z =Z+

(Eg. 6-40)

Figure 6.18: The centrifugal vector Q x Q x r has magnitude Q?r, directed
outward normal to the rotation axis. Gravity, g, points radially inward to the ~ {=7.27 x10°s™

center of the Earth. Over geological time the surface of the Earth adjusts to  @=6.37x10°m

make itself an equipotential surface—close to a reference ellipsoid—which 3 At the equator z* is (
is always perpendicular the the vector sum of Q x Q x rand g. This vector
sum is “‘measured” gravity: g+ =—-QZz - Q x Q x r.

2 2

Q%a
28 z) 11 km,
higher than at the Pole (z*=2).

Marshall and Plumb (2008) 69



5. Equations of motion - rotating fluid

Equations of motion

= + %Vp+l7<1§ +faxu=7F (Eq 6-43)

e Fluid in a thin spherical shell on a rotating sphere, applying
hydrostatic balance for vertical component and neglecting

F,compared with gravity:

Du , 10p _ _ _
Dt+ > o v =F, (Eq. 6-44)
bv , 10p _
Dt+pay+fu =F,

9

LR g=20
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Eulerian — Lagrangian derivations/ perspectives.

5 equations for the evolution of the fluid with 5 unknowns
(u,v,w,p,T): equations of motion (3), conservation of mass (1),
thermodynamic equation (1)

Equations of motion on a non-rotating f/lL)Iid: Pressure gradient
force, gravitational force and friction force act. D—‘: + > Vb +8z=F

Equations of motion on a rotating fluid: Pressure gradient force,
modified gravitational potential (gravitational and centrifugal force),

Coriolis force and friction force act. l;—l: + %Vp + Vo +fZXu==F

71



