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1 Equations

The motion in the atmosphere and ocean is governed by a set of equa-

tions, known as theNavier-Stokesequations. These equations are used to

produce our forecasts, for the weather and also for ocean currents. While

there are details about these equations which are uncertain (for example,

how we parametrize processes smaller than the grid size of the models),

they are for the most part accepted as fact. Let’s consider how these equa-

tions come about.

1.1 Derivatives

A fundamental aspect is how various fields (temperature, wind, density)

change in time and space. Thus we must first specify how to take deriva-

tives.

Consider a scalar,ψ, which varies in both time and space, i.e.ψ =

ψ(x, y, z, t). This could be the wind speed in the east-west direction, or

the ocean density. By the chain rule, the total change in theψ is:

dψ =
∂

∂t
ψ dt+

∂

∂x
ψ dx+

∂

∂y
ψ dy +

∂

∂z
ψ dz (1)

so:
dψ

dt
=

∂

∂t
ψ + u

∂

∂x
ψ + v

∂

∂y
ψ + w

∂

∂z
ψ (2)

or, in short form:

dψ

dt
=

∂

∂t
ψ + ~u · ∇ψ (3)

Here(u, v, w) are the components of the velocity in the(x, y, z) directions.

On the left side, the derivative is a total derivative. That implies thatψ on
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the left side is only a function of time. This the case whenψ is observed

following the flow. For instance, if you measure temperature in a balloon,

moving with the winds, you only see changes in time. We call this theLa-

grangianformulation. The derivatives on the right side though are partial

derivatives. These are relevant for an observer ata fixed location. This

person records temperature as a function of time, but her information also

depends on her position. An observer at a different location will generally

have a different records (depending on how far away she is). We call the

right side theEulerianformulation.

Exercise 1.1: There are two observers, one at a weather station at a

point x and another passing by in a balloon. The observer at the station

notices that the temperature is falling at rate of 1oC/day, while the balloon-

ist doesn’t observe any change at all. If the balloon is moving east at a

constant rate of 10 m/sec, what can you conclude about the background

temperature field?

1.2 Continuity equation

zδ

yδ

xδxδ

yδ δzρu ρu
xδ
δ ρu yδ δz+ [ ]

x x +   xδ

Figure 1: A infinitesimal element of fluid, with volumeδV .

Consider a box fixed in space, with fluid (either wind or water) flowing
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through it. The flux of density through the left side is:

Fl = ρu × (area) = (ρu) δy δz (4)

Using a Taylor expansion, we can write the flux through the right side as:

Fr = [ρu+
∂

∂x
(ρu)δx] δy δz (5)

If these density fluxes differ, then the box’s mass will change. The net rate

of change in mass is:

∂

∂t
M =

∂

∂t
(ρ δx δy δz) = Fl − Fr

= (ρu) δy δz − [ρu+
∂

∂x
(ρu)δx] δy δz = − ∂

∂x
(ρu)δx δy δz (6)

The volume of the box is constant, so:

∂

∂t
ρ = − ∂

∂x
(ρu) (7)

Taking into account all the other sides of the box we have:

∂ρ

∂t
= − ∂

∂x
(ρu)− ∂

∂y
(ρv)− ∂

∂z
(ρw) = −∇ · (ρ~u) (8)

We can rewrite the RHS as follows:

∇ · (ρ~u) = ρ∇ · ~u+ ~u · ∇ρ (9)

Thus the continuity equation can be written:

∂ρ

∂t
+ ~u · ∇ρ+ ρ(∇ · ~u) = 0 (10)

This is the continuity equation in its Eulerian form. Alternately we can

write:
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dρ

dt
+ ρ(∇ · ~u) = 0 (11)

which is the equation in its Lagrangian form. This says that the density of

a parcel of fluid advected by the flow will change if the flow is divergent,

i.e. if:

∇ · ~u 6= 0 (12)

Exercise 1.2: Derive the continuity equation a different way, by con-

sidering a balloon advected by the flow. The balloon has a fixedmass, i.e.

it contains a fixed number of molecules (of, say, helium). Say the balloon

is cubic, with sidesδx, δy andδz. The balloon’s volume is then:

V = δx δy δz

and its mass isρV . If the mass is conserved following the flow, so is this

quantity:
1

M

d

dt
M = 0 (13)

Use this to re-derive the continuity equation (10). Take the limit asδ → 0.

Again, the density changes in proportion to the velocity divergence; the

divergence determines whether the box shrinks or grows. If the box ex-

pands/shrinks, the density decreases/increases, to preserve the box’s mass.

1.3 Momentum equations

The continuity equation pertains to mass. Now we consider the fluid ve-

locities. We can derive expressions for these from Newton’s second law:

~a = ~F/m (14)
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The forces acting on a fluid parcel (a vanishingly small box) are:

• pressure gradients:1ρ∇p

• gravity: ~g

• friction: ~F

For a parcel with densityρ, we can write:

d

dt
~u = −1

ρ
∇p+ ~g + ~F (15)

This is themomentum equation, written in its Lagrangian form. Under the

influence of the forcing terms, on the RHS, the air parcel will accelerate.

The equation is actually three equations in one, one for each spatial

direction. Gravity, which acts only in the vertical, appears in just one of

the equations. The pressure gradient terms exist in all three (this term

can be derived in a similar way to the continuity equation of the previous

section). Friction too can act in all three directions.

In fact, this is the momentum equation for a non-rotating earth. There

are additional acceleration terms which come about due to rotation. As op-

posed to thereal forces shown in (15), rotation introducesapparentforces.

A stationary parcel on the earth will rotate with the planet. From the per-

spective of an observer in space, that parcel is traveling in circles,complet-

ing a circuit once a day. Since circular motion represents an acceleration

(the velocity is changing direction), there is a corresponding force.

Consider such a stationary parcel, on a rotating sphere, with its position

represented by a vector,~A (Fig. 2). During the time,δt, the vector rotates

through an angle:

δΘ = Ωδt (16)
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δΑδΘ

γ

Ω

γ

Α

Figure 2: The effect of rotation on a vector,A, which is otherwise stationary. The vector
rotates through an angle,δΘ, in a timeδt.

where:

Ω =
2π

86400
sec−1

is the sphere’s rotation rate. The change inA is δA, the arc-length:

δ ~A = | ~A|sin(γ)δΘ = Ω| ~A|sin(γ)δt = (~Ω× ~A) δt (17)

So we can write:

limδ→0
δ ~A

δt
=
d ~A

dt
= ~Ω× ~A (18)

If the vector is not stationary but moving in the rotating frame, one can

show that:

(
d ~A

dt
)F = (

d ~A

dt
)R + ~Ω× ~A (19)

TheF here refers to the fixed frame andR to the rotating one. If~A = ~r,

the position vector, then:

(
d~r

dt
)F ≡ ~uF = ~uR + ~Ω× ~r (20)

So the velocity in the fixed frame is just that in the rotating frame plus the

velocity associated with the rotation.
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Exercise 1.3: Say that a car is driving at 50 km/hr, in Oslo. What is the

car’s speed when viewed from space?

Now consider that~A is velocity in the fixed frame,~uF . Then:

(
d~uF
dt

)F = (
d~uF
dt

)R + ~Ω× ~uF (21)

Substituting in the previous expression foruF , we get:

(
d~uF
dt

)F = (
d

dt
[~uR + ~Ω× ~r])R + ~Ω× [~uR + ~Ω× ~r] (22)

Collecting terms, we get:

(
d~uF
dt

)F = (
d~uR
dt

)R + 2~Ω× ~uR + ~Ω× ~Ω× ~r (23)

We now have two additional terms: theCoriolis andcentrifugalaccelera-

tions. Plugging these into the momentum equation, we obtain:

(
d~uF
dt

)F = (
d~uR
dt

)R + 2~Ω× ~uR + ~Ω× ~Ω× ~r = −1

ρ
∇p+ ~g + ~F (24)

Consider the centrifugal acceleration. This is the negative of the cen-

tripetal acceleration and acts perpendicular to the axis of rotation (Fig. 3).

The force projects onto both the radial and the N-S directions. This sug-

gests that a parcel in the Northern Hemisphere would accelerate upward

and southward. But these accelerations are balanced by gravity, which

acts to pull the parcel toward the centerandnorthward. The latter occurs

because rotation changes the shape of the earth itself, making it ellipsoidal

rather than spherical. The change in shape results in an exact cancellation

of the N-S component of the centrifugal force.

The radial component on the other hand is overcome by gravity. If this

weren’t true, the atmosphere would fly off the earth. So the centrifugal
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g

g

*

Ω

Ω
2
R

R

Figure 3: The centrifugal force and the deformed earth. Hereis g is the gravitational
vector for a spherical earth, andg∗ is that for the actual earth. The latter is anoblate
spheroid.

forcemodifies gravity, reducing it over what it would be if the earth were

stationary. Thus we can absorb the centrifugal force into gravity:

g′ = g − ~Ω× ~Ω× ~r (25)

Exercise 1.4: How much does rotation alter gravity? Figure out how

large the acceleration is at the equator. How large is this compared to

g = 9.8 m/sec2?

The correction is so small in fact that we will ignore it (and drop the

prime on g hereafter). So the momentum equation can be written:

(
d~uR
dt

)R + 2~Ω× ~uR = −1

ρ
∇p+ ~g + ~F (26)

There is only one rotational term to worry about, the Coriolis acceleration.

We’ll say more about this in a minute.

There are three spatial directions and each has a corresponding momen-

tum equation. In what follows, we will assume that we are in a localized
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region of the atmosphere, centered at a latitude,θ. Then we can define

local coordinates (x, y, z) such that:

dx = acos(θ) dφ, dy = a dθ, dz = dR

whereφ is the longitude,a is the earth’s radius andR is the radius. Thusx

is the east-west coordinate,y the north-south coordinate andz the vertical

coordinate. We define the corresponding velocities:

u ≡ dx

dt
, v ≡ dy

dt
, w ≡ dz

dt

The momentum equations will determine the accelerations in (x,y,z).

Ωcosθ
Ω    sinθ

θ

Ω

Figure 4: A region of the atmosphere at latitudeθ. The earth’s rotation vector projects
onto the local latitudinal and radial coordinates.

The Coriolis term (which is a vector itself) projects onto both they and

z directions:

2~Ω× ~u = (0, 2Ωy, 2Ωz)× (u, v, w) =

2Ω(w cosθ − v sinθ, u sinθ,−u cosθ) (27)

Adding terms, we have:1

1If we had used spherical coordinates instead, we would have several additionalcurvatureterms. How-
ever, these terms are generally small at the scales of interest and so are left out here.
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ 2Ωw cosθ − 2Ωv sinθ = −1

ρ

∂p

∂x
+ Fx (28)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2Ωu sinθ = −1

ρ

∂p

∂y
+ Fy (29)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− 2Ωu cosθ = −1

ρ

∂p

∂z
− g + Fz (30)

whereFi is the frictional force acting in thei-direction.

Exercise 1.5: Consider a car again, driving eastward at 50 km/hr in

Oslo. What is the Coriolis acceleration acting on the car? Which direction

is it pointing? And how does it compare to gravity? Now imagine the car

is driving the same speed and direction, but in Wellington, New Zealand.

What is the Coriolis acceleration?

The above is a general result. The Coriolis force acts to the right of the

motion in the Northern Hemisphere and to the left in the Southern Hemi-

sphere. Because it acts perpendicular to the motion, it does no work—that

means it doesn’t change the speed of a parcel, just its direction of motion.

We’ll see that the Coriolis force is one of the dominant terms at weather

scales.

Lastly, there is the friction force,~F . For synoptic scale motions, this

is meant to represent the action of small scale eddies. If, for example,

our weather model has 10 km resolution, the frictional terms represent the

effects of eddies smaller than 10 km on the motion.

We represent the frictional force as the gradient of a “stress tensor”. The

latter represents correlations between the various velocity components of
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the small scale eddies.2 If there are gradients in this stress, the fluid will

accelerate or decelerate. So for example we can write:

du

dt
=

∂

∂x

τxx
ρ

+
∂

∂y

τyx
ρ

+
∂

∂z

τzx
ρ

(31)

whereτzx is the stress component in thex-direction which varies in the

z-direction and so on.

We won’t concern ourselves further with the details about friction, as it

is relatively unimportant at synoptic scales in the atmosphere and ocean.

Where it is significant is in the vertical boundary layers, at the bottom of

the atmosphere and ocean and at the surface of the ocean. We consider

those in sec. (1.11).

The momentum equations are complex andnonlinear, involving prod-

ucts of velocities. As such, they are essentially unsolvable in this form.

However, not all the terms are equally important. To see which ones dom-

inate, wescalethe equations. This means we will estimate the sizes of the

various terms in the equation by using reasonable values for the variables

at the scales we’re interested in.

1.4 Equations of state

In addition to the continuity and the three momentum equations, we have

an “equation of state” which relates the density to the temperature and, for

the ocean, the salinity. In the atmosphere, the density and temperature are

linked via theIdeal Gas Law:

p = ρRT (32)

2The details can be found, for example, in Holton’s book,An Introduction to Dynamic Meteorology.
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whereR = 287 Jkg−1K−1 is the gas constant for dry air. The law is thus

applicable for a dry gas, i.e. one without moisture. But a similar equation

applies in the presence of moisture if one replaces the temperature with the

so-called “virtual temperature”.3

In the ocean, both salinity and temperature affect the density. The de-

pendence is expressed:

ρ = ρ(T, S) = ρc(1− αTT + αSS) + h.o.t. (33)

whereρc is a constant,T andS are the temperature and salinity and where

h.o.t. means “higher order terms”. Increasing the temperature or decreas-

ing the salinity reduces the density (makes lighter water). An important

point is that the temperature and salinity corrections are much less than

one, so that the density is dominated by the first term,ρc, which is con-

stant. We exploit this in section (1.7) in making the so-called Boussinesq

approximation.

1.5 Thermodynamic equation

We require one additional equation for the atmosphere. This is thether-

modynamic energyequation:

cv
dT

dt
+ p

d

dt
(
1

ρ
) = cp

dT

dt
− (

1

ρ
)
dp

dt
= J (34)

This expresses how the fluid responds to heating. The equation derives

from the First Law of Thermodynamics, which states that the heat added

to a volume minus the work done by the volume equals the change in its

internal energy. Herecv andcp are the specific heats at constant volume and
3See, e.g. Holton,An Introduction to Dynamic Meteorology.
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pressure, respectively, andJ represents the heating. So heating changes the

temperature and also the pressure and density of air.

We will find it convenient to use a different, though related, equation

pertaining to thepotential temperature. The potential temperature is de-

fined:

θ = T (
ps
p
)R/cp (35)

This is the temperature a parcel would have if it were movedadiabatically

(with zero heating) to a reference pressure, usually taken to be the pressure

at the earth’s surface. The advantage is that we can write the thermody-

namic energy equation in terms of only one variable:

cp
d(lnθ)

dt
=
J

T
(36)

This relation is simpler than (34) because it doesn’t involve the pressure. It

implies that the potential temperature is conserved on an air parcel if there

is no heating (J = 0), i.e.:
dθ

dt
= 0 (37)

1.6 The Geostrophic Relations

Not all the terms in the horizontal momentum equations are equally im-

portant. To see which ones dominate, we scale the equations. Take the

x-momentum equation, neglecting the frictional term for the moment:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u+ 2Ωw cosθ − 2Ωv sinθ = −1

ρ

∂

∂x
p

U

T

U 2

L

U 2

L

UW

D
2ΩW 2ΩU

△Hp

ρL
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1

2ΩT

U

2ΩL

U

2ΩL

W

2ΩD

W

U
1

△Hp

2ΩρUL

In the second line we havescaledthe equation by assuming typical values

for the variables. In the third line, we have divided through by the scaling

of the second Coriolis acceleration,2ΩU (which we have assumed will be

important). The resulting parameters are alldimensionless, i.e. they have

no units.

To estimate these parameters, we use values typical of weather systems:

U ≈ 10m/sec, 2Ω =
4π

86400 sec
≈ 10−4sec−1,

L ≈ 106m, D ≈ 104m, T = L/U ≈ 105 sec

△HP/ρ ≈ 103m2/sec2, W ≈ 1 cm/sec, (38)

The horizontal scale, 1000 km, is thesynoptic scale. Notice that we assume

the scale is the same in thex andy directions. Similarly we use a single

velocity scale for bothu andv; the vertical velocity though has a different

scale, as vertical motion is much weaker at these horizontal scales.

The time scale, proportional to the length scale divided by the velocity

scale, is theadvectivetime scale. With an advective time scale, we have:

1

2ΩT
=

U

2ΩL
≡ ǫ

So the first term is the same size as the second and third terms. This pa-

rameter is theRossby number. At synoptic scales it is approximately:

U

2ΩL
= 0.1

So the first three terms are smaller than the second Coriolis term.
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However, the other terms are even smaller:

W

2ΩD
= 0.01,

W

U
= .001

and so can be neglected. Lastly, the pressure gradient term scales as:

△pH
2ΩρUL

= 1

and thus is comparable in size to the second Coriolis term.

The scalings given above are applicable to the atmosphere, but using

values relevant to the ocean yields similar results (see problem 1.1). Fur-

thermore, the scaling of they-momentum equation is identical to that of

thex-momentum equation. The dominant balances are thus:

−fv = −1

ρ

∂

∂x
p (39)

fu = −1

ρ

∂

∂y
p (40)

where:

f ≡ 2Ωsinθ

is the vertical component of the Coriolis parameter. These are thegeostrophic

relations, the primary balance in the horizontal direction at synoptic scales.

They imply that if we know the pressure field, we can deduce the veloci-

ties.

Consider the flow in Fig. (5). The pressure is high to the south and

low to the north. In the absence of rotation, this pressure difference would

force the air to move north. But under the geostrophic balance, the air

flows parallel to the pressure contours. Because∂
∂yp < 0, we have that

u > 0 (eastward), from (40). The Coriolis force is acting to the right of

the motion, exactly balancing the pressure gradient force. Furthermore,

because the two forces are balanced, the motion is constant in time.
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Figure 5: The geostrophic balance.

Note thatf = 2Ωsinθ is negativein the southern hemisphere. So the

flow in Fig. (5) would be westward, with the Coriolis force acting to the

left. In addition, the Coriolis force iszero at the equator. In fact, the

geostrophic balance cannot hold there and one must invoke other terms in

the momentum equations.

Exercise 1.6: Scale the x-momentum equation for parameters typical

of the ocean. Assume:

U = 10cm/sec, W = .01cm/sec, L = 100km, D = 5km

Also use the advective time scale,T ∝ L/U and thatsin(θ) ≈ 1. Show

that the geostrophic balance also applies with these scales. Note that I

haven’t given you the pressure scale,△p/ρ. Can you estimate what it is,

given the above scaling? What if it were actually much less than this—

what could you say about the motion?
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Exercise 1.7: Scale the y-momentum equation. Assume:

U = 1m/sec, W = 1cm/sec, L = 100m, D = 0.5km

Also use the advective time scale,T ∝ L/U and thatsin(θ) ≈ 1.

Which are the dominant terms? How big is△p/ρ? Finally, write the

approximate equation.

1.7 The Hydrostatic Balance

Now we scale the vertical momentum equation. For this, we need an es-

timate of the vertical variation in pressure. This is actually different than

the horizontal variation:

△VP/ρ ≈ 105m2/sec2

Thus we have:

∂

∂t
w + u

∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w − 2Ωucosθ = −1

ρ

∂

∂z
p− g (41)

WU

L

UW

L

UW

L

W 2

D
2ΩU

△VP

ρD
g

UW

gL

UW

gL

UW

gL

W 2

gD

2ΩU

g

△VP

gρD
1

10−8 10−8 10−8 10−9 10−4 1 1

Again we have neglected the frictional term, which is small at these scales.

Notice too that we divided through byg, assuming that gravity will be a
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large term. Indeed this is the case, as the gravity and pressure gradient

terms aremuchlarger than any of the others. So the vertical momentum

equation can be replaced by:

∂

∂z
p = −ρg (42)

This is thehydrostaticrelation. This is a tremendous simplification over

the full vertical momentum equation.

However, notice that the hydrostatic balance also applies if there isno

motion at all. If we setu = v = w = 0 in the vertical momentum equation,

we obtain the same balance. In fact, this is where the name comes from—

”hydro” meaning water and “static” meaning not moving. So the balance

may not be that relevant for the dynamic (moving) part of the flow.

But it is. Let’s separate the pressure and density into static and dynamic

components:

p(x, y, z, t) = p0(z) + p′(x, y, z, t)

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t) (43)

The static components are only functions ofz (so that they possess a verti-

cal gradient). The dynamic components are usually much smaller than the

static components, so that:

|p′| ≪ |p0|, |ρ′| ≪ |ρ0|, (44)

Thus we can write:

−1

ρ

∂

∂z
p− g = − 1

ρ0 + ρ′
∂

∂z
(p0 + p′)− g ≈ − 1

ρ0
(1− ρ′

ρ0
)
∂

∂z
(p0 + p′)− g

≈ − 1

ρ0

∂

∂z
p′ + (

ρ′

ρ20
)
∂

∂z
p0 = − 1

ρ0

∂

∂z
p′ − ρ′

ρ0
g (45)
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Note we neglect terms proportional to the product of the dynamical vari-

ables, likep′ρ′.

How do we scale these dynamical pressure terms? Measurements sug-

gest the vertical variation ofp′ is comparable to the horizontal variation:

1

ρ0

∂

∂z
p′ ∝ △HP

ρ0D
≈ 10−1m/sec2 .

The perturbation density,ρ′, is roughly1/100 as large as the static density,

so:
ρ′

ρ0
g ≈ 10−1m/sec2 .

To scale these, we again divide byg, so that both terms are of order10−2.

Thus while they are smaller than the static terms, they are stilltwo orders

of magnitude largerthan the next largest term in (41). The approximate

vertical momentum equation is still the hydrostatic balance, except now

with the perturbation pressure and density:

∂

∂z
p′ = −ρ′g (46)

The hydrostatic approximation is so good that it is used in most numer-

ical models instead of the full vertical momentum equation. Models which

use the latter are rarer and are called “non-hydrostatic” models.

While the values given above are for the atmosphere, a scaling using

oceanic values produces the same result. The hydrostatic balance is an

excellent approximation, in either system.

Exercise 1.8: The surface pressure in the atmosphere is due to the

weight of all the air in the atmospheric column above the surface. Use the

hydrostatic relation to estimate how large the surface pressure is. Assume

that the atmospheric density decays exponentially with height:
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ρ(z) = ρ0 exp(−z/H)

whereρ0 = 1.2 kg/m3 and the scale height,H = 8.6 km. Assume too that

the pressure atz = ∞ is zero.

1.8 Approximations

We have greatly simplified the equations of motion. Instead of eight terms,

the approximatex-momentum equation has only two terms. But the geostrophic

relations are neverthelessnonlinear, because the pressure gradient term in-

volves a product with the density. But we can employ a few more approx-

imations which will allow us to further simplify the equations.

1.8.1 Theβ-plane approximation

After scaling, we see that the horizontal component of the Coriolis term,

2Ωcosθ, vanishes from the momentum equations. The term which remains

is the vertical component,2Ωsinθ. We will call thisf . However, while all

the other terms in the momentum equations are in Cartesian coordinates,f

is a function of latitude.

To remedy this, we focus on a limited range of latitudes. We can Taylor-

expandf about the central latitude,θ0:

f(θ) = f(θ0) +
df

dθ
(θ0) (θ − θ0) +

1

2

d2f

dθ2
(θ0) (θ − θ0)

2 + ... (47)

We will neglect the higher order terms, so that:

f ≈ f(θ0) +
df

dθ
(θ0) (θ − θ0) ≡ f0 + βy (48)

where:

f0 = 2Ωsin(θ0)
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β =
1

a

df

dθ
(θ0) =

2Ω

a
cos(θ0)

and

y = a(θ − θ0)

Herea is the radius of the earth. We call (48) theβ-plane approximation.

Noticef is only a function ofy; it varies only in the North-South direction.

In order for the Taylor expansion to hold, the beta term must be much

smaller thanf0, which implies:

βL

f0
≪ 1

This constrains the latitude range,L, since:

L≪ f0
β

=
2Ωsin(θ)

2Ωcos(θ)/a
= a tan(θ0) ≈ a (49)

SoL must be smaller than the earth’s radius, which is roughly6400 km.

We can take advantage of the smallβ term in the geostrophic relations.

Specifically, we replacef with f0 and write:

vg =
1

ρf0

∂p

∂x
(50)

ug = − 1

ρf0

∂p

∂y
(51)

Despite this simplication though, the geostrophic relations remain non-

linear, because density is a variable. We remedy that in the following two

sections.

1.8.2 The Boussinesq approximation

In the atmosphere, the background densityρ0 varies significantly with

height. In the ocean however, the density barely changes at all. This allows
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us to make theBoussinesqapproximation. In this, we take the density to

be constant except in the “buoyancy term” on the RHS of the hydrostatic

relation in (46).

Making this approximation, the geostrophic relations become:

vg =
1

ρcf0

∂

∂x
p (52)

ug = − 1

ρcf0

∂

∂y
p (53)

whereρc is the constant density term in (33). Now the terms on the RHS

are linear.

This simplification has an important effect because it makes the geostrophic

velocitieshorizontally non-divergent. In particular:

∂

∂x
ug +

∂

∂y
vg = − 1

ρcf0

∂2p

∂y∂x
+

1

ρcf0

∂2p

∂x∂y
= 0 (54)

We’ll exploit this later on. The non-divergence comes about because the

geostrophic velocities, which are horizontal, are much greater than the ver-

tical velocities.

Under the Boussinesq approximation, the continuity equation is also

much simpler. If we setρ0 = ρc in (10), we obtain:

∇ · ~u = 0 (55)

So the total velocities are non-divergent, i.e. the flow isincompressible.

This assumption is frequently made in oceanography.

It may seem odd that the geostrophic velocities are horizontally non-

divergent and that at the same time the total velocities are non-divergent.

That would apparently imply that the vertical velocities don’t vary with

z(!) But in fact, these two facts can be made consistent with each other,

while still allowing the vertical velocities to vary. We’ll see this later on,

when we consider “ageostrophic” velocities.
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1.8.3 Pressure coordinates

We cannot responsibly use the Boussinesq approximation with the atmo-

sphere, except possibly in the planetary boundary layer (this is often done,

for example, when considering the surface boundary layers, as in sec.

1.11). But it is possible to achieve the same simplifications if we change

the vertical coordinate to pressure instead of height.

We do this by exploiting the hydrostatic balance. Consider a pressure

surface in two dimensions,(x, z). Applying the chain rule, we have:

△p(x, z) = ∂p

∂x
△ x+

∂p

∂z
△ z = 0 (56)

on the surface. Substituting the hydrostatic relation, we get:

∂p

∂x
△ x− ρg△ z = 0 (57)

so that:
∂p

∂x
|z = ρg

△z
△x |p (58)

The left-hand side is the pressure gradient inx along a surface of constant

height (hence thez subscript). The right-hand side is proportional to the

height gradientalong a surface of constant pressure—i.e. how much the

pressure surface tilts inx. The gradient on the RHS thus has ap subscript,

indicating pressure coordinates.

If we furthermore define thegeopotential:

Φ = gz (59)

then we have:
∂p

∂x
|z = ρ

∂Φ

∂x
|p (60)

This alteration removes the density from momentum equation, because:

−1

ρ
∇p|z → −∇Φ|p
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So the geostrophic balance in pressure coordinates is simply:

vg =
1

f0

∂

∂x
Φ (61)

ug = − 1

f0

∂

∂y
Φ (62)

As with the Boussinesq approximation, the terms on the RHS are linear.

So in pressure coordinates too, the horizontal velocities are horizontally

non-divergent.

In addition, the change to pressure coordinates simplifies the continu-

ity equation. We could show this by applying a coordinate transformation

directly to (10), but it is even simpler to do it as follows. Consider a La-

grangian box (filled with a fixed number of molecules). The box has a

volume:

δV = δx δy δz = −δx δy δp
ρg

(63)

after substituting from the hydrostatic balance. The mass of the box is:

δM = ρ δV = −1

g
δx δy δp

Since the number of molecules is fixed, the box’s mass is also fixed. Con-

servation of mass implies:

1

δM

d

dt
δM =

−g
δxδyδp

d

dt
(−δxδyδp

g
) = 0 (64)

Rearranging:

1

δx
δ(
dx

dt
) +

1

δy
δ(
dy

dt
) +

1

δp
δ(
dp

dt
) = 0 (65)

If we let δ → 0, we get:

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0 (66)
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whereω (called “omega” in meteorology) is the velocity perpendicular to

the pressure surface (likew is perpendicular to az-surface). As with the

Boussinesq approximation, the flow is incompressible in pressure coordi-

nates.

The hydrostatic equation also takes a different form under pressure co-

ordinates. It can be written:

dΦ

dp
= −RT

p
(67)

after invoking the Ideal Gas Law.

Pressure coordinates simplifies the equations considerably, but they are

nonetheless awkward to work with in theoretical models. The lower bound-

ary in the atmosphere (the earth’s surface) is most naturally representedin

z-coordinates, e.g. asz = 0. As the pressure varies at the earth surface,

it is less obvious what boundary value to use forp. So we will usez-

coodinates primarily hereafter. But the solutions inp-coordinates are often

very similar.

Exercise 1.9: Derive (67), using the Ideal Gas Law.

1.9 Thermal wind

If we combine the geostrophic and hydrostatic relations, we get the thermal

wind relations. These tell us about the velocity shear. Take, for instance,

thep-derivative of the geostrophic balance forv:

∂vg
∂p

=
1

f0

∂

∂x

∂Φ

∂p
= − R

pf0

∂T

∂x
(68)

after using (67). Note that thep passes through thex-derivative because it

is constant on an isobaric (p) surface, i.e. they are independent variables.
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Likewise:
∂ug
∂p

=
R

pf0

∂T

∂y
(69)

after using the hydrostatic relation (67). Thus the vertical shear is propor-

tional to the lateral gradients in the temperature.

Warm

Cold

u/   zδ δ

Figure 6: The thermal wind shear associated with a temperature gradient in they-
direction.

The thermal wind is parallel to the temperature contours, with the warm

air/light water on the right. To see this, consider Fig. (6). There is a

temperature gradient iny, meaning the thermal wind is oriented in the

x-direction. The temperature is decreasing to the north, so the gradient

is negative. From (69) we have then that∂ug/∂p is also negative. This

implies that∂ug/∂z is positive, because the pressure decreases going up.

So the zonal velocity is increasing going up, i.e. with the warm air to the

right.

Using thermal wind, we can derive the geostrophic velocities on a nearby

pressure surface, if we know the velocities on an adjacent surface and the

temperature in the layer between the two levels. Consider the case shown

in Fig. (7). The geopotential lines for the lower surface of the layer are
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Warm

Cold

Φ1

Φ +   Φ1

T

δ T +     T

Figure 7: Thermal wind between two layers (1 and 2). The geopotential height contours
for the lower layer,Φ1, are the dashed lines and the temperature contours are the solid
lines.

indicated by dashed lines. The wind at this level is parallel to these lines,

with the larger values ofΦ1 to the right. The temperature contours are

the solid lines, with the temperature increasing to the right. The thermal

wind vector is parallel to these contours, with the larger temperatures on

the right. We add the vectorsv1 andvT to obtain the vectorv2, which is the

wind at the upper surface. This is to the northwest, advecting the warm air

towards the cold.

Notice that the wind vector turns clockwise with height. This is called

veeringand is typical of warm advection. Cold advection produces counter-

clockwise turning, calledbacking.

Thus the geostrophic wind is parallel to the geopotential contours with
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larger values to the right of the wind (in the Northern Hemisphere). The

thermal wind on the other hand is parallel to the mean temperature con-

tours, with larger values to the right. Recall though that the thermal wind

is not an actual wind, but thedifferencebetween the lower and upper level

winds.

The thermal wind relations for the ocean derive from takingz-derivatives

of the Boussinesq geostrophic relations (52-53), and then invoking the hy-

drostatic relation. The result is:

∂vg
∂z

= − g

ρcf0

∂ρ

∂x
(70)

∂ug
∂z

=
g

ρcf0

∂ρ

∂y
(71)

Thus the shear in the ocean depends on lateral gradients indensity, which

can result from changes in either temperature or salinity.

Relations (70) and (71) are routinely used to estimate ocean currents

from density measurement made from ships. Ships collecthydrographic

measurements of temperature and salinity, and these are then used to de-

termineρ(x, y, z, t), from the equation of state (33). Then the thermal

wind relations are integrated upward from chosen level to determine(u, v)

above the level, for example:

ug(x, y, z)− ug(x, y, z0) =

∫ z

z0

1

ρcf0

∂ρ(x, y, z)

∂y
dz (72)

If (u, v, z0) is set to zero at the lower level, it is known as a “level of no

motion”.

Exercise 1.10: Say the temperature at the South Pole is -20C and it’s

40C at the Equator. Assuming the average wind speed is zero at the Earth’s

surface (1000 hPa), what is the mean zonal speed at 250 hPa at 45S?
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Assume the temperature gradient is constant with latitude and pressure.

Use the thermal wind relations in pressure coordinates and integrate them

with respect to pressure to find the velocity difference between the surface

and 250 hPa.

1.10 The vorticity equation

A central quantity in dynamics is the vorticity, which is the curl of the

velocity:

~ζ ≡ ∇× ~u = (
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
) (73)

The vorticity resembles angular momentum in that it pertains to “spin-

ning” motion. A tornado has significant vorticity, with its strong, counter-

clockwise swirling motion.

The rotation of the earth alters the vorticity because the earth itself is

rotating. As noted in sec. (1.3), the velocity seen by a fixed observer is the

sum of the velocity seen in the rotating frame (earth) and a rotational term:

~uF = ~uR + ~Ω× ~r (74)

As such, the vorticity is altered by the planet’s rotation as well:

~ζa = ∇× (~u+ ~Ω× ~r) = ~ζ + 2~Ω (75)

We call ~ζa the absolute vorticity. It is the sum of therelative vorticity,

~ζ = ∇× ~u, and theplanetary vorticity, 2~Ω.

Because synoptic scale motion is dominated by the horizontal veloci-

ties, the most important component of the vorticity is the vertical compo-

nent:

ζa · k̂ = (
∂

∂x
v − ∂

∂y
u) + 2Ωsin(θ) ≡ ζ + f (76)
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This is the only component we will be considering.

We can derive an equation forζ directly from the horizontal momentum

equations. For this, we use the approximate equations that we obtained af-

ter scaling, retaining the terms to order Rossby number—the geostrophic

terms, plus the time derivative and advective terms. We will use the Boussi-

nesq equations; the same equation obtains if one uses pressure coordinates.

The equations are:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u− fv = − 1

ρc

∂

∂x
p (77)

∂

∂t
v + u

∂

∂x
v + v

∂

∂y
v + fu = − 1

ρc

∂

∂y
p (78)

where

f = f0 + βy

To obtain the vorticity equation, wecross-differentiatethe equations: we

take thex derivative of the second equation and subtract they derivative

of the first. The result, after some re-arranging, is:

∂

∂t
ζ + u

∂

∂x
ζ + v

∂

∂y
ζ + v

df

dy
+ (ζ + f)(

∂u

∂x
+
∂v

∂y
) = 0 (79)

or, alternately:

dH
dt

(ζ + f) = −(ζ + f)(
∂u

∂x
+
∂v

∂y
) (80)

where:
dH
dt

≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
(81)

is the Lagrangian derivative based on the horizontal velocities. Note that

we can write the equation this way becausef is only a function ofy.
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A useful feature of the vorticity equation is that the pressure term has

dropped out. This follows from the Boussinesq approximation—if we

hadn’t made that, then there would be terms involving derivatives of the

density. Likewise, the geopotential drops out when using pressure coordi-

nates. This is left for an exercise.

The vorticity equation is related to a result known asKelvin’s theorem,

derived in Appendix A. This is of fundamental importance in rotating fluid

dynamics. It concerns how the vorticity and area of a fluid parcel is related

to its latitude.

Exercise 1.11: Derive equation (80). Now derive the equivalent equa-

tion using pressure coordinates instead ofz-coordinates.

1.11 Boundary layers

The vorticity equation (80 applies in the absence of friction, which we’ve

seen is weak at synoptic scales. However, without friction there would be

nothing to remove energy supplied by the sun (to the atmosphere) and by

the winds (to the ocean), and the velocities would accelerate to infinity.

Where frictionis important is in boundary layers at the earth’s surface in

the atmosphere, and at the surface and bottom of the ocean. How do these

layers affect the interior motion?

A central feature of the boundary layer is that the geostrophic balance

is broken by friction. As noted in sec. (1.3), we represent friction as the

gradient of a tensor,τ . A general feature of boundary layers is that the ver-

tical extent is much less than their horizontal; so it will suffice to consider

the vertical derivative of the stress. Thus the geostrophic relations (52) and
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(53) are modified thus:

−f0v = − 1

ρc

∂

∂x
p +

∂

∂z

τx
ρc

(82)

f0u = − 1

ρc

∂

∂y
p +

∂

∂z

τy
ρc

(83)

whereτx andτy are stresses acting in thex andy directions. We can rewrite

these relations thus:

−f0(v − vg) = −f0va =
∂

∂z

τx
ρc

(84)

f0(u− ug) = f0ua =
∂

∂z

τy
ρc

(85)

where (ua, va) are ageostrophic velocities (the departures from pure geostrophic

flow). The ageostrophic velocities in the boundary layer are proportional to

the stresses; if we know the frictional stresses, we can find these velocities.

We are only concerned with how the boundary layer affects the motion

in the interior. To see this, consider the vorticity equation (80). We can

rewrite this as:

(ζ + f)−1 d

dt
(ζ + f) =

d

dt
ln(ζ + f) = −(

∂u

∂x
+
∂v

∂y
) (86)

Using the continuity equation (55), this is:

d

dt
ln(ζ + f) =

∂w

∂z
(87)

To get an indication about how the interior reponds to the boundary layers,

we can integrate this in the vertical, between the upper and lower layers

(lying at z = a andz = b, for example):

∫ b

a

d

dt
ln(ζ + f) dz = w(b)− w(a) (88)

35



This implies that thevertical velocityfrom the boundary layers act to force

the flow in the interior. If there is flow out of the boundary layer, it will

affect the interior flow by generating vorticity.

Consider the boundary layer at the surface of the ocean first. Let’s say

the surface is atz = 0 and the layer extends down toz = −δ. To obtain

w, we will again use the continuity equation (55):

∂

∂z
w = − ∂

∂x
u− ∂

∂y
v = − ∂

∂x
ua −

∂

∂y
va (89)

The horizontal divergence involves only the ageostrophic velocities be-

cause the geostrophic velocities are horizontally non-divergent. Integrat-

ing this over the layer yields:

w(0)− w(−δ) = −
∫ 0

−δ

(
∂

∂x
ua +

∂

∂y
va) dz (90)

Since there is no flow out of the ocean surface, we can writew(0) = 0.

Then we have, at the base of the layer:

w(−δ) = ∂

∂x
Us +

∂

∂y
Vs (91)

where(Us, Vs) are the horizontaltransportsin the surface layer:

Us ≡
∫ 0

−δ

ua dz, Vs ≡
∫ 0

−δ

va dz (92)

We obtain these by integrating (84) and (85) vertically.

The stress at the surface (z = 0) is due to the wind:

~τw = (τwx , τ
w
y )

The stress at the base of the Ekman layer is zero—because the stress only

acts in the layer itself. So we obtain:

Us =
τwy
ρcf0

, Vs = − τwx
ρcf0
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Thus the transport in the layer is90 degrees to the right of the wind

stress. If the wind is blowing to the north, the transport is to the east. This

is Ekman’s (1905) famous result. Nansen had noticed that icebergs don’t

move downwind, but drift to the right of the wind. This simple model

explains why this happens.

To get the vertical velocity, we take the divergence of these transports:

w(δ) =
∂

∂x

τwy
ρcf0

+
∂

∂y
(− τwx
ρcf0

) =
1

ρcf0
k̂ · ∇ × ~τw (93)

So the vertical velocity isproportional to the curl of the wind stress. It is

the curl, not the stress itself, which is most important for the interior flow

in the ocean at synoptic scales.

Notice we made no assumptions about the stress in the surface layer

itself to obtain this result. By integrating over the layer, we only need to

know the stress at the surface. So the result (93) isindependentof the

stress distribution,τ(z)/ρc, in the layer.

Then there is the bottom boundary layer, which exists in both the ocean

and atmosphere. Let’s assume the bottom is flat and that the Ekman layer

goes fromz = 0 to z = δ. The integral of the continuity equation is:

w(δ)− w(0) = w(δ) = −(
∂

∂x
UB +

∂

∂y
VB) (94)

where nowUB, VB are the integrated (ageostrophic) transports in the bot-

tom layer. Note that the vertical velocity vanishes at thetop of the layer

this time. Again we integrate (84) and (85) to find the transports. How-

ever, we don’t know the stress at the bottom. All we know is that the

bottom boundary isn’t moving.

The formal way to proceed is to solve for the velocities in the layer.

This is what Ekman (1905) did, assuming a simplified representation of
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the vertical mixing. In fact, you get the same result if you assume that the

bottom stress is simply proportional to the interior flow. So we will present

the simpler solution here and leave the full solution for Appendix B.

The interior flow is nearly geostrophic, so we take that to be:

(u, v) = (ug, vg) (95)

We represent the bottom stress as:

~τB = (−Aug,−Avg) (96)

whereA is a constant. The linear (or “Rayleigh”) drag acts to de-accelerate

the velocities. Thus the transports are:

UB =
τy
ρcf0

|δ0 = − A

ρcf0
vg (97)

and:

VB = − τx
ρcf0

|δ0 =
A

ρcf0
ug (98)

The stress vanishes at the top of the layer, at the boundary with the interior.

Thus the vertical velocity from the layer is:

w(δ) = −(
∂

∂x
UB +

∂

∂y
VB) =

A

ρcf0
(
∂vg
∂x

− ∂u

∂y
) =

A

ρcf0
ζg (99)

In other words, the vertical velocity from the bottom Ekman layer ispro-

portional to the relative vorticity in the interior. So there will be strong

vertical motion beneath a strong vortex, like a hurricane.

Notice that the termA/(ρcf0) has units of length (becauseζg has units

of inverse time andw is in m/sec). In the Ekman derivation (Appendix B),

you find that this is proportional to the depth of the boundary layer:
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A

ρcf0
≡ δ

2
(100)

So:

w(δ) =
δ

2
ζg (101)

These two results represent a tremendous simplification. We can in-

clude the boundary layers without actually worrying about what is hap-

pening in the layers themselves. We will see that the bottom layers cause

relative vorticity to decay in time (sec. 2.7), and the stress at the ocean

surface forces the ocean (e.g. sec. 2.9). We can include these two effects

and then neglect explicit friction hereafter.
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2 Barotropic flows

Now we will examine specific solutions to the vorticity equation. In this

chapter we assume the fluid isbarotropic. This implies that there is no

vertical shear in the horizontal velocities. While this may seem like agross

over-simplification, many of the phenomena seen in the barotropic case

carry over to stratified (baroclinic) flows.

2.1 Vertical shear in a barotropic fluid

The fact that there is no shear follows from the thermal wind relations

(68) and (69). If the temperature is constant on pressure surfaces, so that

T = T (p), then:
∂vg
∂p

=
∂ug
∂p

= 0 (102)

So the geostrophic velocities don’t change with height. The velocities at

the top of the atmosphere are the same as those at the surface.

The corresponding condition in the ocean, from (70- 71), is that the

density is constant onz-surfaces. Thus ifρ = ρ(z), we have:

∂vg
∂z

=
∂ug
∂z

= 0 (103)

Then the currents are the same at the surface and bottom of the ocean.

The lack of vertical shear implies that fluid moves incolumnsin baro-

tropic flows. Parcels which are vertically aligned stay aligned. This sim-

plification greatly simplifies the solutions, because the motion is really two

dimensional rather than three dimensional.
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2.2 Barotropic PV equation

Now we will derive the equation of motion for barotropic flows. This

comes from the quasi-horizontal vorticity equation given in (80):

dH
dt

(ζ + f) = −(f + ζ)(
∂

∂x
u+

∂

∂y
v) = (f + ζ)

∂

∂z
w (104)

after invoking the incompressibility condition (55) again. Note that this

involves three unknowns,u, v andw.

Assume we have a layer of fluid (atmosphere or ocean) which is bounded

by two surfaces, the lower one atz0 and the upper atz1. Define the total

depth to beD = z1 − z0. Because the velocities don’t vary with height, it

is simple to integrate (104) in the vertical direction:
∫ z1

z0

dH
dt

(ζ + f) dz = D
dH
dt

(ζ + f) = (f + ζ)[w(z1)− w(z0)] (105)

The terms involvingζ pass through the integrals, since they are indepen-

dent of height.

Three effects can induce vertical motion at the boundaries. If the bound-

ary is irregular (not flat), this will cause fluid parcels to move vertically. For

example, when the wind blows over a mountain range, the parcels must go

up and then come down again. Second, if the boundary moves (like the

ocean surface), this will also yield vertical motion. An friction also can

induce vertical motion, as we have seen with Ekman layers if there is con-

vergence or divergence in the layer. We’ll neglect friction for the moment,

then replace it in section (2.6).

The vertical velocity is actually the Lagrangian derivative of the height:

w =
d

dt
z
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where here,d/dt is the full Lagrangian derivative. If the parcel is confined

to a surface, say at the bottom, then we’d have:

w =
d

dt
z0(x, y) = u

∂

∂x
z0 + v

∂

∂y
z0

ooo

In the absence of friction, we can write:

w(z1)− w(z0) =
d

dt
(z1 − z0) =

dH
dt
D (106)

The last derivative is a horizontal one becauseD is a function of(x, y, t).

Note that

So the integrated vorticity equation is:

D
dH
dt

(ζ + f) = (f + ζ)
dH
dt
D (107)

which implies:

dH
dt

[
ζ + f

D
] = 0 (108)

Equation (108) expresses theconservation of potential vorticityfor a

barotropic fluid. In the absence of friction, we have that:

ζ + f

D
= const. (109)

on fluid parcels.

Consider the fluid column shown in Fig. (2.2), initially with no vor-

ticity. As it moves to the right, it encounters ridge. Thus the depth,D,

is decreasing. In order for the PV to remain constant, the vorticity must

also decrease, becoming negative in this case. So the column acquires a

clockwise spin when surmounting the ridge.
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The conservation of PV is similar to Kelvin’s theorem (Appendix A).

This is because the volume of the fluid column is conserved, due to incom-

pressibility, which implies the product of the height,D, and the column

area are conserved. So ifD decreases, the column’s area increases, and

Kelvin’s theorem demands that the vorticity decrease to offset that.

Exercise 2.1: Show that (108) follows from (107). Say we have a cy-

clone withζ = f/2 and 2 km high. What is the cyclone’s vorticity if it is

compressed to 1 km over a mountain range? Assume it stays at the same

latitude.

2.2.1 The quasi-geostrophic vorticity equation

The PV equation (108) can be derived directly from theshallow water

equations, which are the equations which govern a constant density fluid

with topography. Interestingly, the shallow water equations apply to flows

with a fully varying Coriolis parameter and steep topography. They are the

equations that we solve for predicting the global tides.

But a significant drawback with equation (108) is that it has two un-

knowns,u andv. So we can’t solve it by itself. In the shallow water con-

text, we have to supplement the equation with an additional one (derived
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from continuity).

But by making several approximations, valid at synoptic scales, we can

obtain an alternate form of the equation which has only one unknown.

This is quasi-geostrophic vorticity equation. The approximations are as

follows:

• The Rossby number is small

• |βy| ≪ f0

• The bottom topography is weak

Consider the first condition. From sec. (1.6) we know that when the

Rossby number,ǫ, is small, the horizontal velocities are approximately in

geostrophic balance. So if:

~u = ~ug + ~ua (110)

where~ua is the ageostrophic velocity, then:

|~ua|
|~ug|

∝ ǫ

Likewise, the vorticity is much less thanf0, because:

|ζ|
f0

∝ U

f0L
= ǫ

To satisfy the second condition, we assume:

|βy|
|f0|

∝ ǫ

Of course we could demand that theβ term be even smaller, but assuming

a Rossby number scaling will preserve the variation off .

Lastly, there is the condition on the bottom topography. Assume we can

write the depth as:

D = D0 − h(x, y)
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HereD0 is a constant reference depth (like 5 km for the interior ocean).

Then, to satisfy the last condition above, we assume:

|h|
D0

∝ ǫ

So the bottom variations are small compared to the reference depth. We

don’t allow for mountains which project upward through the entire fluid.

The tallest ones can only extend to say 10 % of the total depth (Fig. 8).

D

h

0

Figure 8: The geometry of our fluid layer. The topographic height,h, is much less than
the depth of the layer.

We now use these assumptions to write a simpler version of the vorticity

equation. First, we replace the horizontal velocities with their geostrophic

equivalents in the Lagrangian derivative:

dH
dt

→ dg
dt

≡ ∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
(111)

Similarly, we replace the vorticity with its geostrophic version:

ζ → ζg =
∂

∂x
vg −

∂

∂y
ug (112)

So the PV equation is:

dH
dt

ζ + f

D
=
dg
dt

ζg + f0 + βy

D0 − h
= 0 (113)
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Using our three assumptions, we can simplify the PV as follows:

ζg + f0 + βy

D0 − h
=

f0
D0

(
1 + ζg/f0 + βy/f0

1− h/D0
) (114)

≈ f0
D0

(1 +
ζg
f0

+
βy

f0
)(1 +

h

D0
) (115)

≈ f0
D0

+
ζg
D0

+
βy

D0
+
f0h

D2
0

(116)

Each of the last three terms are of order Rossby number compared to the

first term. Moreover, the terms which we’ve dropped involve theprod-

uctsof the small terms and are hence of order Rossby number squared.

Substituting this into (113) yields:

dg
dt
(ζg + βy +

f0
D0

h) = 0 (117)

after multiplying through by the constant,D0, and dropping the constant

f0/D0 (which has zero derivative). This the quasi-geostrophic PV equation

without forcing or friction.

The great advantage of this is that it has only one unknown: the pres-

sure. From the geostrophic relations, we have:

ug = − 1

ρcf0

∂

∂y
p , vg =

1

ρcf0

∂

∂x
p (118)

The relative vorticity can also be expressed solely in terms of the pressure:

ζg =
∂

∂x
v − ∂

∂y
u =

1

ρcf0
∇2p (119)

We can simplify this somewhat by defining astreamfunction:

ψ =
p

ρcf0
(120)

Then we have:

u = − ∂

∂y
ψ, v =

∂

∂x
ψ, ζg = ∇2ψ (121)

Using these, the vorticity equation is:

46



(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)(∇2ψ + βy +

f0
D0

h) = (122)

(
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
)(∇2ψ + βy +

f0
D0

h) = 0 (123)

Exercise 2.2: Use scaling to figure out how big the ageostrophic veloc-

ities typically are. Usez-coordinates and assume the Boussinesq approxi-

mation. First show the horizontal divergence of the ageostrophic velocities

is the same size as the vertical derivative of the vertical velocity. Then

scale the result. Use typical oceanic values forW , L andD (see exercise

1.6). Does the result make sense with regards to the Rossby number?

Exercise 2.3: Consider a barotropic layer betweenz0 andz1, wherez0

is a flat surface. What happens if the upper surface canmove? Assume

thatz1 = D0 + η(x, y, t). Let the bottom be atz0 = 0. Write the quasi-

geostrophic PV equation for this case.

2.3 Geostrophic contours

The PV equation (122) states that the PV is conserved on fluid parcels,

where the PV is:

q = ∇2ψ + βy +
f0
D0

h

This is a strong constraint. The PV is comprised of a time-varying por-

tion (the vorticity) and a time-independent part (due toβ and the bottom

topography). So we can rewrite equation (122) this way:

dg
dt
∇2ψ + ~ug · ∇qs = 0 (124)
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where the function:

qs ≡ βy +
f0
D0

h

defines thegeostrophic contours, the stationary (unchanging) part of the

potential vorticity.

If a parcel crosses the geostrophic contours, its relative vorticity must

change to conserve the total PV. Consider the example in figure (9). Here

there is no topography, so the contours are just latitude lines (qs = βy).

Northward motion is accompanied by adecreasein relative vorticity: as

y increases,ζg must decrease. If the parcel has zero vorticity initially, it

acquires negative vorticity (clockwise circulation) in the northern hemi-

sphere. Southward motion likewise generates positive vorticity. This is

just Kelvin’s theorem again.

Figure 9: The change in relative vorticity due to northward or southward motion relative
to βy.

Topography generally distorts the geostrophic contours. If it is large

enough, it can overwhelm theβy term locally, even causingclosedcon-

tours (near mountains or basins). But the same principle holds, as shown

in Fig. (10). Motion towards larger values ofqs generates negative vortic-

ity and motion to lower values ofqs generates positive vorticity.
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Figure 10: The change in relative vorticity due to motion across geostrophic contours
with topography.

If the flow is steady, then (166) is just:

~ug · ∇(ζg + qs) = 0 (125)

Thus for a steady flow the geostrophic flow isparallel to the total PV

contours, q = ζg + qs. If the relative vorticity is weak, so thatζg ≪ qs,

then:

~ug · ∇qs = 0 (126)

So the flow follows the geostrophic contours.

Take the case again of no topography. Then:

~ug · ∇βy = βvg = 0 (127)

So the steady flow is purelyzonal. This is because meridional motion

necessarily implies a changing relative vorticity. An example are the Jet

Streams in the atmosphere. These is approximately zonal flows.
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Alternately if the region is small enough so that we can ignore changes

in the Coriolis parameter, then:

~ug · ∇h = 0 (128)

(after dropping the constantf0/D0 factor). Then the flow follows the to-

pographic contours. This is why many major currents in the ocean are

parallel to the isobaths.

Whether such steady flows actually exist depends in addition on the

boundary conditions. The atmosphere is are-entrant domain, so a zonal

wind can simply wrap around the earth (Fig. 11, left). But most ocean

basins have lateral boundaries (continents), and these block the flow. As

such, steady, along-contour flows in a basin can occuronly where topog-

raphy causes the contours to close(Fig. 11, right). This can happen in

basins.

Figure 11: Steady, along-geostrophic contour flow in the atmosphere (left) and in the
ocean (right).

Consider Fig. (12). This is a plot of the mean surface velocities, derived

from surface drifters, in and near the Lofoten Basin off the west coast

of Norway. The strong current on the right hand side is the Norwegian
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Atlantic Current, which flows in from the North Atlantic and proceeds

toward Svalbard. Notice how this follows the continental slope (the steep

topography between the continental shelf and deeper ocean). In the basin

itself, the flow is more variable, but there is a strong, clockwise circulation

in the deepest part of the basin, where the topographic contours are closed.

Thus both closed and open geostrophic contour flows are seen here.

Figure 12: Mean velocities estimated from surface driftersin the Lofoten Basin west of
Norway. The color contours indicate the water depth. Note the strong flow along the
continental margin and the clockwise flow in the center of thebasin, near 2◦ E. From
Koszalka et al. (2010).

If the relative vorticity is not small compared toqs, the flow will devi-

ate from the latter contours. This can be seen for example with the Gulf

Stream, which crosses topographic contours as it leaves the east coast of

the U.S. If the relative vorticity is much stronger thanqs, then we have:

~ug · ∇ζg ≈ 0 (129)

as a condition for a steady flow. Then the flow follows contours of con-
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stant vorticity. An example is flow in a vortex. The vorticity contours are

circular or ellipsoidal and the streamlines have the same shape. The vortex

persists for long times precisely because it is near a steady state.

2.4 Barotropic Rossby waves

2.4.1 Linearization

The barotropic PV equation (122) is still a nonlinear equation, so analytical

solutions are difficult to find. But we can make substantial progress by

linearizingthe equation.

Consider the case with no topography. As we found in the previous

section, the only steady flow we could expect is a zonal one. So we could

write:

u = U + u′, v = v′

Here,U is a constant zonal velocity which is assumed to be much greater

than the primed velocities. In the atmosphere,U would represent the Jet

Stream. BecauseU is constant, the relative vorticity is just:

ζ =
∂

∂x
v′ − ∂

∂y
u′ = ζ ′

We substitute the velocities and vorticity into the PV equation to get:

∂

∂t
ζ ′ + (U + u′)

∂

∂x
ζ ′ + v′

∂

∂y
ζ ′ + βv′ = 0 (130)

Because the primed variables are small, we neglect their products. That

leaves an equation with only linear terms. Written in terms of the stream-

function (and dropping the primes), we have:

(
∂

∂t
+ U

∂

∂x
)∇2ψ + β

∂

∂x
ψ = 0 (131)
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This is thebarotropic Rossby wave equation. Again, this has only one

unknown: the streamfunction,ψ.

2.4.2 Wave solutions

Equation (131) is a first orderwave equation. There are standard methods

to solve such equations. One of the most common is theFourier transform,

in which we write the solution as an infinite series of sinusoidal waves.

Exactly which type of wave one uses depends on the boundary conditions.

To illustrate the method, we assume an infinite plane. Although this is not

very realistic for the atmosphere, the results are very similar to those in a

east-west re-entrant channel.

Thus we will write:

ψ = Re{
∑

k

∑

l

A(k, l)eikx+ily−iωt} (132)

where:

eiθ = cos(θ) + isin(θ) (133)

is a complex number. The amplitude,A, can also be complex, i.e.

A = Ar + iAi (134)

However, since the wavefunction,ψ, is real, we need to take the real part

of the product ofA andeiθ. This is signified by theRe{x} operator.

Now because the Rossby wave equation is linear, we can consider the

solution for asinglewave. This is because with a linear equation, we can

add individual wave solutions together to obtain the full solution. So we

consider the following solution:

ψ = Re{Aeikx+ily−iωt} (135)
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Herek andl arewavenumbersin thex andy directions, andω is the wave

frequency.

Consider the simpler case of a one-dimensional wave (inx), with a unit

amplitude:

ψ = Re{eikx−iωt} = cos(kx− ωt) (136)

The wave has awavelengthof 2π/k. If ω > 0, the wave propagates toward

largerx (Fig. 13). This is because ast increases,−ωt decreases, soxmust

increase to preserve the phase of the wave (the argument of the cosine).

t= π/2ω

2π/kλ=
cos(kx−ωt)

c=ω/k

t=0

π/ωt= 

Figure 13: A one-dimensional wave, propagating toward the right.

In other words, if we define the phase:

θ = kx− ωt

then the position of, say, the wave crest atθ = 2π is:

x(θ = 2π) =
2π

k
+
ω

k
t

Thus, so long asω andk are positive, the crest moves to the right, because

x is increasing. The velocity of the crest is just:

54



c =
ω

k
(137)

This is known as the wave’sphase speed. We often incorporate the phase

speed by writing the wave form thus:

ψ = cos k(x− ct) (138)

Notice thatc has units of length over time, as expected for a velocity.

If the phase speed depends on the wavelength (wavenumber), i.e. ifc =

c(k), we say the wave isdispersive. This is because different size waves

will move at different speeds. Thus a packet of waves, originating from a

localized region, will separate in time. Waves that arenon-dispersivemove

at the same speed regardless of wavelength. A packet of such waves would

move away from their region of origin together.

2.4.3 Rossby wave phase speed

Now we return to the linearized barotropic PV equation (131) and substi-

tute in our general wave solution in (135). We get:

(−iω + ikU)(−k2 − l2)Aeikx+ily−iωt + iβk Aeikx+ily−iωt = 0 (139)

(We will drop theRe{x} operator, but remember that in the end, it is the

real part we’re interested in). Notice that both the wave amplitude and the

exponential term drop out. This is typical of linear wave problems: we get

no information about the amplitude from the equation itself (that requires

specifying initial conditions). Solving forω, we get:

ω = kU − βk

k2 + l2
(140)
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This is theRossby wave dispersion relation. It relates the frequency of

the wave to its wavenumbers. The corresponding phase speed (in thex-

direction) is:

cx =
ω

k
= U − β

k2 + l2
≡ U − β

κ2
(141)

whereκ = (k2 + l2)1/2 is the total wavenumber.

There are a number of interesting features about this. First, the phase

speed depends on the wavenumbers, so the waves are dispersive. The

largest speeds occur whenk andl are small, corresponding to long wave-

lengths. Thus large waves move faster than small waves.

Second, all waves propagatewestwardrelative to the mean velocity,U .

If U = 0, c < 0 for all (k, l). This is a distinctive feature of Rossby waves.

Satellite observations of Rossby waves in the Pacific Ocean show that the

waves, originating off of California and Mexico, sweep westward toward

Asia (as seen hereafter).

The phase speed also has a meridional component, and this can be either

towards the north or south:

cy =
ω

l
=
Uk

l
− βk

l(k2 + l2)
(142)

The sign ofcy thus depends on the signs ofk andl. So Rossby waves can

propagate northwest, southwest or west—but not east.

With a mean flow, the waves can be swept eastward, producing the

appearance of eastward propagation. This happens frequently in the atmo-

sphere, where the mean westerlies advect Rossby waves (pressure systems)

eastward. If

κ > κs ≡ (
β

U
)1/2
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the wave moves eastward. Longer waves move westward, opposite to the

mean flow, and short waves are advected eastward. Ifκ = κs, the wave

is stationaryand the crests don’t move at all—the wave is propagating

west at exactly the same speed that the background flow is going east.

Stationary waves can only occur if the mean flow is eastward, because the

waves propagate westward.

Example: How big is the stationary wave if the mean flow is 20 m/sec

to the east? Assume we are at 45 degrees N and thatk = l.

At 45N:

β =
1

6.3× 106
4π

86400
cos(45) = 1.63× 10−11m−1sec−1

so:

κs =
β

U
= (

1.63× 10−11m−1sec−1

20m/sec
)1/2 = 9.03× 10−7m−1

Assumingλx = λy, we have that:

κs =
2
√
2π

λs

so:

λs = 9.84× 106m ≈ 9000 km

Remember that this is a wavelength, so it includes positive and negative

pressure anomalies. But it still is larger than our typical storm scale of

1000 km.

Exercise 2.4: Bottom topography, like theβ-effect, can support

Rossby-like waves, calledtopographic waves. To see this, use the lin-

earized version of the barotropic PV equation (123) withβ=0 (a constant
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Coriolis parameter). Assume the bottom slopes uniformly to the east:

H = H0 − αx (143)

Derive the phase speed (in they-direction) for the waves, assuming no

background flow (U = V = 0). Which way do the waves propagate,

relative to the shallower water? What ifα < 0? What about in the southern

hemisphere?

Exercise 2.5: We solved the Rossby wave problem on an infinite plane.

Now consider what happens if there are solid walls. Start with the linear

vorticity equation, with no mean flow (U = 0). Assume the variations

in y are weak, so that you can approximate the vorticity by∂
∂xv. For the

boundary conditions, letψ = 0 at x = 0 andx = L—this ensures that

there is no flow into the walls. What are the solutions forω andk?

Hint 1: Assumeψ = A(x)cos(kx− ωt)

Hint 2: Impose the boundary conditions onA.

Hint 3: The coefficients of the sine and cosine terms should both be

zero.

Hint 4: The solutions arequantized(have discrete values).

2.4.4 Westward propagation: mechanism

We have discussed how motion across the mean PV contours,qs, induces

relative vorticity. The same is true with a Rossby wave. Fluid parcels

which are advected north in the wave acquire negative vorticity, while

those advected south acquire positive vorticity (Fig. 14). Thus one can
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y=0

+

−

Figure 14: Relative vorticity induced in a Rossby wave. Fluid advected northwards ac-
quires negative vorticity and fluid advected southwards positive vorticity.

think of a Rossby wave as a string of negative and positive vorticity anoma-

lies (Fig. 15).

Figure 15: The Rossby wave as a string of vorticity anomalies.The cyclone in the right
hand circle advects the negative anomaly to the southwest, while the left cyclone advects
it toward the northwest. The net effect is westward motion.

Now the negative anomalies to the north will act on the positive anoma-

lies to the south, and vice versa. Consider the two positive anomalies

shown in Fig. (15). The right one advects the negative anomaly between

them southwest, while the left one advects it northwest. Adding the two

velocities together, the net effect is a westward drift for the anomaly. Sim-

ilar reasoning suggests the positive anomalies are advected westward by

the negative anomalies.

What does a Rossby wave look like? Recall thatψ is proportional to

the geopotential, or the pressure in the ocean. So a sinusoidal wave is a
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sequence of high and low pressure anomalies. An example is shown in

Fig. (16). This wave has the structure:

ψ = cos(x− ωt)sin(y) (144)

(which also is a solution to the wave equation, as you can confirm). This

appears to be a grid of high and low pressure regions.
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Figure 16: A Rossby wave, withψ = cos(x − ωt)sin(y). The red corresponds to high
pressure regions and the blue to low. The lower panel shows a “Hovmuller” diagram of
the phases aty = 4.5 as a function of time.

The whole wave in this case is propagating westward. Thus if we take a

cut at a certain latitude, herey = 4.5, and plotψ(x, 4.5, t), we get the plot

in the lower panel. This shows the crests and troughs moving westward

at a constant speed (the phase speed). This is known as a “Hovmuller”
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diagram.

Figure 17: Three Hovmuller diagrams constructed from sea surface height in the North
Pacific. From Chelton and Schlax (1996).

Three examples from the ocean are shown in Fig. (17). These are Hov-

muller diagrams constructed from sea surface height in the Pacific, at three

different latitudes. We see westward phase propagation in all three cases.

Interestingly, the phase speed (proportional to the tilt of the lines) differs

in the three cases. To explain this, we will need to take stratification into

account, as discussed later on. In addition, the waves are more pronounced

west of 150-180 W. The reason for this however is still unknown.
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2.4.5 Group Velocity

Thus Rossby waves propagate westward. But this actually poses a prob-

lem. Say we are in an ocean basin, with no mean flow (U = 0). If there is

a disturbance on the eastern wall, Rossby waves will propagate westward

into the interior. Thus changes on the eastern wall arecommunicatedto the

rest of the basin by Rossby waves. Because they propagate westward, the

whole basin will soon know about these changes. But say the disturbance

is on thewest wall. If the waves can go only toward the wall, the energy

would necessarily be trapped there. How do we reconcile this?

The answer is that the phase velocity tells us only about the motion of

the crests and troughs—it does not tell us how the energy is moving. To

see how energy moves, it helps to consider apacketof waves with different

wavelengths. If the Rossby waves were initiated by a localized source, say

a meteor crashing into the ocean, they would start out as a wave packet.

Wave packets have both a phase velocity and a “group velocity”. The

latter tells us about the movement of packet itself, and this reflects how the

energy is moving. It is possible to have a packet of Rossby waves which

are moving eastwards, while the crests of the waves in the packet move

westward.

Consider the simplest example, of two waves with different wavelengths

and frequencies, but the same (unit) amplitude:

ψ = cos(k1x+ l1y − ω1t) + cos(k2x+ l2y − ω2t) (145)

Imagine thatk1 andk2 are almost equal tok, one slightly larger and the

other slightly smaller. We’ll suppose the same forl1 andl2 andω1 andω2.

Then we can write:

ψ = cos[(k + δk)x+ (l + δl)y − (ω + δω)t]
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+cos[(k − δk)x+ (l − δl)y − (ω − δω)t] (146)

From the cosine identity:

cos(a± b) = cos(a)cos(b)∓ sin(a)sin(b) (147)

So we can rewrite the streamfunction as:

ψ = 2 cos(δkx+ δly − δωt) cos(kx+ ly − ωt) (148)

The combination of waves has two components: a plane wave (like we

considered before) multiplied by acarrier wave, which has a longer wave-

length and lower frequency. The carrier wave has a phase speed of:

cx =
δω

δk
≈ ∂ω

∂k
≡ cgx (149)

and

cy =
δω

δl
≈ ∂ω

∂l
≡ cgy (150)

The phase speed of the carrier wave is thegroup velocity, because this is

the speed at which the group (in this case two waves) moves. While the

phase velocity of a wave is ratio of the frequency and the wavenumber, the

group velocity is thederivativeof the frequency by the wavenumber.

This is illustrated in Fig. (18). This shows two waves,cos(1.05x) and

cos(0.095x). Their sum yields the wave packet in the lower panel. The

smaller ripples propagate with the phase speed,c = ω/k = ω/1, west-

ward. But the larger scale undulations move with the group velocity, and

this can be either westor east.

The group velocity concept applies to any type of wave. For Rossby

waves, we take derivatives of the Rossby wave dispersion relation forω.

This yields:

cgx =
∂ω

∂k
= β

k2 − l2

(k2 + l2)2
, cgy =

∂ω

∂l
=

2βkl

(k2 + l2)2
(151)
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Figure 18: A wave packet of two waves with nearly the same wavelength.

Consider for example the group velocity in the zonal direction,cgx.

The sign of this depends on the relative sizes of the zonal and meridional

wavenumbers. If

k > l

the wave packet has a positive (eastward) zonal velocity. Then the energy

is moving in theoppositedirection to the phase speed. This answers the

question about the disturbance on the west wall. Energy can indeed spread

eastward into the interior, if the zonal wavelength is shorter than the merid-

ional one. Note that for such waves, the phase speed is still westward. So

the crests will move toward the west wall while energy is carried eastward!

Another interesting aspect is that the group velocity in they-direction
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is alwaysin the opposite direction to the phase speed iny, because:

cgy
cy

= − 2l2

k2 + l2
< 0 . (152)

So northward propagating waves have southward energy flux!

The group velocity can also be derived by considering the energy equa-

tion for the wave. This is shown in Appendix C.

2.5 Rossby wave reflection

A good illustration of these Rossby wave properties is the case of a wave

reflecting off a solid boundary. Consider what happens to a westward

propagating plane Rossby wave which encounters a straight wall, oriented

alongx = 0. The incident wave can be written:

ψi = Ai e
ikix+iliy−iωit

where:

ωi =
−βki
k2i + l2i

The incident wave has a westward group velocity, so that

ki < li

Let’s assume too that the group velocity has a northward component (so

that the wave is generated somewhere to the south). As such, the phase

velocity is oriented toward thesouthwest.

The wall will produce a reflected wave. If this weren’t the case, all the

energy would have to be absorbed by the wall. We assume instead that all

the energy is reflected. The reflected wave is:

ψr = Ar e
ikrx+ilry−iωrt
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The total streamfunction is the sum of the incident and reflected waves:

ψ = ψi + ψr (153)

In order for there to be no flow into the wall, we require that the zonal

velocity vanish atx = 0, or:

u = − ∂

∂y
ψ = 0 at x = 0 (154)

This implies:

−iliAi e
iliy−iωit − ilr Ar e

ilry−iωrt = 0 (155)

In order for this condition to hold at all times, the frequencies must be

equal:

ωi = ωr = ω (156)

Likewise, if it holds for all values ofy along the wall, the meridional

wavenumbers must also be equal:

li = lr = l (157)

Note that because the frequency and meridional wavenumbers are pre-

served on reflection, the meridional phase velocity,cy = ω/l, remains

unchanged. Thus (155) becomes:

il Ai e
ily−iωt + il Ar e

ily−iωt = 0 (158)

which implies:

Ai = −Ar ≡ A (159)

So the amplitude of the wave is preserved, but the phase is changed by

180◦.
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Now let’s go back to the dispersion relations. Because the frequencies

are equal, we have:

ω =
−βki
k2i + l2

=
−βkr
k2r + l2

. (160)

This is possible because the dispersion relation is quadratic ink and thus

admits two different values ofk. Solving the Rossby dispersion relation

for k, we get:

k = − β

2ω
±

√

β2 − 4ω2l2

2ω
(161)

The incident wave has a smaller value ofk because it has a westward group

velocity; so it is the additive root. The reflected wave thus comes from the

difference of the two terms.

This implies the wavenumberincreaseson reflection, by an amount:

|kr − ki| = 2

√

β2

4ω2
− l2 (162)

In other words, the incident waves are long but the reflected waves are

short.

We can also show that the meridional velocity,v, increasesupon reflec-

tion and also that the mean energy (Appendix C) increases on reflection.

The reflected wave is more energetic because the energy is squeezed into

a shorter wave. However, theflux of energy is conserved; the amount of

energy going in equals that going out. So energy does not accumulate at

the wall.

Thus Rossby waves change their character on reflection. Interestingly,

the change depends on theorientationof the boundary. A tilted bound-

ary (e.g. northwest) will produce different results. In fact, the case with

a zonally-oriented boundary (lying, say, alongy = 0) is singular; you

must introduce other dynamics, like friction, to solve the problem. Rossby

waves, in many ways, are strange.
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Figure 19: A plane Rossby wave reflecting at a western wall. Theincident wave is shown
by the solid lines and the reflected wave by the dashed lines. The phase velocities are
indicated by the solid arrows and the group velocities by thedashed arrows. Note the
wavelength iny doesn’t change, but the reflected wavelength inx is much shorter. Note
too the reflected wave has a phase speed directed toward the wall, but a group velocity
away from the wall.

Exercise 2.6: Consider Rossby waves incident on a northern wall, i.e.

oriented east-west, located aty = 0. Proceed as before, with one incident

and one reflected wave. What can you say about the reflected wave?

Hint: there are two possibilities, depending on the sign oflr.

68



2.6 The PV equation with forcing

Up until now, we have considered solutions of the inviscid PV equation—

that is, without any forcing. Now we will consider what happens with

friction included.

As noted in Chapter 1, friction is unimportant for synoptic scale mo-

tion. Where it is important is in the boundary layers. As we saw in section

(1.11), the ageostrophic flow in these layers can generate vertical veloci-

ties, and these in turn can influence motion in the interior. We cannot sim-

ply include Ekman layers in our barotropic formalism, because the vertical

shear in the layers is not zero. What we can do is to assume that thein-

terior of the fluid is barotropic and that that is sandwiched between two

Ekman layers, one on the upper boundary and one on the lower.

We can include these Ekman layer by adding two additional terms on

the RHS of the integrated vorticity equation (117), thus:

dg
dt

(ζ + βy +
f0
D0

h) =
f0
D0

[we(z1)− we(z0)] (163)

The first term on the RHS is the vertical velocity associated with the bound-

ary layer on the upper surface and the second term is that with the layer on

the lower surface.

In the atmosphere, we would set the vertical velocity at the top boundary

to zero (there is no Ekman layer on the tropopause). The ocean is different

though, because the wind is causing divergence at the upper surface. So

we include the wind stress term from (93):

we(z1) =
1

ρ0f0
k̂ · ∇ × τw (164)

The bottom Ekman layer exists in both the atmosphere and ocean. This
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exerts a drag proportional to the relative vorticity. From (101), we have:

we(z0) =
δ

2
ζg (165)

The Ekman layers thus affect the motion in the interior when there is vor-

ticity.

Combining all the terms, we arrive at the forced barotropic PV equation:

dg
dt

(∇2ψ + βy +
f0
D0

h) =
1

ρ0D0
k̂ · ∇ × ~τw − r∇2ψ (166)

The constant,r, is called the “Ekman drag coefficient” and is defined:

r =
f0δ

2D0

An important point about this is that the forcing terms exert themselves

over the entire depth of the fluid, because there is no vertical shear.

2.7 Spin down

Both the atmosphere and ocean have a bottom boundary layer. Bottom

friction damps the velocities, causing the winds to slow. The simplest

example of this is with no bottom topography and a constantf . Then the

barotropic vorticity equation is:

dg
dt
ζ = −rζ (167)

This is a nonlinear equation. However it is easily solved in the Lagrangian

frame. Following a parcel, we have that:

ζ(t) = ζ(0)e−rt (168)

So the vorticity decreases exponentially. The e-folding time scale is known

as the Ekmanspin-down time:

Te = r−1 = (
2

Azf0
)1/2D (169)
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Typical atmospheric values are:

D = 10km, f = 10−4sec−1, Az = 10m2/sec

assuming the layer covers the entire troposphere. Then:

Te ≈ 4 days

If all the forcing (including the sun) were suddenly switched off, the winds

would slow down, over this time scale. After about a week or so, the winds

would be weak.

If we assume that the barotropic layer does not extend all the way to

the tropopause but lies nearer the ground, the spin-down time will be even

shorter. This is actually what happens in the stratified atmosphere, with

the winds near the ground spinning down but the winds aloft being less

affected. So bottom friction favors flows intensified further up. The same

is true in the ocean.

2.8 Mountain waves

Barotropic Rossby waves have been used to study the mean surface pres-

sure distribution in the atmosphere. This is the pressure field you get when

averaging over long periods of time (e.g. years). The central idea is that

the mean wind,U , blowing over topography can excite stationary waves

(cx = 0). As demonstrated by Charney and Eliassen (1949), one can find

a reasonable first estimate of the observed distribution using the linear,

barotropic vorticity equation.

We start with the vorticity equation as applied to the atmosphere. First
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we will neglect any frictional forcing:

dg
dt

(ζ + βy +
f0
D
h) = 0 (170)

We will linearize about a mean zonal flow:

u = U + u′, v = v′, ζ = ζ ′

We will also assume the topography is weak:

h = h′

in keeping with QG. Then the Rossby wave equation becomes:

(
∂

∂t
+ U

∂

∂x
)ζ ′ + βv′ + U

∂

∂x

f0
D
h′ = 0 (171)

Substituting in the streamfunction, we have:

(
∂

∂t
+ U

∂

∂x
)∇2ψ + β

∂

∂x
ψ = −f0

D
U
∂

∂x
h′ (172)

We put the topographic term on the RHS because it does not involve the

streamfunction, and so acts instead like a forcing term. So the winds blow-

ing over the mountains generate the response.

The homogeneous solution to this equation are just the Rossby waves

we discussed earlier. These are called “free Rossby waves”. If we were to

suddenly “turn on” the wind, we would excite free waves. The particular

solution, or the “forced wave”, is the part generated by the topographic

term on the RHS. This is the portion of the flow that will remain after the

free waves have propagated away.

So the forced wave is the portion that will determine the time mean

flow. To find that, we can ignore the time derivative:

U
∂

∂x
∇2ψ + β

∂

∂x
ψ = −f0

D
U
∂

∂x
h′ (173)
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All the terms involve a derivative inx, so we can simply integrate the equa-

tion once inx to get rid of that. We can ignore the constant of integration,

which would amount to adding a constant to the streamfunction. The latter

would have no effect on the velocity field (why?).

In line with our previous derivations, we write the topography as a sum

of Fourier modes:

h′(x, y) = Re{
∑

k

∑

l

h(k, l) eikx+ily} (174)

For simplicity, we will focus on the response to a single wave mode:

h′ = h0cos(kx)cos(ly) (175)

We can always construct the response to more complicated topography by

adding the solutions for different(k, l), because the Rossby wave equation

is linear. Substituting this in yields:

U∇2ψ + βψ = −f0h0
D

Ucos(kx)cos(ly) (176)

For the reasons given, we focus on the particular solution. This has the

general form:

ψ = Acos(kx)cos(ly) (177)

Plugging in:

(U(−k2 − l2) + β)Acos(kx)cos(ly) = −f0h0
D

Ucos(kx)cos(ly) (178)

or:

A =
f0h0

D(κ2 − β/U)
=

f0h0
D(κ2 − κ2s)

(179)

where:

κs ≡ (
β

U
)1/2
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is the wavenumber of the stationary Rossby wave with a background ve-

locity, U (sec. 2.4.3). Notice with forcing that we obtain an expression for

the amplitude,A—it doesn’t drop out. So the forced solution is:

ψ =
f0h0

D(κ2 − κ2s)
cos(kx)cos(ly) (180)

The pressure field thus resembles the topography. If the wavenumber

of the topography,κ, is greater than the stationary wavenumber, the am-

plitude is positive. Then the forced wave isin phasewith the topography.

If the topographic wavenumber is smaller, the atmospheric wave is 180◦

out of phase with the topography. The latter case applies to large scale

topography, for which the wavenumber is small. So we expect negative

pressures over mountains and positive pressures over valleys. With small

scale topography, the pressure over the mountains will instead be positive.

What happens though whenκ = κS? Then the streamfunction is infi-

nite! This is a typical situation with forced oscillations. If the forcing is

at the natural frequency of the system, the response is infinite (we say the

response isresonant). Having infinite winds is not realistic, so we must

add additional dynamics. In particular, we can add friction.

We do this as follows. We must go back to the barotropic vorticity

equation, but with a bottom Ekman layer:

dg
dt

(ζ + βy +
f0
D
h) = −rζ (181)

Linearizing as before, we obtain:

U
∂

∂x
∇2ψ + β

∂

∂x
ψ = −f0

D
U
∂

∂x
h′ − r∇2ψ (182)

Using the same topography, we get:

(U
∂

∂x
+ r)∇2ψ + β

∂

∂x
ψ =

kf0h0
D

Usin(kx)cos(ly) (183)
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The equation is exactly as before, except that we have an additional fac-

tor in front of the relative vorticity. This prevents us from integrating the

equation inx, like we did before. It also means that the cosine/cosine par-

ticular solution will no longer work. Instead, we use the following complex

expression:

ψ = Re{Aeikx}cos(ly) (184)

Remember that the amplitude,A, may also be a complex number. To be

consistent, we write the topography in the same way, i.e.:

h′ = Re{h0eikx}cos(ly) (185)

(even though we know thath0 is real). So we have:

(U
∂

∂x
+ r)∇2ψ + β

∂

∂x
ψ = −ikf0h0

D
Ueikxcos(ly) (186)

Substituting in the wave solution, we get:

[(ikU + r)(−k2 − l2) + ikβ]A = −ikf0h0
D

U (187)

after canceling the sinusoidal terms. Solving forA, we get:

A =
f0h0

D(κ2 − κ2s − iR)
(188)

where:

R ≡ rκ2

kU
(189)

As promised, the amplitude is complex.

The amplitude is as before, except for the additional term in the denom-

inator proportional to the Ekman drag,r. This term does two things. First,

it removes the singularity. Atκ = κs, we have:

A = i
f0h0
DR

(190)

75



So the response is no longer infinite. However, the response is still greatest

at this wavenumber. Havingκ 6= κs produces a weaker amplitude.

Second, friction causes aphase shiftin the pressure field relative to

the topography. Consider the response atκ = κS. Then the amplitude is

purely imaginary, as seen above. Putting this into the full solution, we get:

ψ = Re{Aeikx}cos(ly) = −f0h0
DR

sin(kx)cos(ly) (191)

The topography on the other hand is proportional tocos(kx). So the

streamfunction is 90◦ out of phase with the mountains. In this case, the

low pressure is downstream of the mountain. The extent of the phase shift

depends on the difference betweenκ andκs. The larger the difference, the

more aligned the pressure field is with the topography (either in phase, or

180◦ out of phase).

We summarize the results with sinusoidal topography and Ekman fric-

tion graphically in Fig. (20). When the topographic wavenumber is much

less than the stationary wavenumber for the velocity,U , the pressure field

is aligned but anti-correlated with the topography. When the wavenum-

ber is much greater thanκs, the pressure is aligned and correlated. When

κ = κs, the pressure is 90◦ out of phase with the mountains.

Charney and Eliassen (1949) applied the barotropic equation to the ac-

tual atmosphere. But instead of using a sinusoidal topography, they used

the observed topographic profile at 45 N. The result of their calculation is

shown in Fig. (21). The topography is indicated by the dotted lines. The

two maxima come from the Himalayas and the Rocky Mountains. The

solution, withU=17 m/sec andr=1/6 day−1, is indicated by the solid line.

The dashed line shows the observed mean pressure at 500 mb. We see

the model exhibits much of the same structure as the observed pressure
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Figure 20: The mean pressure distribution over a sinusoidalmountain range. The topo-
graphic wavenumber is less than (upper), greater than (bottom) and equal to (middle) the
stationary wavenumber.

field. Both have low pressure regions down wind from the mountains, and

a marked high pressure upwind of the Rockies.

The agreement between the model and observations is remarkably good,

given the simplicity of the model. In fact, it is probably too good. Charney

and Eliassen used a meridional channel for their calculation (as one would

do with a QGβ-plane.), but if one redoes the calculation on a sphere, the

Rossby waves can disperse meridionally and the amplitude is decreased

(Held, 1983). Nevertheless, the relative success of the model demonstrates

the utility of Rossby wave dynamics in understanding the low frequency

atmospheric response.
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Figure 21: Charney and Eliassen’s (1949) solution of the barotropic mountain wave prob-
lem at 45N. The dotted line indicates the topographic profile, the solid line is the model
solution and the dashed line is the observed mean pressure at500 mb. From Vallis (2007).

Exercise 2.7: Consider Rossby waves with an isolated mountain range.

A purely sinusoidal mountain range is not very realistic. A more typical

case is one where the mountain is localized. Consider a mountain “range”

centered atx = 0 with:

h(x, y) = h0 e
−x2/L2

(192)

Because the range doesn’t vary iny, we can writeψ = ψ(x).

Write the wave equation, without friction. Transform the streamfunc-

tion and the mountain using the Fourier cosine transform. Then solve for

the transform ofψ, and write the expression forψ(x) using the inverse

transform (it’s not necessary to evaluate the inverse transform).

Where do you expect the largest contribution to the integral to occur

(which values ofk)?
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2.9 The Gulf Stream

Figure 22: Benjamin Franklin’s map of the Gulf Stream. From Wikipedia.

The next example is one of the most famous in dynamical oceanogra-

phy. It was known at least since the mid 1700’s, when Benjamin Franklin

mapped the principal currents of the North Atlantic (Fig. 22), that the Gulf

Stream is an intense current which lies on thewesternside of the basin,

near North America. The same is true of the Kuroshio Current, on the

western side of the North Pacific, the Agulhas Current on the western side

of the Indian Ocean, and numerous other examples. Why do these currents

lie in the west? A plausible answer came from a work by Stommel (1948),

based on the barotropic vorticity equation. We will consider this problem,

which also illustrates the technique ofboundary layer analysis.

We retain theβ-effect and bottom Ekman drag, but neglect topography

(the bottom is flat). We also include the surface Ekman layer, to allow for
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wind forcing. The result is:

dg
dt
(ζ + βy) =

dg
dt
ζ + βv =

1

ρ0D
∇× ~τw − rζ (193)

We will search for steady solutions, as with the mountain waves. More-

over, we will not linearize about a mean flow—it is the mean flow itself

we’re after. So we neglect the first term in the equation entirely. Usingthe

streamfunction, we get:

β
∂

∂x
ψ =

1

ρ0D
∇× ~τw − r∇2ψ (194)

For our “ocean”, we will assume a square basin. The dimensions of

the basin aren’t important, so we will just use the regionx = [0, L] and

y = [0, L] (L might be 5000 km).

It is important to consider the geostrophic contours in this case:

qs = βy (195)

which are just latitude lines. In this case, all the geostrophic contours

intersect the basin walls. From the discussion in sec. (2.3), we know that

there can be no steady flows without forcing, because such a flow would

be purely zonal and would have to continue through the walls. However,

with forcing there can be steady flow; we will see that this flowcrossesthe

geostrophic contours.

Solutions to (194) can be obtained in a general form, once the wind

stress is specified. But Stommel used a more elegant method. The main

idea is as follows. Since the vorticity equation is linear, we can expressthe

solution as the sum of two components:

ψ = ψI + ψB (196)
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The first part,ψI , is that driven by the wind forcing. We assume that this

part is present in the whole domain. We assume moreover that the friction

is weak, and does not affect this interior component. Then the interior

component is governed by:

β
∂

∂x
ψI =

1

ρ0D
∇× ~τ (197)

This is theSverdrup relation, after H. U. Sverdrup. It is perhaps the most

important dynamical balance in oceanography. It states that vertical flow

from the base of the surface Ekman layer, due to the wind stress curl, drives

meridional motion. This is the motion across the geostrophic contours,

mentioned above.

We can solve (197) if we know the wind stress and the boundary con-

ditions. For the wind stress, Stommel assumed:

~τ = −L
π
cos(

πy

L
) î

The wind is purely zonal, with a cosine dependence. The winds in the

northern half of the domain are eastward, and they are westward in the

southern half. This roughly resembles the situation over the subtropical

North Atlantic. Thus the wind stress curl is:

∇× ~τ = − ∂

∂y
τx = −sin(πy

L
)

Again, this is the vertical component of the curl. From the Sverdrup rela-

tion, this produces southward flow over the whole basin, with the largest

velocities occurring at the mid-basin (y = L/2). We then integrate the

Sverdrup relation (197) to obtain the streamfunction in the interior.

However, we can do this in two ways, either by integrating from the

western wall orto the eastern wall (the reason why these produce different
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results will become clear). Let’s do the latter case first. Then:
∫ L

x

∂

∂x
ψI dx = ψI(L, y)− ψI(x, y) = − 1

βρ0D
sin(

πy

L
)(L− x) (198)

To evaluate this, we need to know the value of the streamfunction on the

eastern wall,ψI(L, y).

Now ψI must be a constant. If it weren’t, there would be flow into the

wall, because:

u(L, y) = − ∂

∂y
ψI(L, y) (199)

If psiI were constant, there would be flow into the wall. But what is the

constant? We can simply take this to be zero, because using any other

constant would not change the velocity field. So we have:

ψI(x, y) =
1

βρ0D
sin(

πy

L
)(L− x) (200)

Notice though that this solution has flowinto the western wall, because:

uI(0, y) = − ∂

∂y
ψI(0, y) = − π

βρ0D
cos(

πy

L
) 6= 0 (201)

This can’t occur.

To fix the flow at the western wall, we use the second component of

the flow,ψB. Let’s go back to the vorticity equation, with the interior and

boundary streamfunctions substituted in:

β
∂

∂x
ψI + β

∂

∂x
ψB =

1

ρ0D
∇× ~τw − r∇2ψB (202)

We have ignored the termr∇2ψI ; specifically, we assume this term is much

smaller thanr∇2ψB. The reason is thatψB has rapid variations near the

wall, so the second derivative will be much larger than that ofψI , which

has a large scale structure. Using (197), the vorticity equation reduces to:

β
∂

∂x
ψB = −r∇2ψB (203)
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ψB is assumed to be vanishingly small in the interior. But it will not be

small in a boundary layer. We expect that boundary layer to occur in a

narrow region near the western wall, becauseψB must cancel the zonal

interior flow at the wall.

This boundary layer will be narrow in thex-direction. The changes in

y on the other hand should be more gradual, as we expect the boundary

layer to cover the entire west wall. Thus the derivatives inx will be much

greater than iny. So we have:

β
∂

∂x
ψB = −r∇2ψB ≈ −r ∂

2

∂x2
ψB (204)

This has a general solution:

ψB = Aexp(−βx
r
) +B

In order for the boundary correction to vanish in the interior, the con-

stantB must be zero. We then determineA by making the zonal flow

vanish at the west wall (atx = 0). This again implies that the stream-

function is constant. That constant must be zero, because we took it to be

zero on the east wall. If it were a different constant, thenψ would have to

change along the northern and southern walls, meaningv = ∂
∂xψ would be

non-zero. Thus we demand:

ψI(0, y) + ψB(0, y) = 0 (205)

Thus:

A = − L

βρ0D
sin(

πy

L
) (206)

So the total solution is:

ψ =
1

βρ0D
sin(

πy

L
) [L− x− Lexp(−βx

r
)] (207)
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We examine the character of this solution below. But first let’s see what

would have happened if we integrated the Sverdrup relation (197) from the

westernwall instead of to the eastern. Then we would get:

β

∫ x

0

∂

∂x
ψ dx = βψ(x, y)− βψ(0, y) = −x sin(πy

L
) (208)

Settingψ(0, y) = 0, we get:

ψ(x, y) = − x

βρ0D
sin(

πy

L
) (209)

This solution has flow into the eastern wall, implying we must have a

boundary layer there. Again the boundary layer should have more rapid

variation inx than iny, so the appropriate boundary layer equation is (204),

with a solution:

ψB = Aexp(−βx
r
) +B

We takeB to be zero again, so the solution vanishes in the interior.

But does it? To satisfy the zero flow condition atx = L, we have:

ψI(L, y) + ψB(L, y) = 0 (210)

or:

− L

βρ0D
sin(

πy

L
) + Aexp(−βL

r
) = 0 (211)

Solving forA, we get:

A =
L

βρ0D
exp(

βL

r
) sin(

πy

L
) (212)

So the total solution in this case is:

ψ =
1

βρ0D
sin(

πy

L
) [−x+ Lexp(

β(L− x)

r
)] (213)

Now there is a problem. The exponential term in this case does not de-

crease moving away from the eastern wall. Rather, it grows exponentially.
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So the boundary layer solutionisn’t confinedto the eastern wall! Thus

we reject the possibility of an eastern boundary layer. The boundary layer

must lie on the western wall. This is why, Stommel concluded, the Gulf

Stream lies on the western boundary of the North Atlantic.

Another explanation for the western intensification was proposed by

Pedlosky (1965). Recall that Rossby waves propagate to the west as long

waves, and reflect off the western wall as short waves. The short waves

move more slowly, with the result that the energy is intensified in the region

near the west wall (sec. 2.5). Pedlosky showed that in the limit of low

frequencies (long period waves), the Rossby wave solution converges to

the Stommel solution. So western intensification occurs because Rossby

waves propagate to the west.

Let’s look at the (correct) Stommel solution. Shown in figure (23) is

the Sverdrup solution (upper panel) and two full solutions with differentr

(lower panels). The Sverdrup solution has southward flow over the whole

basin. So the mean flow crosses the geostrophic contours, as suggested

earlier. There is, in addition, an eastward drift in the north and a westward

drift in the south.

With the larger friction coefficient, the Stommel solution has a broad,

northward-flowing western boundary current. With the friction coefficient

10 times smaller, the boundary current is ten times narrower and the north-

ward flow is roughly ten times stronger. This is the Stommel analogue of

the Gulf Stream.

Consider what is happening to a fluid parcel in this solution. The par-

cel’s potential vorticity decreases in the interior, due to the negative wind

stress curl, which causes the parcel to drift southward. We know the parcel

needs to return to the north to complete its circuit, but to do that it must
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Figure 23: Solutions of Stommel’s model for two different values of the friction coeffi-
cient,r.
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somehow acquire vorticity. Bottom friction permits the parcel to acquire

vorticity in the western layer. You can show that if the parcel were in an

eastern boundary layer, it’s vorticity woulddecreasegoing northward. So

the parcel would not be able to re-enter the northern interior.

The Stommel boundary layer is like the bottom Ekman layer (sec. 1.11),

in several ways. In the Ekman layer, friction, which acts only in a bound-

ary layer, brings the velocity to zero to satisfy the no-slip condition. This

yields a strong vertical shear in the velocities. In the Stommel layer, fric-

tion acts to satisfy the no-normal flow condition and causes stronglateral

shear. Both types of boundary layer also are passive, in that they do not

force the interior motion; they simply modify the behavior near the bound-

aries.

Shortly after Stommel’s (1948) paper came another (Munk, 1950) ap-

peared which also modelled the barotropic North Atlantic. The model is

similar, except that Munk used lateral friction rather than bottom friction.

The lateral friction was meant to represent horizontal stirring by oceanic

eddies. The details of Munk’s model are given in Appendix D.

Exercise 2.8: Is there really western intensification? To convince our-

selves of this, we can solve the Stommel problem in 1-D, as follows. Let

the wind stress be given by:

~τ = yî (214)

Write the vorticity equation following Stommel (linear, U=V=0, steady).

Ignore variations iny, leaving a 1-D equation. Assume the domain goes

from x = 0 to x = L, as before. Solve it.

Note that you should have two constants of integration. This will allow
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you to satisfy the boundary conditionsψ = 0 atx = 0 andx = L. Plot the

meridional velocityv(x). Assume that(βρ0D)−1 = 1 andL(rρ0D)−1 =

10. Where is the jet?

2.10 Closed ocean basins
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Figure 24: Geostrophic contours (solid lines) in the Nordicseas. Superimposed are con-
tours showing the first EOF of sea surface height derived fromsatellite measurements.
The latter shows strong variability localized in regions ofclosedqs contours. From Isach-
sen et al. (2003).

Next we consider an example with bottom topography. As discussed

in sec. (2.3), topography can cause the geostrophic contours to close on

themselves. This is an entirely different situation because mean flows can

exist on the closed contours (they do not encounter boundaries; Fig. 11).

Such mean flows can be excited by wind-forcing and can be very strong.
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There are several regions with closed geostrophic contours in the Nordic

Seas (Fig. 24), specifically in three basins: the Norwegian, Lofoten and

Greenland gyres. The topography is thus steep enough here as to over-

whelm theβ-effect. Isachsen et al. (2003) examined how wind-forcing

could excite flow in these gyres.

This time we take equation (166) with wind forcing and bottom topog-

raphy:
dg
dt
(ζ + βy +

f0
D
h) =

1

ρ0D
∇× ~τ − rζ (215)

We will linearize the equation, without a mean flow. We can write the

result this way:

∂

∂t
ζ + ~u · ∇qs =

1

ρ0D
∇× ~τ − rζ (216)

where

qs ≡ βy +
f0
D
h

defines the geostrophic contours (sec.2.3). Recall that these are the so-

called “f/H” contours in the shallow water system. As noted, theqs con-

tours can close on themselves if the topography is strong enough to over-

whelm theβy contribution toqs (Fig. 11). This is the case in the Nordic

Seas (Fig. 24).

As in the Gulf Stream model, we will assume the bottom friction coeffi-

cient,r, is small. In addition, we will assume that the wind forcing and the

time derivative terms are as small as the bottom friction term (of orderr).

Thus the first, third and fourth terms in equation (216) are of comparable

size. We can indicate this by writing the equation this way:

r
∂

∂t′
ζ + ~u · ∇qs = r

1

ρ0D
∇× ~τ ′ − rζ (217)
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wheret′ = rt andτ ′ = τ/r are the small variables normalized byr, so

that they are order one.

Now we use aperturbation expansionand expand the variables inr.

For example, the vorticity is:

ζ = ζ0 + rζ1 + r2ζ2 + ...

Likewise, the velocity is:

~u = ~u0 + r~u1 + r2~u2 + ...

We plug this into the vorticity equation and then collect terms which are

multiplied by the same factor ofr. The largest terms are those multiplied

by one. These are just:

~u0 · ∇qs = 0 (218)

So the first order componentfollows theqs contours. In other words, the

first order streamfunction is everywhere parallel to theqs contours. Once

we plot theqs contours, we know what the flow looks like.

But this only tells us thedirection of ~uo, not its strength or structure

(how it varies from contour to contour). To find that out, we go to the next

order inr:
∂

∂t′
ζ0 + ~u1 · ∇qs =

1

ρ0D
∇× ~τ ′ − ζ0 (219)

This equation tells us how the zeroth order field changes in time. However,

there is a problem. In order to solve for the zeroth order field, we need to

know the first order field because of the term withu1. But it is possible to

eliminate this, as follows. First, we can rewrite the advective term thus:

~u1 · ∇qs = ∇ · (~u1qs)− qs(∇ · ~u1) (220)
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The second term on the RHS vanishes by incompressibility. In particular:

∇ · ~u = 0 (221)

This implies that the velocity is incompressible at each order. So the vor-

ticity equation becomes:

∂

∂t′
ζ0 +∇ · (~u1qs) =

1

ρ0D
∇× ~τ ′ − rζ0 (222)

Now, we can eliminate the second term if we integrate the equation over

an area bounded by a closedqs contour. This follows from Gauss’s Law,

which states:
∫∫

∇ · ~A dx dy =

∮

~A · n̂ dl (223)

Thus:
∫∫

∇ · (~uqs) dA =

∮

qs~u · n̂ dl = qs

∮

~u · n̂ dl = 0 (224)

We can take theqs outside the line integral becauseqs is constant on the

bounding contour. The closed integral of~u · n̂ vanishes because of incom-

pressibility:

∮

~u · n̂ dl =
∫∫

∇ · ~u dA = 0

Thus the integral of (225) in a region bounded by aqs contour is:

∂

∂t′

∫∫

ζ0 dxdy =
1

ρ0D

∫∫

∇× ~τ ′ dxdy −
∫∫

ζ0 dxdy (225)

Notice this contains only zeroth order terms. We can rewrite (225) by

exploiting Stoke’s Law, which states:
∫∫

∇× ~A dx dy =

∮

~A · ~dl (226)
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So (225) can be rewritten:

∂

∂t′

∮

~u · ~dl = 1

ρ0D

∮

~τ ′ · ~dl −
∮

~u · ~dl (227)

We have dropped the zero subscripts, since this is the only component we

will consider. In terms of the real time and wind stress, this is:

∂

∂t

∮

~u · ~dl = 1

ρ0D

∮

~τ · ~dl − r

∮

~u · ~dl (228)

Isachsen et al. (2003) solved (228) by decomposing the velocity into

Fourier components in time:

~u(x, y, t) =
∑

ũ(x, y, ω) eiωt

Then it is easy to solve (228) for the velocity integrated around the contour:
∮

~u · ~dl = 1

r + iω

1

ρ0D

∮

~τ · ~dl (229)

Note the solution is actually for the integral of the velocity around the

contour (rather than the velocity at every point). We can divide by the

length of the contour to get the average velocity on the contour:

< u >≡
∮

~u · ~dl
∮

dl
=

1

r + iω

1

ρ0D

∮

~τ · ~dl
∮

dl
(230)

Isachsen et al. (2003) derived a similar relation using the shallow water

equations. Their expression is somewhat more complicated but has the

same meaning. They tested this prediction using various types of data

from the Nordic Seas. One example is shown in figure (24). This shows the

principal Empirical Orthogonal Function (EOF) of the sea surface height

variability measured from satellite. The EOF shows that there are regions

with spatially coherent upward and downward sea surface motion. These
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Figure 25: Time series of observed (thin line) and predicted(thick line) sea surface height
displacements between the outer rim and the center of each ofthe principal gyres in the
Nordic seas. The linear bottom drag coefficient wasR = 5× 10−4 m/sec. From Isachsen
et al. (2003).

regions are exactly where theqs contours are closed. This height variability

reflects strong gyres which are aligned with theqs contours.

Isachsen et al. took wind data, the actual bottom topography and an

approximate value of the bottom drag to predict the transport in the three

gyres (corresponding to the Norwegian, Lofoten and Greenland basins).

The results are shown in figure (25). The simple model does astonishingly

well, predicting the intensification and weakening of the gyres in all three

basins.

2.11 Barotropic instability

Many of the “mean” flows in the atmosphere and ocean, like the Jet and

Gulf Streams, are not steady at all. Instead, they meander and generate
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eddies (storms). The reason is that these flows areunstable. If the flow

is perturbed slightly, for instance by a slight change in heating or wind

forcing, the perturbation will grow, extracting energy from the mean flow.

These perturbations then develop into mature storms, both in the atmo-

sphere and ocean.

We’ll first study instability in the barotropic context. In this we ignore

forcing and dissipation, and focus exclusively on the interaction between

the mean flow and the perturbations. A constant mean flow, like we used

when deriving the dispersion relation for free Rossby waves, is stable. But

a mean flow which isshearedcan be unstable. To illustrate this, we exam-

ine a mean flow which varies iny. We will see that wave solutions exist in

this case too, but that they can grow in time.

The barotropic vorticity equation with a flat bottom and no forcing or

bottom drag is:
dg
dt
(ζ + βy) = 0 (231)

We again linearize the equation assuming a zonal flow, but now this can

vary in y, i.e. U = U(y). Significantly, the mean flow now has an associ-

ated vorticity:

ζ = − ∂

∂y
U (232)

So the PV equation is now:

dg
dt
(ζ ′ − ∂

∂y
U + βy) = 0 (233)

The mean flow again is time independent, so its vorticity doesn’t change

in time either. As such, the mean vorticityalters the geostrophic contours.

In particular, we have:

qs = βy − ∂

∂y
U (234)
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This implies the mean flow will affect the way Rossby waves propagate in

the system.

The linearized version of the vorticity equation is:

(
∂

∂t
+ U

∂

∂x
)ζ ′ + v′

∂

∂y
qs = 0 (235)

Written in terms of the streamfunction, this is:

(
∂

∂t
+ U

∂

∂x
)∇2ψ + (

∂

∂y
qs)
∂ψ

∂x
= 0 (236)

Now because the mean flow varies iny, we have to be careful about

our choice of wave solutions. We can in any case assume a sinusoidal

dependence inx andt. The form we will use is:

ψ = Re{ψ̂(y) eik(x−ct)} (237)

As we know, the amplitude can be complex, i.e.:

ψ̂ = ψ̂r + iψ̂i

But now the phase speed,c, alsocan be complex. If you assume the phase

speed is purely real, the problem turns out to be inconsisten. So we can

write:

c = cr + ici (238)

This is an important change. With a complexc, we have:

eik(x−ct) = eik(x−(cr+ici) t) = eik(x−crt)+kcit (239)

The argument of the exponential has both real and imaginary parts. The

real part determines how the phases change, as before. But the imaginary

part can change the amplitude of the wave. In particular, ifci > 0, the

wave amplitude willgrow exponentially in time. If this happens, we say
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the flow isbarotropically unstable. Then the wave solution grows in time,

eventually becoming as strong as the background flow itself.

If we substitute the wave solution into (236), we get:

(−ikc+ ikU)(−k2ψ̂ +
∂2

∂y2
ψ̂) + ikψ̂

∂

∂y
qs = 0 (240)

Canceling theik yields:

(U − c) (
∂2

∂y2
ψ̂ − k2ψ̂) + ψ̂

∂

∂y
qs = 0 (241)

This is known as the “Rayleigh equation”. The solution of this determines

which waves are unstable. However, becauseU andqs are functions ofy,

this is generally not easy to solve.

One alternative is to solve (241) numerically. If you knowU(y), you

could put that into the equation and crank out a solution. If the solution

has growing waves, you know the mean flow is unstable. But then say

you wish to examine a slightly different flow. Then you would have to

start again, and solve the equation all over. What would be nice is if we

could figure out a way to determine if the flow is unstable without actually

solving (241). It turns out this is possible.

2.11.1 Rayleigh-Kuo criterion

We do this as follows. First we divide (241) byU − c:

(
∂2

∂y2
ψ̂ − k2ψ̂) +

ψ̂

U − c

∂

∂y
qs = 0 (242)

This assumes thatU 6= c anywhere in the flow.4 Then we multiply by the

complex conjugate of the streamfunction:

ψ̂∗ = ψ̂r − iψ̂i

4WhenU = c at some point, the flow is said to have acritical layer. Then the analysis is more involved
than that here.
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This yields:

(ψ̂r
∂2

∂y2
ψ̂r+ψ̂i

∂2

∂y2
ψ̂i)+i(ψ̂r

∂2

∂y2
ψ̂i−ψ̂i

∂2

∂y2
ψ̂r)−k2|ψ̂|2+

|ψ̂|2
U − c

∂

∂y
qs = 0

(243)

The denominator in the last term is complex. We write it in a more conve-

nient form this way:

1

U − c
=

1

U − cr − ici
=
U − cr + ici
|U − c|2

Now the denominator is purely real. So we have:

(ψ̂r
∂2

∂y2
ψ̂r + ψ̂i

∂2

∂y2
ψ̂i) + i(ψ̂r

∂2

∂y2
ψ̂i − ψ̂i

∂2

∂y2
ψ̂r)− k2|ψ̂|2

+(U − cr + ici)
|ψ̂|2

|U − c|2
∂

∂y
qs = 0 (244)

This equation has both real and imaginary parts, and each must separately

equal zero.

Consider the imaginary part of (244):

(ψ̂r
∂2

∂y2
ψ̂i − ψ̂i

∂2

∂y2
ψ̂r) + ci

|ψ̂|2
|U − c|2

∂

∂y
qs = 0 (245)

Let’s integrate this iny, over a region fromy = [0, L]:
∫ L

0

(ψ̂i
∂2

∂y2
ψ̂r − ψ̂r

∂2

∂y2
ψ̂i) dy = ci

∫ L

0

|ψ̂|2
|U − c|2

∂

∂y
qs dy (246)

We can rewrite the first terms by noting:

ψ̂i
∂2

∂y2
ψ̂r− ψ̂r

∂2

∂y2
ψ̂i =

∂

∂y
(ψ̂i

∂

∂y
ψ̂r− ψ̂r

∂

∂y
ψ̂i)−

∂

∂y
ψ̂i
∂

∂y
ψ̂r+

∂

∂y
ψ̂r

∂

∂y
ψ̂i

=
∂

∂y
(ψ̂i

∂

∂y
ψ̂r − ψ̂r

∂

∂y
ψ̂i) (247)

Substituting this into the LHS of (246), we get:
∫ L

0

∂

∂y
(ψ̂i

∂

∂y
ψ̂r − ψ̂r

∂

∂y
ψ̂i) dy = (ψ̂i

∂

∂y
ψ̂r − ψ̂r

∂

∂y
ψ̂i) |L0 (248)
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Now, to evaluate this, we need the boundary conditions onψ at y = 0

andy = L. Let’s imagine the flow is confined to a channel. Then the

normal flow vanishes at the northern and southern walls. This implies that

the streamfunction is constant on those walls, and we can take the constant

to be zero. Thus:

ψ̂(0) = ψ̂(L) = 0

Then (248) vanishes.

In fact, we obtain the same result if we simply picky = 0 andy = L to

be latitudes where the perturbation vanishes (i.e. far away from the mean

flow). Either way, the equation for the imaginary part reduces to:

ci

∫ L

0

|ψ̂|2
|U − c|2

∂

∂y
qs dy = 0 (249)

In order for this to be true, eitherci or the integral must be zero. Ifci =

0, the wave amplitude is not growing and the wave is stable. For unstable

waves,ci > 0. Then the integral must vanish to satisfy the equation. The

squared terms in the integrand are always greater than zero, so a necessary

condition for instability is that:

∂

∂y
qs = 0 (250)

Thus the meridional gradient of the background PV must change sign

somewhere in the domain. This is theRayleigh-Kuo criterion. Under the

β-plane approximation, we have:

∂

∂y
qs ≡ β − ∂2

∂y2
U (251)

Thus instability requiresβ = ∂2

∂y2U somewhere in the domain.

Think about what this means. IfU = 0, thenqs = βy. Then we have

Rossby waves, all of which propagate westward. With a background flow,
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the waves need not propagate westward. Ifβ − ∂2

∂y2U = 0 somewhere, the

mean PV gradient vanishes and the Rossby waves arestationary. So the

wave holds its position in the mean flow, extracting energy from it. In this

way, the wave grows in time.

The Rayleigh-Kuo criterion is anecessary conditionfor instability. So

instability requires that this condition be met. But it is not asufficient

condition—it doesn’t guarantee that a jet will be unstable. However, the

opposite case is a sufficient condition; if the gradient doesnotchange sign,

the jet must be stable.

As noted, the Rayleigh-Kuo condition is useful because we don’t actu-

ally need to solve for the unstable waves to see if the jet is unstable. Such

a solution is often very involved.

We can derive another stability criterion, following Fjørtoft (1950), by

taking the real part of (244). The result is similar to the Rayleigh-Kuo

criterion, but a little more specific. Some flows which are unstable by the

Rayleigh criterion may be stable by Fjørtoft’s. However this is fairlyrare.

Details are given in Appendix E.

2.11.2 Examples

Let’s consider some examples of barotropically unstable flows. Consider

a westerly jet with a Gaussian profile (Kuo, 1949):

U = U0 exp[−(
y − y0
L

)2] (252)

Shown in the two right panels of Fig. (26) isβ − ∂2

∂y2U for two jet ampli-

tudes,U0. We takeβ = L = 1, for simplicity. WithU0 = 0.04, the PV

gradient is positive everywhere, so the jet is stable. WithU0 = 0.1, the PV

gradient changes sign both to the north and south of the jet maximum. So
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Figure 26: A westerly Gaussian jet (left panel). The middle and right panels showβ −
∂2

∂y2
u for the jet with amplitudes of 0.04 and 0.1, respectively. Only the latter satisfies

Rayleigh’s criterion for instability.

this jetmaybe unstable.

Now consider aneasterlyjet (Fig. 27), withU0 < 0. With both ampli-

tudes,β − ∂2

∂y2U is negative at the centers of the jets. So the jet is unstable

with both amplitudes. This is a general result: easterly jets are more un-

stable than westerly jets.

An example of an evolving barotropic instability is shown in Fig. (28).

This derives from a numerical simulation of a jet with a Gaussian profile

of relative vorticity. So:

ζ = − ∂

∂y
U = Ae−y2/L2

(253)

In this simulation,β = 0, so the PV gradient is:

∂

∂y
qs = − ∂2

∂y2
U = −2y

L2
Ae−y2/L2

(254)

This is zero aty = 0 and so satisfies Rayleigh’s criterion. We see in the

simulation that the jet is unstable, wrapping up into vortices. These have
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Figure 27: An easterly Gaussian jet (left panel). The middleand right panels show
β − ∂2

∂y2
u for the jet, with amplitudes of 0.04 and 0.1. Note that both satisfy Rayleigh’s

criterion for instability.

positive vorticity, like the jet itself.

An example of barotropic instability in the atmosphere is seen in Fig.

(29). This shows three infrared satellite images of water vapor above the

US. Note in particular the dark band which stretches over the western US in

into Canada. This is a filament of air, near the tropopause. We see that the

filament is rolling up into vortices, much like in the numerical simulation

in (28).

Barotropic instability also occurs in the ocean. Consider the follow-

ing example, from the southern Indian and Atlantic Oceans (Figs. 30-32).

Shown in (30) is a Stommel-like solution for the region. Africa is rep-

resented by a barrier attached to the northern wall, and the island to its

east represents Madagascar. The wind stress curl is indicated in the right

panel; this is negative in the north, positive in the middle and negative in

the south.
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Figure 28: Barotropic instability of a jet with a Gaussian profile in relative vorticity.
Courtesy of G. Hakim, Univ. of Washington.

In the southern part of the domain, the flow is eastward. This repre-

sents the Antarctic Circumpolar Current (the largest ocean current in the

world). In the “Indian ocean”, the flow is to the west, towards Madagas-

car. This corresponds to the South Equatorial Current, which impinges on

Madagascar. There are western boundary currents to the east of Africa and

Madagascar. The boundary currents east of Madagascar flow westward

toward Africa in two jets, to the north and south of the Island. Similarly,

the western boundary current leaves South Africa to flow west and join the

flow in the South Atlantic.

Shown in Fig. (31) is the PV gradient for this solution, in the region

near South Africa and Madagascar. Clearly the gradient is dominated by
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Figure 29: Barotropic instability of filaments on the tropopause, observed from water va-
por infrared satellite imagery. The images were taken on the11th of October, 2005, at
22:45 pm, 3:15 am and 9:45 am, respectively. Courtesy of G. Hakim, Univ. of Washing-
ton.

the separated jets. Moreover, the gradient changes sign several times in

each of the jets. So we would expect the jets might be unstable, by the

Rayleigh-Kuo criterion.

A snapshot from a numerical solution of the barotropic flow is shown in

Fig. (32). In this simulation, the mean observed winds were used to drive

the ocean, which was allowed to spin-up to a statistically steady state. The

figure shows a snapshot of the sea surface height, after the model has spun

up. We see that all three of the eastward jets have become unstable and are

generating eddies (of both signs). The eddies drift westward, linking up

with the boundary currents to their west.

Barotropic instability occurs when the lateral shear in a current is too
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Figure 30: A Stommel-like solution for the Indian Ocean. Thecurl of the wind stress is
indicated in the right panel. From LaCasce and Isachsen (2007).

large. The unstable waves extract energy from the mean flow, reducing the

shear by mixing momentum laterally. However, in the atmospherebaro-

clinic instability is more important, in terms of storm formation. Under

baroclinic instability, the waves act to reduce thevertical shearof the mean

flow. In order to study that, we have to take account of density changes.

Exercise 2.9: Barotropic instability. We have a region with0 ≤ x < 1

and−1 ≤ y < 1. Consider the following velocity profiles:

a)U = 1− y2

b)U = exp(−y2)
c)U = sin(πy)

d)U = 1
6y

3 + 5
6y

Which profiles are unstable by the Rayleigh-Kuo criterion ifβ = 0?

How large mustβ be to stabilizeall the profiles? Note that the terms here
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Figure 31: The PV gradient for the solution in Fig. (30). The gradient changes sign
rapidly in the three jet regions. From LaCasce and Isachsen (2007).

have been non-dimensionalized, so thatβ can be any number (e.g. an

integer).
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Figure 32: The sea surface height from a barotropic numerical simulation of the southern
Indian and Atlantic Oceans. From LaCasce and Isachsen (2007).
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3 Baroclinic flows

We will now examine what happens with vertical shear. In this case the

winds at higher levels need not be parallel to or of equal strength with those

at lower levels. Baroclinic flows are inherently more three dimensional

than barotropic ones. Nevertheless, we will see that we get the same type of

solutions with baroclinic flows as with barotropic ones. We have baroclinic

Rossby waves and baroclinic instability. These phenomena involve some

modifications though, as seen hereafter.

Consider the vorticity equation (123):

(
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂y

∂

∂x
)(∇2ψ + f) = f0

∂

∂z
w (255)

When we derived this, we made no demands about the vertical structure of

the flows. Thus this equation works equally well with baroclinic flows as

barotropic ones. The equation has two unknowns,ψ andw. For barotropic

flows, we eliminatew by integrating over the depth of the fluid. Then the

vertical velocity only enters at the upper and lower boundaries.

With baroclinic flows however it is not so simple to dispose ofw. We

require a second equation which also hasψ andw in it.

3.1 Density Equation

For this, we use the equation for the fluid density (temperature). In the

atmosphere, we have the thermodynamic equation (36):

cp
d(lnθ)

dt
=
J

T
(256)

With zero heating,J = 0, this implies:

dθ

dt
= 0 (257)
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i.e. that the potential temperature is conserved. This equation can be

rewritten in terms ofψ andω and then combined with the pressure co-

ordinate version of the vorticity equation (Appendix F).

To illustrate this, we’ll do the derivation inz-coordinates. The corre-

sponding thermodynamic equation for the ocean is:

dρ

dt
=

∂

∂t
ρ+~·∇ρ = 0 (258)

Here the velocity here is the full velocity, not just the geostrophic one.

Now, we have seen that the hydrostatic approximation is an excellent

approximation for synoptic scale flows. This implies that we can decom-

pose the pressure into static and moving parts:

p = p0(z) + p′(x, y, z, t) = −ρ0gz + p′(x, y, z, t)

Now ρ0 is allowed to vary with height, but only height. So we can write:

ρ = ρ0(z) + ρ′(x, y, z, t) (259)

Only the perturbation fields are important for horizontal motion. We as-

sume too, as always, that the dynamic parts are much smaller:

|ρ′| ≪ ρ0, |p′| ≪ p0 (260)

Moreover, the perturbation terms are also linked by the hydrostatic rela-

tion, as shown in sec. (1.7). So:

∂

∂z
p′ = −ρ′g (261)

Using the static and dynamic densities, along with the geostrophic hor-

izontal velocities, in the simplied density equation yields:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
) ρ′ + w

∂

∂z
ρ0 = 0 (262)
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Note we neglect the term involving the vertical advection of the perturba-

tion density, as this is smaller than the advection of background density.

Using the hydrostatic balance, we have:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)
∂p′

∂z
− gw

∂

∂z
ρ0 = 0 (263)

after multiplying through by−g. Lastly, we can substitute in the geostrophic

streamfunction defined in (120). Then we obtain:

(
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
)
∂ψ

∂z
+
N 2

f0
w = 0 (264)

This is the quasi-geostrophic density equation. HereN 2 is the Brunt-

Vaisala frequency:

N 2 = − g

ρc

dρ0
dz

(265)

The Brunt-Vaisala frequency is a measure of the stratification inz-coordinates.

It reflect the frequency of oscillation of parcels in a stably stratified fluid

which are displaced up or down (see problem 3.1).

Consider what the density equation means. If there is vertical motion

in the presence of background stratification, the perturbation density will

change. For example, if the background density decreases going up (as it

must for a stably stratified fluid), a rising parcel has:

w
∂

∂z
ρ0 < 0

This implies that the pertubation density must increase in time. So as the

parcel rises, it becomes heavier relative to the background density.
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There is an interesting parallel here. The vorticity equation implies that

meridionalmotion changes the parcelsvorticity. Here we see thatvertical

motion affects itsdensity. The two effects are intimately linked when you

have baroclinic instability (sec. 3.7).

Equation (264) gives us a second equation involvingψ andw. Com-

bined with the vorticity equation (123), we now have a complete system.

Problem 3.1: The Brunt-Vaisala Frequency.

Consider a fluid parcel which is displaced from its initial vertical posi-

tion, z0, a distanceδz. Assume we have a mean background stratification

for which:
∂

∂z
p = −ρ0g

Substitute this into the vertical momentum equation to find:

dw

dt
= g(

ρ0 − ρ

ρ
)

Estimateρ0 at z0 + δz by Taylor-expanding aboutz0. Assume the parcel

conserves its density fromz0. Then use the vertical momentum equation

to show that:
d2(δz)

dt2
= −N 2δz

and defineN 2. This is known as the Brunt-Vaisala frequency. What hap-

pens ifN 2 > 0? What if it is negative?

3.2 QG Potential vorticity

We now have two equations with two unknowns. It is straightforward to

combine them to produce a single equation with only one unknown. We

eliminatew from (123) and (264). First we multiply (264) byf 20/N
2 and
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take the derivative with respect toz:

∂

∂z
(
f 20
N 2

∂

∂t

∂ψ

∂z
) +

∂

∂z
[~ug · ∇(

f 20
N 2

∂ψ

∂z
)] = −f0

∂

∂z
w (266)

Now the second term can be expanded thus:

(
∂

∂z
~ug) · ∇(

f 20
N 2

∂ψ

∂z
) + ~ug · ∇(

∂

∂z
(
f 20
N 2

∂ψ

∂z
))

The first term vanishes. You can see this by writing the velocity in terms

of the streamfunction:

f 20
N 2

[− ∂

∂z
(
∂ψ

∂y
)
∂

∂x
(
∂ψ

∂z
) +

∂

∂z
(
∂ψ

∂x
)
∂

∂y
(
∂ψ

∂z
)] = 0 (267)

The physical reason for this is that the the geostrophic velocity is parallel

to the pressure; thus the dot product between( ∂
∂z~ug) and the gradient of

∂
∂zψ must be zero. So (266) reduces to:

(
∂

∂t
+ ~ug · ∇) [

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] = −f0

∂

∂z
w

If we combine (266) with (123), we get:

(
∂

∂t
+ ~ug · ∇) [∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy] = 0 (268)

This is thequasi-geostrophic potential vorticity(QGPV) equation. It has

only one unknown,ψ. The equation implies that the potential vorticity:

q = ∇2ψ +
∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy (269)

is conserved following a parcel moving with the geostrophic flow. This

is a powerful constraint. The flow evolves in such a way thatq is only

redistributed, not changed.
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The first term in the QGPV is the QG relative vorticity and the third

term is the planetary vorticity, as noted before. The second term is new;

this is thestretching vorticity. This is related to vertical gradients in the

density.

The QGPV equation can be used to model synoptic scale flows. If one

were to codes this up, you would solve for the flow in several steps. First,

the QGPV equation is advanced in time, to obtain the PV at the next time

step. Then the PV isinvertedto obtain the streamfunction. From this, we

can obtain the velocities and then advance the QGPV equation again. How-

ever, the inversion step is often non-trivial. Doing this requiresboundary

conditions. We consider these next.

3.3 Boundary conditions

Notice the QGPV equation (268) doesn’t contain any Ekman or topo-

graphic terms. This is because the PV equation pertains to the interior.

In the barotropic case, we introduced those terms by integrating between

the lower and upper boundaries. But here, we must treat the boundary

conditions separately.

We obtain these by evaluating the density equation (264) at the bound-

aries. We can rewrite the relation slightly this way:

f0
N 2

dg
dt

∂ψ

∂z
= −w (270)

As discussed in section (2.2), the vertical velocity at the boundary can

come from either pumping from an Ekman layer or flow over topography.

Thus for the lower boundary, we have:

f0
N 2

dg
dt

∂ψ

∂z
|zb = −ug · ∇h− δ

2
∇2ψ (271)
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where the velocities and streamfunction are evaluated at the bottom bound-

ary, which we take to be atz = zb.

The upper boundary condition is similar. For the ocean, with the ocean

surface atz = zu, we have:

f0
N 2

dg
dt

∂ψ

∂z
|zu = − 1

ρcf0
∇× ~τw (272)

The upper boundary condition for the atmosphere depends on the applica-

tion. If we are considering the entire atmosphere, we could demand that

the amplitude of the motion decay asz → ∞, or that the energy flux is

directed upwards. However, we will primarily be interested in motion in

the troposphere. Then we can treat the tropopause as a surface, either rigid

or freely moving. If it is a rigid surface, we would have simply:

1

N 2

dg
dt

∂ψ

∂z∗
|zu = 0 (273)

at z = zu. A free surface is only slightly more complicated, but the rigid

upper surface will surfice for what follows.

3.4 Baroclinic Rossby waves

We now look at some specific solutions. We will begin with seeing how

stratification alters the Rossby wave solutions.

First we linearize the PV equation (268) assuming a constant back-

ground flow:

(
∂

∂t
+ U

∂

∂x
) [∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] + β

∂

∂x
ψ = 0 (274)

We assume moreover that the domain lies between two rigid, flat surfaces.

With the ocean in mind, we’ll take the boundaries atz = 0 andz = −D
(the result would be the same with positivez). We will also neglect Ekman
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layers on those surfaces. So the linearized boundary condition on each

surface is:

(
∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
= 0 (275)

This implies that the density (or temperature) doesn’t change on parcels

advected by the mean flow along the boundary. Thus the density is constant

on the boundaries, and we take the constant to be zero, so that:

∂ψ

∂z
= 0 (276)

The coefficients in the PV equation do not vary with time or in(x, y).

But the Brunt-Vaisala frequency,N , can vary inz. So an appropriate

choice of wave solution would be:

ψ = Re{ψ̂(z)ei(kx+ly−ωt)} (277)

Substituting this into the PV equation, we get:

(−iω + ikU)[−(k2 + l2)ψ̂ +
∂

∂z
(
f 20
N 2

∂ψ̂

∂z
)] + iβkψ̂ = 0 (278)

or:
∂

∂z
(
f 20
N 2

∂ψ̂

∂z
) + λ2ψ̂ = 0 (279)

where:

λ2 ≡ −k2 − l2 +
βk

Uk − ω
(280)

Equation (279) determines the vertical structure,ψ̂(z), of the Rossby

waves. With the boundary conditions (276), this constitutes aneigenvalue

or “Sturm-Liouville” problem. Only specific values ofλ will be permitted.

In order to find the dispersion relation for the waves, we must first solve

for the vertical structure.
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3.4.1 Baroclinic modes with constant stratification

To illustrate, consider the simplest case, withN 2 = const. Then we have:

∂2

∂z2
ψ̂ +

N 2λ2

f 20
ψ̂ = 0 (281)

This has a general solution:

ψ̂ = Acos(
Nλz

f0
) +Bsin(

Nλz

f0
) (282)

In order to satisfy ∂
∂z ψ̂ = 0 on the upper boundary (atz = 0), we

require thatB = 0. But in addition, it must work on the lower boundary,

at z = −D. So eitherA = 0 (so that we have no wave at all) or:

sin(
NλD

f0
) = 0 (283)

For this to be true:
NλD

f0
= nπ (284)

wheren = 0, 1, 2... is an integer. In other words, only specific combina-

tions of of the parameters will work. Solving forλ, we get:

λ2 =
n2π2f 20
N 2D2

=
n2

L2
D

(285)

Here,

LD =
ND

πf0

is the baroclinicdeformation radius. Combining this with the definition of

λ2, we get:
n2

L2
D

≡ −k2 − l2 +
βk

Uk − ω
(286)

Solving forω, we obtain:

ω ≡ ωn = Uk − βk

k2 + l2 + n2/L2
D

(287)
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This is thedispersion relation for baroclinic Rossby waves. In fact, we

have an infinite number of relations, one for each value ofn. And for each

n, we have a different vertical struture. The wave structure corresponding

to each is given by:

ψ = Acos(kx+ ly − ωnt) cos(
nπz

D
) (288)

These are the baroclinic Rossby waves.

Consider first the case withn = 0. Then the dispersion relation is:

ω0 = Uk − βk

k2 + l2
(289)

This is just the dispersion relation for the barotropic Rossby wave obtained

earlier (sec. 2.4). The wave solution withn = 0 is

ψ0 = Acos(kx+ ly − ωnt) (290)

This doesn’t vary in the vertical, exactly like the barotropic case we con-

sidered before. So thebarotropic modeexists, even though there is strat-

ification. All the properties that we derived before apply to this wave as

well.

With n = 1, the streamfunction is:

ψ1 = Acos(kx+ ly − ωnt)cos(
πz

D
) (291)

This is thefirst baroclinic mode. The streamfunction (and thus the veloc-

ities) change sign in the vertical. Thus if the velocity is eastward near the

upper boundary, it is westward near the bottom. There is also a “zero-

crossing” atz = −D/2, where the velocities vanish. The waves have an

associated density perturbation as well:
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ρ1 ∝
∂

∂z
ψ1 = −nπ

D
Acos(kx+ ly − ωnt)sin(

πz

D
) (292)

So the density perturbation is largest at the mid-depth, where the horizontal

velocities vanish. In the ocean, first mode baroclinic Rossby waves cause

large deviations in thethermocline, which is the subsurface maximum in

the density gradient.

We have assumed the surface and bottom are flat, and our solution has

no density perturbations on those surfaces. However, if we had allowed

the upper surface to move, we would have found that the first baroclinic

mode has an associated surface deflection. Moreover, this deflection is of

the opposite in sign to the density perturbation at mid-depth. If the density

contours are pressed down at mid-depth, the surface rises. This means one

can observe baroclinic Rossby waves by satellite.

The dispersion relation for the first mode is:

ω1 = Uk − βk

k2 + l2 + 1/L2
D

(293)

The corresponding zonal phase speed is:

c1 =
ω1

k
= U − β

k2 + l2 + 1/L2
D

(294)

So the first mode wave also propagates westward relative to the mean flow.

But the phase speed isslower than that of the barotropic Rossby wave.

However, if the wavelength is much smaller than the deformation radius

(so thatk2 + l2 ≫ 1/L2
d), then:

c1 ≈ U − β

k2 + l2
(295)

So small scale baroclinic waves have a phase speed like that of a barotropic

wave of the same size.
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If on the other hand the wave is much larger than the deformation radius,

then:

c1 ≈ U − βL2
D = U − βN 2D2

π2f 20
(296)

This means the large waves arenon-dispersive, because the phase speed

is independent of the wavenumber. This phase speed, known as the “long

wave speed”, is a strong function of latitude, varying inversely with the

square of the Coriolis parameter. Wheref0 is small—at low latitudes—the

long baroclinic waves move faster.
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Figure 33: Rossby phase speeds as a function of wavenumber forthe first four modes.

The phase speeds from the first four modes are plotted as a function of

wavenumber in Fig. (33). Here we plot the function:

cn =
1

2k2 + n2
(297)

118



(note that the actualc is the negative of this). We have setβ = LD = 1 and

k = l and assumed the mean flow is zero. The barotropic mode (n = 0)

has a phase speed which increases without bound as the wavenumber goes

to zero. This is actually a consequence of having a rigid lid at the surface;

if we had a free (moving) surface, the wave would have a finite phase speed

at k = 0. The first baroclinic mode (n = 1) has a constant phase speed

at low k, equal toc = 1. This is the long wave speed withLD = 1. The

second and third baroclinic modes (n = 2, 3) also have long wave speeds,

but these are four and nine times smaller than the first baroclinic long wave

speed.

Problem 3.2: Normal modes

We solved for the baroclinic modes assuming the the upper and lower

boundaries were flat surfaces, withw = 0. As a result, the waves have

non-zero flow at the bottom. But if the lower boundary isrough, a better

condition is to assume that the horizontal velocity vanishes, i.e.u = v = 0.

Find the modes with this boundary condition. Compare the solutions

to those with a flat bottom. What happens to the barotropic mode? The

derivation is slightly simpler if you have the bottom atz = 0 and the

surface atz = D.

Problem 3.3: Baroclinic Rossby waves

a) What is the phase velocity for a long first baroclinic Rossby wave in

the ocean at 10N? Assume thatN = 0.01 sec−1 and that the ocean depth

is 5 km.

b) What about at 30N?

119



c) What is the group velocity for long first baroclinic Rossby waves?

d) What do you think would happen to a long wave if it encountered a

western wall?

3.4.2 Baroclinic modes with exponential stratification

In the preceding section, we assumed a constant Brunt-Vaisala frequency,

N . This implies the density has linear profile in the vertical. In reality,

the oceanic density varies strongly withz. In many locations, the Brunt-

Vaisala frequency exhibits a nearly exponential dependence on depth, with

larger values near the surface and smaller ones at depth.

An exponential profile can also be solved analytically. Assume:

N 2 = N 2
0 e

αz (298)

Substituting (298) into (279) yields:

d2ψ̂

dz2
− α

dψ̂

dz
+
N 2

0λ
2

f 20
eαzψ̂ = 0 (299)

Making the substitutionζ = eαz/2, we obtain:

ζ2
d2ψ̂

dζ2
− ζ

dψ̂

dζ
+

4N 2
0λ

2

α2f 20
ζ2ψ̂ = 0 (300)

This is a Bessel-type equation. The solution which satisfies the upper

boundary condition (atz = 0) is:

ψ̂ = Aeαz/2[Y0(2γ)J1(2γe
αz/2)− J0(2γ)Y1(2γe

αz/2)] (301)

whereγ = N0λ/(αf0). If we then impose the bottom boundary condition,

we get:

J0(2γ)Y0(2γe
−αH/2)− Y0(2γ)J0(2γe

−αH/2) = 0 (302)
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Figure 34: The baroclinic modes withN=const. (upper left panel) and with exponential
N . In the upper right panel,α−1 = H/2, and in the lower left,α−1 = H/10. In all cases,
H = 1. From LaCasce (2012).

Equation (302), atranscendental equation, admits only certain discrete

values,γn. In other words,γn is quantized, just as it was with constant

stratification. Onceγn is found, the wave frequencies can be determined

from the dispersion relation as before. Equation (302) is more difficult to

solve than with constant stratification, but it’s possible to do this numeri-

cally. Notice though thatγ = 0 is also a solution of (302)—so there is also

a barotropic mode in this case as well.

Some examples of the wave vertical structure,ψ̂(z), are shown in Fig.

(34). In the upper left panel are the cosine modes, with constantN 2. In

the upper right panel are the modes with exponential stratification, for the

case whereα−1, the e-folding depth of the stratification, is equal to half the

total depth. In the lower right panel are the modes with the e-folding depth

equal to 1/10th the water depth. In all cases, there is a depth-independent
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barotropic mode plus an infinite set of baroclinic modes. And in all cases,

the first baroclinic mode has one zero crossing, the second mode has two,

and so forth. But unlike the cosine modes, the exponential modes have

their largest amplitudes near the surface. So the Rossby wave velocities

and density perturbations are likewise surface-intensified.

Figure 35: Sea surface height anomalies at two successive times. Westward phase propa-
gation is clear at low latitudes, with the largest speeds occurring near the equator. From
Chelton and Schlax (1996).

3.4.3 Observations of Baroclinic Rossby waves

As noted, baroclinic Rossby waves can be seen by satellite. Satelliteal-

timetersmeasure the sea surface height elevation, and because Rossby
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waves also have a surface signature, then can be observed. Shown in Fig.

(35) are two sea surface height fields from 1993. There are large scale

anomalies in the surface elevation, and these migrate westward in time.

The speed of propagation moreover increases towards the equator, which

is evident from a bending of the leading wave front (indicated by the white

contours).

Figure 36: Westward phase speeds deduced from the motion of sea surface height anoma-
lies, compared with the value predicted by the long wave phase speed given in (296). The
lower panel shows the ratio of observed to predicted phase speed. Note the observed
speeds are roughly twice as fast at high latitudes. From Chelton and Schlax (1996).

One can use satellite date like this to deduce the phase speed. Sections

of sea surface height at fixed latitudes are used to construct Hovmuller

diagrams (sec. 2.4.4), and then the phase speed is determined from the tilt

of the phase lines. This was done by Chelton and Schlax (1996), from the
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Hovmuller diagrams shown in Fig. (17); the resulting phase speeds are

plotted against latitude in Fig. (36). The observations are plotted over a

curve showing the long wave speed for the first baroclinic mode.

There is reasonable agreement at most latitudes. The agreement is very

good below about 20 degrees of latitude; at higher latitudes there is a sys-

tematic discrepancy, with the observed waves moving perhaps twice as fast

as predicted. There are a number of theories which have tried to explain

this.5 For our purposes though, we see that the simple theory does surpris-

ingly well at predicting the observed sea surface height propagation.

There are, in addition, the higher baroclinic modes (withn > 1). These

waves are even slower than the first baroclinic mode and have more struc-

ture in the vertical. The second baroclinic mode thus has two zero-crossings

and the third baroclinic mode has three.

Note that the eigenfunctions obtained from the Sturm-Liouville prob-

lem form acomplete basis. That means that we can express an arbitrary

function in terms of them, if that function is continuous. So oceanic cur-

rents can be decomposed into vertical modes. An early attempt to do this

was made by Kundu et al. (1974) using observations off the Oregon coast.

Wunsch (1997) studied currents using a large collection of current meters.

He found that the variability projects largely onto the barotropic and first

baroclinic modes. So these two modes are probably the most important for

time-varying motion.

3.5 Mountain waves

In sec. (2.8), we saw how a mean wind blowing over mountains could

excite standing Rossby waves. Now we will consider what happens in the
5See for example LaCasce and Pedlosky (2004) and Isachsen et al. (2007).

124



baroclinic case.

We consider the potential vorticity equation (268), without forcing:

dg
dt
[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy] = 0 (303)

As before, we consider the flow driven by a mean zonal wind:

U
∂

∂x
[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] + β

∂

∂x
ψ = 0 (304)

The mean flow is constant, i.e. there is no vertical or lateral shear (we

take up a vertically sheared flow later on). As before, we ignore the time

dependence; we are looking for stationary, wave-like solutions. Again we

will assume that the stratification parameter,N 2, is constant, for simplicity.

With a constantN 2, all the coefficients in the vorticity equation are

constant. That means we can use a solution which is wave-like in all di-

rections:

ψ = ψ̂eikx+ily+imz (305)

Substituting this into (304) yields:

ikU [−(k2 + l2)−m2 f
2
0

N 2
] + ikβψ̂ = 0 (306)

Rearranging, we get:

m = ±N
f0
(
β

U
− k2 − l2)1/2 (307)

The character of the solution depends on the term in the square root in

(307). If this ispositive, thenm is real and we have wave-like solutions.

But if the argument isnegative, thenm will be imaginary and the vertical

dependence will beexponential. If we rule out those solutions which grow
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with height—recall that the source for the waves is the mountains, at the

ground—then the exponential solutions are decaying upward.

But if the argument is positive, thenm is real and the solution is wave-

like in z. This means the waves can effectively propagate upward to in-

finity, leaving the troposphere and entering the stratosphere and beyond.

Then the waves generated at the surface can alter the circulation higher up

in the atmosphere.

In order for the argument to be positive, we require:

β

U
> k2 + l2 (308)

This implies that the mean flow,U , must bepositive, or eastward. Rewrit-

ing the relation, we have:

0 < U <
β

k2 + l2
≡ Us (309)

So whileU must be positive, neither can it be too strong. It must, in

particular, be less thanUs, the speed at which the barotropic Rossby wave

is stationary (sec. 2.4.3).

Why is the mean flow limited by speed of the barotropic wave? As we

saw in the previous section, the barotropic mode is thefastestof all the

Rossby modes. So upward propagating waves are possible only when the

mean speed is slow enough so that one of the baroclinic Rossby modes is

stationary.

Notice that we have not said anything about the lower boundary, where

the waves are forced. In fact, the form of the mountains determines the

structure of the stationary waves. But the general condition above applies

to all types of mountain. If the mean flow is westerly and not too strong,
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Figure 37: The geopotential height at 10 hPa on February 11 and 16, 1979. The polar
vortex is being perturbed by a disturbance over the Pacific. From Holton,An Introduction
to Dynamic Meteorology.

the waves generated over the mountains can extend upward indefinitely.

Upward propagating Rossby waves are important in the stratosphere,

and can greatly disturb the flow there. They can even change the usual

equator-to-pole temperature difference, astratospheric warmingevent.

Consider Figs. (37) and (38). In the first panel of Fig. (37), we see

the polar vortexover the Arctic. This is a region of persistent low pres-

sure (with a correspondingly low tropopause height). In the second panel,

a high pressure is developing over the North Pacific. This high intensi-

fies, eventually causing the polar vortex has split in two, making a mode
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Figure 38: The geopotential height at 10 hPa on February 21, 1979 (following Fig. 37).
The polar vortex has split in two, appearing now as a mode 2 Rossby wave. From Holton,
An Introduction to Dynamic Meteorology.

2 planetary wave (Fig. 38). The wave has a corresponding temperature

perturbation, and in regions the air actually warms moving from south to

north.

Stratospheric warming events occur only in the wintertime. Charney

and Drazin (1961) used the above theory to explain which this happens. In

the wintertime, the winds are westerly (U > 0), so that upward propagation

is possible. But in the summertime, the stratospheric winds areeasterly

(U < 0), preventing upward propagation. So Rossby waves only alter the

stratospheric circulation in the wintertime.

128



Problem 3.4: Mountain waves

Suppose that a stationary linear Rossby wave is forced by flow over

sinusoidal topography with heighth(x) = h0 cos(kx). Show that the lower

boundary condition on the streamfunction can be expressed as:

∂

∂z
ψ = −hN

2

f0
(310)

Using this, and an appropriate upper boundary condition, solve forψ(x, z).

What is the position of the crests relative to the mountain tops?

3.6 Topographic waves

In an earlier problem, we found that a sloping bottom can support Rossby

waves, just like theβ-effect. The waves propagate with shallow water to

their right (or “west”, when facing “north” up the slope). Topographic

waves exist with stratification too, and it is useful to examine their struc-

ture.

We’ll use the potential vorticity equation, linearized with zero mean

flow (U = 0) and on thef -plane (β = 0). We’ll also assume that the

Brunt-Vaisala frequency,N , is constant. Then we have:

∂

∂t
(∇2ψ +

f 20
N 2

∂2

∂z2
ψ) = 0 (311)

Thus the potential vorticity in the interior of the fluiddoes not change in

time; it is simply constant. We can take this constant to be zero.

For the bottom boundary condition, we will assume a linear topographic

slope. This can be in any direction, but we will say the depth is decreasing

toward the north:
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D = D0 − αy (312)

so thath = αy. In fact, this is a general choice because withf=const., the

system is rotationally invariant (why?). With this topography, the bottom

boundary condition (271) becomes:

f0
N 2

dg
dt

∂ψ

∂z∗
|zb = −ug · ∇h → dg

dt

∂

∂z
ψ +

N 2

f0
αv = 0 (313)

Let’s assume further that the bottom is atz = 0. We won’t worry about the

upper boundary, as the waves will be trapped near the lower one.

To see that, assume a solution which is wave-like inx andy:

ψ = Re{ψ̂(z)eikx+ily−iωt} (314)

Under the condition that the PV is zero, we have:

(−k2 − l2)ψ̂ +
f 20
N 2

∂2

∂z2
ψ̂ = 0 (315)

or

∂2

∂z2
ψ̂ − N 2κ2

f 20
ψ̂ = 0 (316)

whereκ = (k2 + l2)1/2 is again the total wavenumber. This equation only

has exponential solutions. The one that decays going up from the bottom

boundary has:

ψ̂(z) = Ae−Nκz/|f0| (317)

This is the vertical structure of the topographic waves. It implies the waves

have a vertical e-folding scale of:
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H ∝ |f0|
Nκ

=
|f0|λ
2πN

if λ is the wavelength of the wave. Thus the vertical scale of the wavede-

pends on its horizontal scale. Larger waves extend further into the interior.

Note too that we have acontinuumof waves, not a discrete set like we did

with the baroclinic modes (sec. 3.4).

Notice that we would have obtained the same result with the mountain

waves in the previous section. If we take (307) and setβ = 0, we get:

m = ±N
f0
(−k2 − l2)1/2 = ±iNκ

f0
(318)

So withβ = 0, we obtainonly exponential solutions in the vertical. The

wave-like solutions require an interior PV gradient.

Now we can apply the bottom boundary condition. We linearize (313)

with zero mean flow and writev in terms of the streamfunction:

∂

∂t

∂

∂z
ψ +

N 2α

f0

∂ψ

∂x
= 0 (319)

Substituting in the wave expression forψ, we get:

−ωNκ|f0|
A− N 2αk

f0
A = 0 (320)

so that:

ω = −Nαk
κ

sgn(f0) (321)

wheresgn(f0) is +1 if f > 0 and -1 iff < 0.

This is the dispersion relation for stratified topographic waves. The

phase speed in thex-direction (along the isobaths, the lines of constant

depth) is:

131



cx = −Nα
κ
sgn(f0) (322)

This then is “westward” in the Northern Hemisphere, i.e. with the shal-

low water on the right. As with planetary waves, the fastest waves are

the largest ones (with smallκ). These are also the waves the penetrate

the highest into the water column. Thus the waves which are closest to

barotropic are the fastest.

Topographic waves are often observed in the ocean, particularly over

the continental slope. Observations suggest that disturbances originating

at the equator propagate north (with shallow water on the right) past Cal-

ifornia towards Canada. At the same time, waves also propagate south

(with the shallow water on the left) past Peru.

Problem 3.5: Topographic waves

Say we are in a region where there is a steep topographic slope rising to

the east, as off the west coast of Norway. The bottom decreases by 1 km

over a distance of about 20 km. Say there is a southward flow of 10 cm/sec

over the slope (which is constant with depth). Several fishermen have seen

topographic waves which span the entire slope. But they disagree about

which way they are propagating—north or south. Solve the problem for

them, given thatN ≈ 10f0 and that we are at 60N.

3.7 Baroclinic instability

Now we return to instability. As discussed before, solar heating of the

earth’s surface causes a temperature gradient, with a warmer equator and

colder poles. This north-south temperature gradient is accompanied by a
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vertically sheared flow in the east-west direction. The flow is weak near

the surface and increases moving upward in the troposphere.

NS

cold

warm

B

C

A

Figure 39: Slantwise convection. The slanted isotherms areaccompanied by a thermal
wind shear. The parcel A is colder, and thus heavier, than parcel C, implying static stabil-
ity. But A is lighter than B. So A and B can be interchanged, releasing potential energy.

3.7.1 Basic mechanism

The isotherms look (crudely) as sketched in Fig. (39). The temperature

decreases to the north, and also increases going up. Thus the parcel A is

colder (and heavier) than parcel C, which is directly above it. The air is

stably stratified, because exchanging A and C wouldincreasethe potential

energy.

However, because the isotherms tilt, there is a parcel B which is above

A and heavier. So A and B can be exchanged,releasingpotential en-

ergy. This is often referred to as “slantwise” convection, and it is the basis

for baroclinic instability. Baroclinic instability simultaneouslyreduces the

vertical shearwhile decreasing the north-south temperature gradient. In

effect, it causes the temperature contours to slump back to a more horizon-

tal configuration, which reduces the thermal wind shear while decreasing

the meridional temperature difference.
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Baroclinic instability is extremely important. For one, it allows us to

live at high latitudes—without it, the poles would be much colder than the

equator.

3.7.2 Charney-Stern criterion

We can derive conditions for baroclinic instability, just as we did to obtain

the Rayleigh-Kuo criterion for barotropic instability. We begin, as always,

with the PV equation (268):

dg
dt
[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy] = 0 (323)

We linearize this about a mean flow,U , which varies inboth they andz-

directions. Doing this is the same thing if we had writen the streamfunction

as:

ψ = Ψ(y, z) + ψ′(x, y, z, t) (324)

where the primed streamfunction is much smaller than the mean stream-

function. The mean streamfunction has an associated zonal flow:

U(y, z) = − ∂

∂y
Ψ (325)

Note it has no meridional flow (V ) becauseΨ is independent ofx. Using

this, we see the mean PV is:

∂2

∂y2
Ψ+

∂

∂z
(
f 20
N 2

∂Ψ

∂z
) + βy (326)

So the full linearized PV equation is:

(
∂

∂t
+ U

∂

∂x
)[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] + (

∂

∂y
qs)

∂

∂x
ψ = 0 (327)
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where:

∂

∂y
qs = β − ∂2

∂y2
U − ∂

∂z
(
f 20
N 2

∂U

∂z
) (328)

We saw the first two terms before, in the barotropic case. The third term

however is new. It comes about because the mean velocity (and hence the

mean streamfunction) varies inz.

In addition, we need the boundary conditions. We will assume flat

boundaries and no Ekman layers, to make this simple. Thus we use (273),

linearized about the mean flow:

dg
dt

∂ψ

∂z
= (

∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
+ v

∂

∂y

∂Ψ

∂z

= (
∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
− v

∂U

∂z
= 0 (329)

We’ll assume that we have boundaries at the ground, atz = 0, and an

upper level,z = D. The latter could be the tropopause. Alternatively, we

could have no upper boundary at all, as with the mountain waves. But we

will use an upper boundary in the Eady model in the next section, so it’s

useful to include that now.

BecauseU is potentially a function of bothy andz, we can only assume

a wave structure in(x, t). So we use a Fourier solution with the following

form:

ψ = ψ̂(y, z)eik(x−ct) (330)

Substituting into the PV equation (327), we get:

(U − c)[−k2ψ̂ +
∂2

∂y2
ψ̂ +

∂

∂z
(
f 20
N 2

∂ψ̂

∂z
)] + (

∂

∂y
qs)ψ̂ = 0 (331)
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after canceling the factor ofk. Similarly, the boundary conditions are:

(U − c)
∂

∂z
ψ̂ − (

∂

∂z
U)ψ̂ = 0 (332)

We now do as we did in sec. (2.11.1): we divide (331) byU − c and

then multiply by the complex conjugate ofψ̂:

ψ̂∗[
∂2

∂y2
ψ̂ +

∂

∂z
(
f 20
N 2

∂ψ̂

∂z
)]− k2|ψ̂|2 + 1

U − c
(
∂

∂y
qs)|ψ̂|2 = 0 (333)

We then separate real and imaginary parts. The imaginary part of the equa-

tion is:

ψ̂r
∂2

∂y2
ψ̂i − ψ̂i

∂2

∂y2
ψ̂r + ψ̂r

∂

∂z
(
f 20
N 2

∂ψ̂i

∂z
)− ψ̂i

∂

∂z
(
f 20
N 2

∂ψ̂r

∂z
)

+
ci

|U − c|2 (
∂

∂y
qs)|ψ̂|2 = 0 (334)

We have again used:

1

U − c
=

1

U − cr − ici
=
U − cr + ici
|U − c|2

As we did previously, we use a channel domain and demand thatψ̂ = 0

at the north and south walls, aty = 0 andy = L. We integrate the PV

equation iny and then invoke integration by parts. Doing this yields, for

the first two terms on the LHS:

∫ L

0

(ψ̂i
∂2

∂y2
ψ̂r − ψ̂r

∂2

∂y2
ψ̂i) dy = ψ̂i

∂

∂y
ψ̂r|L0 −

∫ L

0

∂

∂y
ψ̂i
∂

∂y
ψ̂r dy

−ψ̂r
∂

∂y
ψ̂i|L0 +

∫ L

0

∂

∂y
ψ̂r

∂

∂y
ψ̂i dy = 0 (335)
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We can similarly integrate the PV equation in the vertical, fromz = 0 to

z = D, and again integrate by parts. This leaves:

ψ̂r
f 20
N 2

∂ψ̂i

∂z
|D0 − ψ̂i

f 20
N 2

∂ψ̂r

∂z
|D0 (336)

(because the leftover integrals are the same and cancel each other). We

then evaluate these two terms using the boundary condition. We rewrite

that as:

∂

∂z
ψ̂ = (

∂

∂z
U)

ψ̂

U − c
(337)

The real part of this is:

∂

∂z
ψ̂r = (

∂

∂z
U)[

(U − cr)ψ̂r

|U − c|2 − ciψ̂i

|U − c|2 ] (338)

and the imaginary part is:

∂

∂z
ψ̂i = (

∂

∂z
U)[

(U − cr)ψ̂i

|U − c|2 +
ciψ̂r

|U − c|2 ] (339)

If we substitute these into (336), we get:

f 20
N 2

(
∂

∂z
U)

ciψ̂
2
i

(U − cr)2 + c2i
|D0 +

f 20
N 2

(
∂

∂z
U)

ciψ̂
2
r

(U − cr)2 + c2i
|D0 =

f 20
N 2

(
∂

∂z
U)

cî|ψ|2
(U − cr)2 + c2i

|D0 (340)

So the doubly-integrated (336) reduces to:

ci[

∫ L

0

∫ D

0

|ψ̂|2
|U − c|2 (

∂

∂y
qs) dz dy +

∫ L

0

f 20
N 2

|̂ψ|2
|U − c|2 (

∂

∂z
U) |D0 dy ] = 0

(341)
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This is theCharney-Stern criterionfor instability. In order to have insta-

bility, ci > 0 and that requires that the term in brackets vanish.

Note that the first term is identical to the one we got for the Rayleigh-

Kuo criterion (249). In that case we had:

∂

∂y
qs = β − ∂2

∂y2
U (342)

For instability, we required that∂∂yqs had to be zero somewhere in the do-

main.

The baroclinic condition is similar, except that now the background PV

is given by (328), so:

∂

∂y
qs = β − ∂2

∂y2
U − ∂

∂z
(
f 20
N 2

∂U

∂z
) = 0

So now the vertical shear can also cause the PV gradient to vanish.

In addition, the boundary contributions also come into play. In fact we

havefour possibilities:

• ∂
∂yqs vanishes in the interior, with∂∂zU = 0 on the boundaries

• ∂
∂zU at the upper boundary has the opposite sign as∂

∂yqs

• ∂
∂zU at the lower boundary has the same sign as∂

∂yqs

• ∂
∂zU has the same sign on the boundaries, with∂

∂yqs = 0 in the interior

The first condition is the Rayleigh-Kuo criterion. This is the only condition

in the baroclinic case too if the vertical shear vanishes at the boundaries.

Note that from the thermal wind balance:
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∂

∂z
U ∝ ∂

∂y
T

So having zero vertical shear at the boundaries implies the temperature is

constanton them. So the boundaries are important if there is a temperature

gradient on them.

The fourth condition applies when the PV (and hence the gradient) is

zero in the interior. Then the two boundaries can interact to produce in-

stability. This is Eady’s(1949) model of baroclinic instability, which we

consider in the next section.

In the atmosphere, the mean relative vorticity is generally smaller than

theβ-effect. So the interior gradient is positive (and approximately equal

to β). Then the main effect is for the lower boundary to cancel the inte-

rior term. This is what happens in Charney’s(1947) model of baroclinic

instability.

It is also possible to construct a model with zero shear at the boundaries

and where the gradient of the interior PV vanishes because of the vertical

gradient. This is what happens in Phillip’s(1954) model of instability. His

model has two fluid layers, with the flow in each layer being barotropic.

Thus the shear at the upper and lower boundaries is zero. But because

there are two layers, the PV in each layer can be different. If the PV in

the layers is of opposite sign, then they can potentially sum to zero. Then

Philip’s model is unstable.

As with the Rayleigh-Kuo criterion, the Charney-Stern criteria repre-

sent a necessary condition for instability but not a sufficient one. So satis-

fying one of the conditions above indicates instabilitymayoccur. Note that

only one needs to be satisfied. But if none of the conditions are satisfied,

the flow is stable.
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Problem 3.6: Instability and the Charney-Stern relation

Consider a region with−1 ≤ y < 1 and0 ≤ z ≤ D. We have the

following velocity profiles:

a)U = Acos(πzD )

b)U = Az +B

c)U = z(1− y2)

Which profiles are stable or unstable ifβ = 0 andN 2 = const.? What

if β 6= 0?

(Note the terms have been non-dimensionalized, soβ can be any num-

ber, e.g. 1, 3.423, .5, etc.).

3.8 The Eady model

The simplest model of baroclinic instability with continuous stratifica-

tion is that of Eady (1949). This came out two years after Charney’s

(1947) model, which also has continuous stratificationand theβ-effect—

something not included in the Eady model. But the Eady model is com-

paratively simple, and illustrates the major aspects.

The configuration for the Eady model is shown in Fig. (40). We will

make the following assumptions:

• A constant Coriolis parameter (β = 0)

• Uniform stratification (N 2 = const.)

• The mean velocity has a constant shear, soU = Λz
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U =     zΛ

y=L

y=0

The Eady Model

Figure 40: The configuration for the Eady model.

• The motion occurs between two rigid plates, atz = 0 andz = D

• The motion occurs in a channel, withv = 0 on the walls aty = 0, L

The uniform stratification assumption is reasonable for the troposphere

but less so for the ocean (where the stratification is greater near the sur-

face, as we have seen). The rigid plate assumption is also unrealistic, but

simplifies the boundary conditions.

From the Charney-Stern criteria, we see that the model can be unstable

because the vertical shear is the same on the two boundaries. The interior

PV on the other hand is zero, so this cannot contribute to the instability.

We will see that the interior in the Eady model is basically passive. It is

the interaction between temperature anomalies on the boundaries which

are important.

We will use a wave solution with the following form:

ψ = ψ̂(z)sin(
nπy

L
)eik(x−ct)
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The sin term satisfies the boundary conditions on the channel walls be-

cause:

v =
∂

∂x
ψ = 0 → ikψ̂ = 0 (343)

which implies thatψ̂ = 0. Thesin term vanishes aty = 0 andy = L.

The linearized PV equation for the Eady model is:

(
∂

∂t
+ U

∂

∂x
)(∇2ψ +

f 20
N 2

∂2

∂z2
ψ) = 0 (344)

Because there is noβ term, the PV is constant on air parcels advected by

the mean flow. Inserting the wave solution in yields:

(U − c)[(−(k2 +
n2π2

L2
)ψ̂ +

f 20
N 2

∂2

∂z2
ψ̂] = 0 (345)

So either the phase speed equals the mean velocity or the PV itself is zero.

The former case defines what is known as acritical layer; we won’t be

concerned with that at the moment. So we assume instead the PV is zero.

This implies:

∂2

∂z2
ψ̂ = α2ψ̂ (346)

where

α ≡ Nκ

f0

and whereκ = (k2+(nπ/L)2)1/2 is the total horizontal wavenumber. This

is exactly the same as in the topographic wave problem in (3.6). Equation

(346) determines the vertical structure of the waves.

First, let’s consider what happens when the vertical scale factor,α, is

large. This is the case when the waves are short, becauseκ is then large.
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In this case the solutions to (346) are exponentials which decay away from

the boundaries:

ψ̂ = Ae−αz, ψ̂ = Beα(z−D) (347)

nearz = 0 andz = D, respectively. The waves are thus trapped on each

boundary and have a vertical structure like topographic waves.

To see how the waves behave, we use the boundary condition. This is:

(
∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
− ∂ψ

∂x

dU

dz
= 0 (348)

(see eq. (329)). Inserting the wave solution and the mean shear, this is

simply:

(Λz − c)
∂ψ

∂z
− Λψ̂ = 0 (349)

after cancelling the factor ofik. At z = 0, this is:

(αc− Λ)A = 0 (350)

after inserting the vertical dependence at the lower boundary. Atz = D,

we have:

[α(ΛD − c)− Λ]B = 0 (351)

To have non-trivial solutions,A andB are non-zero. So we require:

c =
Λ

α
, c = ΛD − Λ

α
(352)

at z = 0, D respectively.
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Figure 41: The Eady streamfunction in the limit of largeα.

First we notice that the phase speeds arereal—so there is no instability.

The waves are simply propagating on each boundary. In the limit thatα is

large (the decay from the boundaries is rapid), these are:

c ≈ 0, c ≈ ΛD (353)

So the phase speeds are equal to the mean velocities on the boundaries.

Thus the waves are just swept along by the background flow.

If α is not so large, the boundary waves propagate at speeds different

than the mean flow.

The solution is shown in Fig. (41). We have two waves, each advected

by the mean flow at its respective boundary and each decaying exponen-

tially away from the boundary. These waves areindependentbecause they

decay so rapidly with height; they do not interact with each other.

Now let’s look at the case whereα is not so large, so that the waves

extend further into the interior. Then we would write for the wave solution:
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ψ̂ = Aeαz +Be−αz (354)

This applies over the whole interior, including both boundaries. Plugging

into the boundary equation (349) we get, atz = 0:

(−cα− Λ)A+ (αc− Λ)B = 0 (355)

while at the upper boundary, atz = D, we get:

(α(ΛD − c)− Λ)eαDA+ (−α(ΛD − c)− Λ)e−αDB = 0 (356)

We can rewrite these equations in matrix form as follows:

(

cα + Λ −cα + Λ
(−αc+ Λ(αD − 1))eαD (αc− Λ(αD + 1))e−αD

)(

A
B

)

=

(

0
0

)

(357)

Note we multiplied the first equation through by−1. Because this system

is homogeneous, solutions existonly if the determinant of the coefficients

vanishes. Multiplying this out, we get:

c2α2(−eαD + e−αD)+ cα(Λ−ΛαD−Λ)e−αD + cα(ΛαD−Λ+Λ)eαD−

Λ2(αD + 1)e−αD − Λ2(αD − 1)eαD = 0 (358)

or:

−2c2α2sinh(αD) + 2cα2ΛDsinh(αD)− 2Λ2αDcosh(αD)

+2Λ2sinh(αD) = 0 (359)
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Dividing through by−2α2sinh(αD):

c2 − ΛDc+
Λ2D

α
coth(αD)− Λ2

α2
= 0 (360)

This quadratic equation has the solutions:

c =
ΛD

2
± ΛD

2
[1− 4

αD
coth(αD) +

4

α2D2
]1/2 (361)

We can rewrite the part in the square root using the identity:

cothx =
1

2
[tanh

x

2
+ coth

x

2
]

Then, pulling in a factor ofαD/2, the solution is:

c =
ΛD

2
± Λ

α
[
α2D2

4
− αD

2
coth(

αD

2
)− αD

2
tanh(

αD

2
) + 1]1/2

=
ΛD

2
± Λ

α
[(
αD

2
− coth[

αD

2
])(
αD

2
− tanh[

αD

2
])]1/2 (362)

Now for all x, x > tanh(x); so the second factor in the root is always

positive. Thus if:

αD

2
> coth[

αD

2
] (363)

the term inside the root is positive. Then we have two phase speeds, both

of which are real. This occurs whenα is large. In particular, ifα ≫
(2/D)coth(αD/2), these phase speeds are:

c = 0, ΛD (364)

So we recover the trapped-wave solutions that we derived first.

If, on the other hand:
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αD

2
< coth[

αD

2
] (365)

the term inside the root of (362) is negative. In Fig. (42), we plotx and

coth(x). You can see thatx is less for small values ofx. Thus the condition

for instability is met whenα is small. Since we have:

α =
N

f0
(k2 +

n2π2

L2
)1/2

this occurs when the wavenumbers,k andn, are small. Thus large waves

are more unstable.

When this condition is met, we can write the phase speed as:

c =
ΛD

2
± ici (366)

where

ci =
Λ

α
[(coth[

αD

2
]− αD

2
)(
αD

2
− tanh[

αD

2
])]1/2
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Putting this into the wave expression, we have that:

ψ ∝ eik(x−ct) = eik(x−ΛDt/2)∓kcit (367)

Thus at each wavenumber there is a growing wave and a decaying wave.

The growth rate is equal tokci.

The real part of the phase speed is:

cr =
ΛD

2
(368)

This is how fast the wave is propagating. We see that the speed is equal

to the mean flow speed at the midpoint in the vertical. So it is moving

slower than the mean flow speed at the upper boundary and faster than that

at the lower boundary. We call the midpoint, where the speeds are equal,

thesteering level.

The growth rate is justkci. This is plotted in Fig. (43) for then = 1

mode in they-direction. We use the following parameters:

N = 0.01 sec−1, f0 = 10−4 sec−1, Λ = 0.005 sec−1,

D = 104m, L = 2× 106m

This shear parameter yields a velocity of 50 m/sec at the tropopause height

(10 km), similar to the peak velocity in the Jet Stream. For these values,

the Eady model yields complex phase speeds, indicating the troposphere

is baroclinically unstable.

The growth rate increases from zero ask increases, reaches a maximum

value and then goes to zero. Fork larger than a critical value, the waves

are stable. Thus there is ashort wave cut-offfor the instability. The shorter
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Figure 43: The Eady growth rate as a function of the wavenumber, k.

the waves are, the more trapped they are at the boundaries and thus less

able to interact with each other.

The growth rate is a maximum atk = 1.25 × 10−6m, corresponding

to a wavelength of2π/k = 5027 km. The wave with this size will grow

faster than any other. If we begin with a random collection of waves, this

one will dominate the field after a period of time.

The distance from a trough to a crest is one-fourth of a wavelength,

or roughly 1250 km for this wave. So this is the scale we’d expect for

storms. The maximum value ofkci is 8.46×10−6 sec−1, or equivalently

1/1.4 day−1. Thus the growth time for the instability is on the order of a

day. So both the length and time scales in the Eady model are consistent

with observations of storm development in the troposphere.

Using values typical of oceanic conditions:

N = 0.0005 sec−1, f0 = 10−4 sec−1, Λ = 0.0001 sec−1,
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Figure 44: The amplitude (left) and phase (right) of the Eadystreamfunction vs. height.

D = 5× 103m, L = 2× 106m

we get a maximum wavelength of about 100 km, or a quarter wavelength

of 25 km. Because the deformation radius is so much less in the ocean, the

“storms” are correspondingly smaller. The growth times are also roughly

ten times longer than in the troposphere. But these values should be taken

as very approximate, becauseN in the ocean varies greatly between the

surface and bottom.

Let’s see what the unstable waves look like. To plot them, we rewrite

the solution slightly. From the condition at the lower boundary, we have:

(cα + Λ)A+ (−cα + Λ)B = 0

So the wave solution can be written:

ψ = A[eαz +
cα + Λ

cα− Λ
e−αz]sin(

nπy

L
)eik(x−ct)

Rearranging slightly, we get:
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ψ = A[cosh(αz)− Λ

cα
sinh(αz)]sin(

nπy

L
)eik(x−ct) (369)

We have absorbed theαc into the unknownA. Becausec is complex, the

second term in the brackets will affect the phase of the wave. To take this

into account, we rewrite the streamfunction thus:

ψ = AΦ(z)sin(
nπy

L
)cos[k(x− crt) + γ(z)]ekcit (370)

where

Φ(z) = [(cosh(αz)− crΛ

|c|2αsinh(αz))
2 + (

ciΛ

|c|2αsinh(αz))
2]1/2

is the magnitude of the amplitude and

γ = tan−1[
ciΛsinh(αz)

|c|2αcosh(αz)− crΛsinh(αz)
]

is its phase. These are plotted in Fig. (44). The amplitude is greatest near

the boundaries. But it is not negligible in the interior, falling to only about

0.5 at the mid-level. Rather than two separate waves, we have one which

spans the depth of the fluid. Also, the phase changes with height. So the

streamlinestilt in the vertical.

We see this in Fig. (45), which shows the streamfunction, temperature,

meridional and vertical velocity for the most unstable wave. The stream-

function extends between the upper and lower boundaries, and the stream-

lines tilt to the west going upward. This means the wave is tiltedagainst

the mean shear. You get the impression the wave is working against the

mean flow, trying to reduce its shear (which it is). The meridional velocity

(third panel) is similar, albeit shifted by 90 degrees. The temperature on
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the other hand tilts toward the east with height, and so is offset from the

meridional velocity.

We can also derive the vertical velocity for the Eady wave. Inverting

the linearized temperature equation, we have:

w = − f0
N 2

(
∂

∂t
+ Λz

∂

∂x
)
∂ψ

∂z
+
f0
N 2

Λ
∂ψ

∂x
(371)

This is shown in the bottom panel for the most unstable wave. There is

generally downward motion when the flow is toward the south and upward

motion when toward the north. This fits exactly with our expectations

for slantwise convection, illustrated in Fig. (39). Fluid parcels which are

higher up and to the north are being exchanged with parcels lower down to

the south. So the Eady model captures most of the important elements of

baroclinic instability.

However, the Eady model lacks an interior PV gradient (it has noβ-

effect). Though this greatly simplifies the derivation, the atmosphere pos-

sesses such gradients, and it is reasonable to ask how they alter the insta-

bility. Interior gradients are considered in both the the Charney (1947) and

Phillips (1954) models. Details are given by Pedlosky (1987) and by Vallis

(2006).

Problem 3.7: Eady waves

a) Consider a mean flowU = −Bz over a flat surface atz = 0 with

no Ekman layer and no upper surface. Assume thatβ = 0 and thatN =

const.. Find the phase speed of a perturbation wave on the lower surface.

b) Consider a mean flow withU = Bz2. What is the phase speed of the

wave atz = 0 now? Assume thatβ = Bf 20/N
2, so that there still is no
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Figure 45: The streamfunction (upper), temperature (second), meridional velocity (third)
and vertical velocity for the most unstable wave in the Eady problem.
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PV gradient in the interior. What is the mean temperature gradient on the

surface?

c) Now imagine a sloping bottom with zero mean flow. How is the slope

oriented and how steep is it so that the topographic waves are propagating

at the same speed as the waves in (a) and (b)?

Problem 3.8: Eady heat fluxes

Eady waves can flux heat. To see this, we calculate the correlation

between the northward velocity and the temperature:

vT ∝ ∂ψ

∂x

∂ψ

∂z
≡ 1

L

∫ L

0

∂ψ

∂x

∂ψ

∂z
dx

whereL is the wavelength of the wave. Calculate this for the Eady wave

and show that it is positive; this implies that the Eady waves transport

warm air northward. You will also find that the heat flux isindependent of

height.

• Hint: use the form of the streamfunction given in (370).

• Hint:

∫ L

0

sin(k(x− ct)) cos(k(x− ct)) dx = 0

• Hint:

d

dz
tan−1y

x
=

x2

x2 + y2
(
xdy/dz − ydx/dz

x2
) =

xdy/dz − ydx/dz

x2 + y2

• Hint: The final result will be proportional toci. Note thatci is positive

for a growing wave.
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Problem 3.9: Eady momentum fluxes

Unstable waves can flux momentum. The zonalmomentum fluxis de-

fined as:

uv ∝ −∂ψ
∂y

∂ψ

∂x
≡ − 1

L

∫ L

0

∂ψ

∂y

∂ψ

∂x
dx

Calculate this for the Eady model. Why do you think you get the answer

you do?
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4 Appendices

4.1 Appendix A: Kelvin’s theorem

The vorticity equation can be derived in an elegant way. This is based on

thecirculation, which is the integral of the vorticity over a closed area:

Γ ≡
∫∫

~ζ · n̂ dA (372)

wheren̂ is the normal vector to the area. From Stoke’s theorem, the circu-

lation is equivalent to the integral of the velocity around the circumference:

Γ =

∫∫

(∇× ~u) · n̂ dA =

∮

~u · ~dl (373)

Thus we can derive an equation for the circulation if we integrate the mo-

mentum equations around a closed circuit. For this, we will use the mo-

mentum equations in vector form. The derivation is somewhat easier if we

work with the fixed frame velocity:

d

dt
~uF = −1

ρ
∇p+ ~g + ~F (374)

If we integrate around a closed area, we get:

d

dt
ΓF = −

∮ ∇p
ρ

· ~dl +
∮

~g · ~dl +
∮

~F · ~dl (375)

The gravity term vanishes because it can be written in terms of a potential

(the geopotential):

~g = −gk̂ =
∂

∂z
(−gz) ≡ ∇Φ (376)

and because the closed integral of a potential vanishes:
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∮

∇Φ · ~dl =
∮

dΦ = 0 (377)

So:

d

dt
ΓF = −

∮

dp

ρ
+

∮

~F · ~dl (378)

Now the circulation,ΓF , has two components:

ΓF =

∮

~uF · ~dl =
∫∫

∇× ~uF · n̂ dA =

∫∫

(~ζ + 2~Ω) · n̂ dA (379)

As noted above, the most important components of the vorticity are in the

vertical. So a natural choice is to take an area which is in the horizontal,

with n̂ = k̂. Then:

ΓF =

∫∫

(ζ + f) dA (380)

Putting this back in the circulation equation, we get:

d

dt

∫∫

(ζ + f) dA = −
∮

dp

ρ
+

∮

~F · ~dl (381)

Now, the first term on the RHS of (381) is zero under the Boussinesq

approximation because:

∮

dp

ρ
=

1

ρc

∮

dp = 0

It is also zero if we use pressure coordinates because:

∮

dp

ρ
|z →

∮

dΦ|p = 0

Thus, in both cases, we have:
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d

dt
Γa =

∮

~F · ~dl (382)

So the absolute circulation can only change under the action of friction. If

~F = 0, the absolute circulation is conserved on the parcel. This is Kelvin’s

theorem.

4.2 Appendix B: Solution in the Ekman layer

Ekman’s solution requires that we weparametrizethe stress in the bound-

ary layer. To do this, we make a typical assumption that the stress is pro-

portional to the velocity shear:

~τ

ρc
= Az

∂

∂z
~u (383)

whereAz, is amixing coefficient. Thus the stress acts down the gradient of

the velocity. If the vertical shear is large, the stress is large and vice versa.

Generally,Az varies with height, and often in a non-trivial way, but in such

cases it can be difficult to find analytical solutions.

So we assume thatAz is constant. This follows Ekman’s (1905) original

formulation, and the solutions is now referred to as anEkmanboundary

layer. We assume the flow is purely geostrophic in the fluid interior, above

the boundary layer, with velocities(ug, vg). The boundary layer’s role then

is to bring the velocities to rest at the lower boundary. With these stresses,

we can solve for the ageostrophic velocities in the layer (the details are

given in Appendix B). Integrating the velocities with height, one finds:

U = −δe
2
(ug + vg), V =

δe
2
(ug − vg)

where(ug, vg) are the velocities in the interior. In the solutions, the depth
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of the Ekman layer,δ, is determined by the mixing coefficient,Az. This is:

δ =

√

2Az

f0
(384)

So we have:

w(δ) =
δ

2
(
∂ug
∂x

+
∂vg
∂x

) +
δ

2
(−∂ug

∂y
+
∂vg
∂y

)

=
δ

2
(−∂vg

∂y
+
∂vg
∂x

) +
δ

2
(−∂ug

∂y
+
∂vg
∂y

) =
δ

2
(
∂vg
∂x

− ∂ug
∂y

)

The solution for velocities in the Ekman layer is as follows. Substituting

the parametrized stresses (383) into the boundary layer equations (84-85)

yields:

−f0va = −Az
∂2

∂z2
ua (385)

f0ua = −Az
∂2

∂z2
va (386)

Note that the geostrophic velocity was assumed to be independent of height,

so it doesn’t contribute to the RHS. If we define a variableχ thus:

χ ≡ ua + iva (387)

we can combine the two equations into one:

∂2

∂z2
χ = i

f0
Az
χ (388)

The general solution to this is:

χ = Aexp(
z

δE
) exp(i

z

δE
) + B exp(− z

δE
) exp(−i z

δE
) (389)
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where:

δE =

√

2Az

f0
(390)

This is the Ekman depth. So the depth of the Ekman layer is determined

by the mixing coefficient and by the Coriolis parameter.

To proceed, we need boundary conditions. The solutions should de-

cay moving upward, into the interior of the fluid, as the boundary layer

solutions should be confined to the boundary layer. Thus we can set:

A = 0

From the definition ofχ, we have:

ua = Re{χ} = Re{B} exp(− z

δE
) cos(

z

δE
)

+Im{B} exp(− z

δE
) sin(

z

δE
) (391)

and

va = Im{χ} = −Re{B} exp(− z

δE
) sin(

z

δE
)

+Im{B} exp(− z

δE
) cos(

z

δE
) (392)

Thus there are two unknowns. To determine these, we evaluate the veloci-

ties atz = 0. To satisfy the no-slip condition, we require:

ua = −ug, va = −vg at z = 0

Then the total velocity will vanish. So we must have:

Re{B} = −ug
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and

Im{B} = −vg

Now we must integrate the velocities to obtain the transports. Strictly

speaking, the integrals are over the depth of the layer. But as the ageostrophic

velocities decay with height, we can just as well integrate them to infinity.

So, we have:

Ua = −ug
∫ ∞

0

exp(− z

δE
) cos(

z

δE
) dz − vg

∫ ∞

0

exp(− z

δE
) sin(

z

δE
) dz

= −δ
2
(ug + vg) (393)

(using a standard table of integrals). Likewise:

Va = ug

∫ ∞

0

exp(− z

δE
) sin(

z

δE
) dz − vg

∫ ∞

0

exp(− z

δE
) cos(

z

δE
) dz

=
δ

2
(ug − vg) (394)

Integrating the velocities with height, we obtain:

U = −δe
2
(ug + vg), V =

δe
2
(ug − vg)

where(ug, vg) are the velocities in the interior. In the solutions, the depth

of the Ekman layer,δ, is determined by the mixing coefficient,Az. This is:

δ =

√

2Az

f0
(395)

So we have:
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w(δ) =
δ

2
(
∂ug
∂x

+
∂vg
∂x

) +
δ

2
(−∂ug

∂y
+
∂vg
∂y

)

=
δ

2
(−∂vg

∂y
+
∂vg
∂x

) +
δ

2
(−∂ug

∂y
+
∂vg
∂y

) =
δ

2
(
∂vg
∂x

− ∂ug
∂y

)

=
δ

2
∇× ~ug =

δ

2
ζg (396)

4.3 Appendix C: Rossby wave energetics

Another way to derive the group velocity is via the energy equation for the

waves. For this, we first need the energy equation for the wave. As the

wave is barotropic, it has only kinetic energy. This is:

E =
1

2
(u2 + v2) =

1

2
[(−∂ψ

∂y
)2 + (

∂ψ

∂x
)2] =

1

2
|∇ψ|2

To derive an energy equation, we multiply the wave equation (131) byψ.

The result, after some rearranging, is:

∂

∂t
(
1

2
|∇ψ|2) +∇ · [−ψ∇ ∂

∂t
ψ − îβ

1

2
ψ2] = 0 (397)

We can also write this as:

∂

∂t
E +∇ · ~S = 0 (398)

So the kinetic energy changes in response to the divergence of an energy

flux, given by:

~S ≡ −ψ∇ ∂

∂t
ψ − îβ

1

2
ψ2

The energy equation is thus like the continuity equation, as the density also

changes in response to a divergence in the velocity. Here the kinetic energy

changes if there is a divergence in~S.
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Let’s apply this to the wave. We have

E =
k2 + l2

2
A2sin2(kx+ ly − ωt) (399)

So the energy varies sinusoidally in time. Let’s average this over one wave

period:

< E >≡
∫ 2π/ω

0

E dt =
1

4
(k2 + l2)A2 (400)

The flux,~S, on the other hand is:

~S = −(kî+ lĵ)ω A2cos2(kx+ ly−ωt)− îβ A
2

2
cos2(kx+ ly−ωt) (401)

which has a time average:

< S >=
A2

2
[−ω(kî+ lĵ)− β

2
î] =

A2

4
[β
k2 − l2

k2 + l2
î+

2βkl

k2 + l2
ĵ] (402)

Rewriting this slightly:

< S >= [β
k2 − l2

(k2 + l2)2
î+

2βkl

(k2 + l2)2
ĵ] E ≡ ~cg < E > (403)

So the mean flux is the product of the mean energy and the group velocity,

~cg. It is straightforward to show that the latter is the same as:

cg =
∂ω

∂k
î+

∂ω

∂l
ĵ (404)

Sincecg only depends on the wavenumbers, we can write:

∂

∂t
< E > +~cg · ∇ < E >= 0 (405)
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We could write this in Lagrangian form then:

dc
dt
< E >= 0 (406)

where:

dc
dt

=
∂

∂t
+ ~cg · ∇ (407)

In words, this means that the energy is conserved when moving at the

group velocity. The group velocity then is the relevant velocity to consider

when talking about the energy of the wave.

4.4 Appendix D: Munk’s model of the Gulf Stream

(Coming soon).

4.5 Appendix E: Fjørtoft’s criterion

This is an alternate condition for barotropic instability, derived by Fjørtoft

(1950). This follows from taking the real part of (244):

(ψ̂r
∂2

∂y2
ψ̂r + ψ̂i

∂2

∂y2
ψ̂i)− k2|ψ̂|2 + (U − cr)

|ψ̂|2
|U − c|2

∂

∂y
qs = 0 (408)

If we again integrate iny and rearrange, we get:

∫ L

0

(U − cr)
|ψ̂|2

|U − c|2
∂

∂y
qs =

−
∫ L

0

(ψ̂r
∂2

∂y2
ψ̂r + ψ̂i

∂2

∂y2
ψ̂i)dy +

∫ L

0

k2|ψ̂|2dy (409)

We can use integration by parts again, on the first term on the RHS. For

instance,
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∫ L

0

ψ̂r
∂2

∂y2
ψ̂r dy = ψ̂r

∂

∂y
ψ̂r|L0 −

∫ L

0

(
∂

∂y
ψ̂r)

2 dy (410)

The first term on the RHS vanishes because of the boundary condition. So

(408) can be written:

∫ L

0

(U − cr)
|ψ̂|2

|U − c|2
∂

∂y
qs dy =

∫ L

0

(
∂

∂y
ψ̂r)

2 + (
∂

∂y
ψ̂i)

2 + k2|ψ̂|2 dy
(411)

The RHS is alwayspositive. Now from Rayleigh’s criterion, we know that:

∫ L

0

|ψ̂|2
|U − c|2

∂

∂y
qs dy = 0 (412)

So we conclude that:

∫ L

0

(U − cr)
|ψ̂|2

|U − c|2
∂

∂y
qs > 0 (413)

We don’t know whatcr is, but the condition states essentially that this

integral must be positive foranyreal constant,cr.

To test this, we can just pick a value forcr. The usual procedure is to

pick some value of the velocity,U ; call thatUs. A frequent choice is to use

the value ofU at the point where∂∂yqs vanishes; Then we must have that:

(U − Us)
∂

∂y
qs > 0 (414)

somewhere in the domain. If this fails, the flow is stable.

Fjørtoft’s criterion is also a necessary condition for instability. It rep-

resents an additional constraint to Rayleigh’s criterion. Sometimes a flow

will satisfy the Rayleigh criterion but not Fjørtoft’s—then the flow is sta-

ble. Interestingly, it’s possible to show that Fjørtoft’s criterion requires the
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flow have a relative vorticity maximum somewhere in the domain interior,

not just on the boundaries.

4.6 Appendix F: QGPV in pressure coordinates

The PV equation in pressure coordinates is very similar to that inz-coordinates.

First off, the vorticity equation is given by:

dH
dt

(ζ + f) = −(ζ + f)(
∂u

∂x
+
∂v

∂y
) (415)

Using the incompressibility condition (66), we rewrite this as:

dH
dt

(ζ + f) = (ζ + f)
∂ω

∂p
(416)

The quasi-geostrophic version of this is:

dg
dt
(ζ + f) = f0

∂ω

∂p
(417)

whereζ = ∇2Φ/f0.

To eliminateω, we use the potential temperature equation (36). For

simplicity we assume no heating, so the equation is simply:

dθ

dt
= 0 (418)

We assume:

θtot(x, y, p, t) = θ0(p) + θ(x, y, p, t) , |θ| ≪ |θ0|

whereθtot is the full temperature,θ0 is the “static” temperature andθ is the

“dynamic” temperature. Substituting these in, we get:
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∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂

∂p
θ0 = 0 (419)

We neglect the termω∂θ/∂p because it is much less than the term withθ0.

The geopotential is also dominated by a static component:

Φtot = Φ0(p) + Φ(x, y, p, t) , |Φ| ≪ |Φ0| (420)

Then the hydrostatic relation (67) yields:

dΦtot

dp
=
dΦ0

dp
+
dΦ

dp
= −RT0

p
− RT ′

p
(421)

and where:

Ttot = T0(p) + T (x, y, p, t) , |T | ≪ |T0| (422)

Equating the static and dynamic parts, we find:

dΦ

dp
= −RT

′

p
(423)

Now we need to rewrite the hydrostatic relation in terms of the potential

temperature. From the definition of potential temperature, we have:

θ = T (
ps
p
)R/cp, θ0 = T0 (

ps
p
)R/cp

where again we have equated the dynamic and static parts. Thus:

θ

θ0
=
T

T0
(424)

So:

1

T0

dΦ

dp
= −RT

pT0
= −Rθ

pθ0
(425)
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So, dividing equation (419) byθ0, we get:

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)
θ′

θ0
+ ω

∂

∂p
lnθ0 = 0 (426)

Finally, using (425) and approximating the horizontal velocities by their

geostrophic values, we obtain the QG temperature equation:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)
∂Φ

∂p
+ σω = 0 (427)

The parameter:

σ(p) = −RT0
p

∂

∂p
ln(θ0)

reflects the static stratification and is proportional to the Brunt-Vaisala fre-

quency (sec. 3.1). We can write this entirely in terms ofΦ andω:

(
∂

∂t
− 1

f0

∂

∂y
Φ
∂

∂x
+

1

f0

∂

∂x
Φ
∂

∂y
)
∂Φ

∂p
+ ωσ = 0 (428)

As in sec. (3.2), we can combine the vorticity equation (417) and the

temperature equation (428) to yield a PV equation. In pressure coordinates,

this is:

(
∂

∂t
− 1

f0

∂

∂y
Φ
∂

∂x
+

1

f0

∂

∂x
Φ
∂

∂y
) [

1

f0
∇2Φ +

∂

∂p
(
f 20
σ

∂ψ

∂p
) + βy] = 0 (429)
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