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1 Equations

The motion in the atmosphere and ocean is governed by a set of equa-
tions, known as th&lavier-Stokegquations. These equations are used to
produce our forecasts, for the weather and also for ocean currents. While
there are details about these equations which are uncertain (for example,
how we parametrize processes smaller than the grid size of the models),
they are for the most part accepted as fact. Let’'s consider how these equa-
tions come about.

1.1 Derivatives

A fundamental aspect is how various fields (temperature, wind, density)
change in time and space. Thus we must first specify how to take deriva-
tives.

Consider a scalar), which varies in both time and space, i.¢. =
Y(x,y,z,t). This could be the wind speed in the east-west direction, or
the ocean density. By the chain rule, the total change intise

0 0 0 0
d¢_a¢dt+%¢dx+a—y@/}dy+@¢dz (1)
SO:
d¢ 0 0
il ¢+ —¢+v—¢+waz (2)
or, in short form:
d 0
dsz ¢ +u- Vi (3)

Here(u, v, w) are the components of the velocity in the y, z) directions.
On the left side, the derivative is a total derivative. That implies thah
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the left side is only a function of time. This the case whers observed
following the flow For instance, if you measure temperature in a balloon,
moving with the winds, you only see changes in time. We call thid the
grangianformulation. The derivatives on the right side though are partial
derivatives. These are relevant for an observea fiked location This
person records temperature as a function of time, but her information also
depends on her position. An observer at a different location will generally
have a different records (depending on how far away she is). We call the

right side theEulerianformulation.

Exercise 1.1 There are two observers, one at a weather station at a

point x and another passing by in a balloon. The observer at the station
notices that the temperature is falling at rate @Z/tay, while the balloon-

ist doesn’t observe any change at all. If the balloon is moving east at a
constant rate of 10 m/sec, what can you conclude about the background
temperature field?

1.2 Continuity equation

dy

oz

[pu +j pu] dydz

pudyez | B X

5x X +0X

Figure 1: A infinitesimal element of fluid, with volunid’.

Consider a box fixed in space, with fluid (either wind or water) flowing
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through it. The flux of density through the left side is:
F, = pu x (area) = (pu) oy oz 4)
Using a Taylor expansion, we can write the flux through the right side as:
F, = |pu+ %(pu)éw] oy oz (5)

If these density fluxes differ, then the box’s mass will change. The net rate

of change in mass is:

0 0
aM = E(p&z:(?y&z) =F —F,

0 0
= (pu) dy dz — [pu + a—x(pu)&c] 0y 0z = —a—x(pu)éa: dyoz  (6)

The volume of the box is constant, so:

0 0
—p = —— 7
50 = g, PY (7)
Taking into account all the other sides of the box we have:
dp 0 0 0 B .
i D R 5—y(pv) — 5, lpw) ==V (p) (8)

We can rewrite the RHS as follows:
V. (pu) =pV-tu+1u-Vp 9)
Thus the continuity equation can be written:
dp

EJrﬁ-Verp(V-ﬁ):O (10)

This is the continuity equation in its Eulerian form. Alternately we can
write:



dp
Q) = 11
o TPV 1) =0 (11)

which is the equation in its Lagrangian form. This says that the density of
a parcel of fluid advected by the flow will change if the flow is divergent,
le. if:

V-10#0 (12)

Exercise 1.2 Derive the continuity equation a different way, by con-

sidering a balloon advected by the flow. The balloon has a fixassi.e.
it contains a fixed number of molecules (of, say, helium). Say the balloon
Is cubic, with sidegz, dy anddz. The balloon’s volume is then:

V =dx dy oz

and its mass igV/. If the mass is conserved following the flow, so is this
guantity:
1 d

— M = 1
M dt . (13)

Use this to re-derive the continuity equation (10). Take the limit as 0.

Again, the density changes in proportion to the velocity divergence; the
divergence determines whether the box shrinks or grows. If the box ex-

pands/shrinks, the density decreases/increases, to preserve the box’s mass.

1.3 Momentum equations

The continuity equation pertains to mass. Now we consider the fluid ve-

locities. We can derive expressions for these from Newton’s second law:
i=F/m (14)
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The forces acting on a fluid parcel (a vanishingly small box) are:

e pressure gradient%:Vp
e gravity: g
o friction: F

For a parcel with density, we can write:

d 1 _,
—U=—-Vp+g+ F (15)
dt p

This is themomentum equatigmvritten in its Lagrangian form. Under the
influence of the forcing terms, on the RHS, the air parcel will accelerate.

The equation is actually three equations in one, one for each spatial
direction. Gravity, which acts only in the vertical, appears in just one of
the equations. The pressure gradient terms exist in all three (this term
can be derived in a similar way to the continuity equation of the previous
section). Friction too can act in all three directions.

In fact, this is the momentum equation for a non-rotating earth. There
are additional acceleration terms which come about due to rotation. As op-
posed to theeal forces shown in (15), rotation introducagparentforces.

A stationary parcel on the earth will rotate with the planet. From the per-
spective of an observer in space, that parcel is traveling in cicbesplet-

ing a circuit once a day. Since circular motion represents an acceleration
(the velocity is changing direction), there is a corresponding force.

Consider such a stationary parcel, on a rotating sphere, with its position
represented by a vectot, (Fig. 2). During the timegt, the vector rotates
through an angle:

00 = Qot (16)



50 oA

Figure 2: The effect of rotation on a vectet, which is otherwise stationary. The vector
rotates through an anglé9, in a timedt.

where:
2 1

Sec
86400
Is the sphere’s rotation rate. The changelirs ) A, the arc-length:

—,

5A = |Alsin(7)60 = Q|A|sin()6t = (O x A) 6t (17)

So we can write: ~ -

0A  dA < o
—=—=0xA 1
st at (18)

If the vector is not stationary but moving in the rotating frame, one can

lims_o

show that: . .
dA dA -
(Zr)r=(Z)rt2xA (19)
The F here refers to the fixed frame arftito the rotating one. If{ = 7,

the position vector, then:

dr

(%)F iip =ip+ Q%7 (20)

So the velocity in the fixed frame is just that in the rotating frame plus the
velocity associated with the rotation.



Exercise 1.3 Say that a car is driving at 50 km/hr, in Oslo. What is the

car’s speed when viewed from space?

Now consider that! is velocity in the fixed frameyr. Then:

diup diup -
s = (=2 Qxa 21
(dt)F (dt)R+ X Up (21)
Substituting in the previous expression fgr, we get:
d_) d - — —
(%)Fz(a[ﬁRJerf])Rika[ﬁRJerﬂ (22)

Collecting terms, we get:

dﬁF duR

(%) (dt Jr+ 20 x g+ QO xQx 7 (23)

We now have two additional terms: ti@oriolis andcentrifugalaccelera-
tions. Plugging these into the momentum equation, we obtain:

dﬁp duR

Ca = Car

Consider the centrifugal acceleration. This is the negative of the cen-

1 B}
Vi + 20 x dip + 9 x O x e —Vp g+l (24)

tripetal acceleration and acts perpendicular to the axis of rotation (Fig. 3)
The force projects onto both the radial and the N-S directions. This sug-
gests that a parcel in the Northern Hemisphere would accelerate upward
and southward. But these accelerations are balanced by gravity, which
acts to pull the parcel toward the cenggrd northward. The latter occurs
because rotation changes the shape of the earth itself, making it ellipsoidal
rather than spherical. The change in shape results in an exact cancellation
of the N-S component of the centrifugal force.

The radial component on the other hand is overcome by gravity. If this
weren’t true, the atmosphere would fly off the earth. So the centrifugal
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Figure 3: The centrifugal force and the deformed earth. Hhiereis the gravitational
vector for a spherical earth, and is that for the actual earth. The latter is ablate
spheroid

force modifies gravityreducing it over what it would be if the earth were
stationary. Thus we can absorb the centrifugal force into gravity:

d=g—OxQxTF (25)

Exercise 1.4 How much does rotation alter gravity? Figure out how

large the acceleration is at the equator. How large is this compared to
g = 9.8 m/seé?

The correction is so small in fact that we will ignore it (and drop the
prime on g hereafter). So the momentum equation can be written:
du = 1 L o=
(d—f) +29qu:—;Vp+g—l—F (26)

There is only one rotational term to worry about, the Coriolis acceleration.
We'll say more about this in a minute.

There are three spatial directions and each has a corresponding momen-
tum equation. In what follows, we will assume that we are in a localized
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region of the atmosphere, centered at a latitddeThen we can define
local coordinatesa, y, z) such that:

dx = acos(0)do, dy=adl, dz=dR

whereg is the longitudeq is the earth’s radius and is the radius. Thus
Is the east-west coordinatgthe north-south coordinate andhe vertical
coordinate. We define the corresponding velocities:

_dx _dy dz
U= — V= — w

dt’ dt’ dt

Figure 4: A region of the atmosphere at latitutleThe earth’s rotation vector projects
onto the local latitudinal and radial coordinates.

The Coriolis term (which is a vector itself) projects onto bothglend
z directions:
20 x i@ = (0,29,,20Q.) x (u,v, w) =

2Q(w cos — v sinb, u sind, —u cosh) (27)

Adding terms, we havé:

1If we had used spherical coordinates instead, we would heweral additionaturvatureterms. How-
ever, these terms are generally small at the scales of stitenel so are left out here.
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ou ou ou ou : 1 0p
= +u8x+vﬁy+waz+ w cost v sind p0x+ (28)

ov ov ov ov , 10p
— — +v— — +2Q =——+F, (2
8t+uax+vay+waz+ u sinf p8y+ (29

ow ow ow ow 10p
— 4+ Uu— +v— — — 20 = ——— - F
ot +u6x+v(9y+w82 cost p 0z g+ I (30)

whereF; is the frictional force acting in thedirection.

Exercise 1.5 Consider a car again, driving eastward at 50 km/hr in

Oslo. What is the Coriolis acceleration acting on the car? Which direction
Is it pointing? And how does it compare to gravity? Now imagine the car
Is driving the same speed and direction, but in Wellington, New Zealand.
What is the Coriolis acceleration?

The above is a general result. The Coriolis force acts to the right of the
motion in the Northern Hemisphere and to the left in the Southern Hemi-
sphere. Because it acts perpendicular to the motion, it does no work—that
means it doesn’t change the speed of a parcel, just its direction of motion.
We'll see that the Coriolis force is one of the dominant terms at weather
scales.

Lastly, there is the friction forcel’. For synoptic scale motions, this
IS meant to represent the action of small scale eddies. If, for example,
our weather model has 10 km resolution, the frictional terms represent the
effects of eddies smaller than 10 km on the motion.

We represent the frictional force as the gradient of a “stress tensor”. The

latter represents correlations between the various velocity components of
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the small scale eddieslf there are gradients in this stress, the fluid will
accelerate or decelerate. So for example we can write:
du_ 0T  OTye O T
dt Ox p Oy p 0zp
wherer,, is the stress component in thedirection which varies in the

(31)

z-direction and so on.

We won't concern ourselves further with the details about friction, as it
Is relatively unimportant at synoptic scales in the atmosphere and ocean.
Where itis significant is in the vertical boundary layers, at the bottom of
the atmosphere and ocean and at the surface of the ocean. We consider
those in sec. (1.11).

The momentum equations are complex aodalinear, involving prod-
ucts of velocities. As such, they are essentially unsolvable in this form.
However, not all the terms are equally important. To see which ones dom-
inate, wescalethe equations. This means we will estimate the sizes of the
various terms in the equation by using reasonable values for the variables

at the scales we're interested in.

1.4 Equations of state

In addition to the continuity and the three momentum equations, we have
an “equation of state” which relates the density to the temperature and, for
the ocean, the salinity. In the atmosphere, the density and temperature are
linked via theldeal Gas Law

p = pRT (32)

2The details can be found, for example, in Holton’s ba@k,Introduction to Dynamic Meteorology
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whereR = 287 Jkg~' K~ is the gas constant for dry air. The law is thus
applicable for a dry gas, i.e. one without moisture. But a similar equation
applies in the presence of moisture if one replaces the temperature with the
so-called “virtual temperature”.

In the ocean, both salinity and temperature affect the density. The de-
pendence is expressed:

p=p(T,9S)=p(1—arT + agS)+ h.o.t. (33)

wherep, is a constant/" andS are the temperature and salinity and where
h.o.t. means “higher order terms”. Increasing the temperature or decreas-
ing the salinity reduces the density (makes lighter water). An important
point is that the temperature and salinity corrections are much less than
one, so that the density is dominated by the first tesmwhich is con-
stant. We exploit this in section (1.7) in making the so-called Boussinesq

approximation.

1.5 Thermodynamic equation

We require one additional equation for the atmosphere. This ighdre
modynamic energgquation:

dT d 1 dr 1. .dp
v +Pa(;) =G T (;)% =

This expresses how the fluid responds to heating. The equation derives

J (34)

C

from the First Law of Thermodynamics, which states that the heat added
to a volume minus the work done by the volume equals the change in its
internal energy. Herg, andc, are the specific heats at constant volume and

3See, e.g. HoltonAn Introduction to Dynamic Meteorology
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pressure, respectively, addepresents the heating. So heating changes the
temperature and also the pressure and density of air.

We will find it convenient to use a different, though related, equation
pertaining to theotential temperature The potential temperature is de-
fined:

6 =1 (L)% (35)
p
This is the temperature a parcel would have if it were maaidbatically

(with zero heating) to a reference pressure, usually taken to be thei@ess
at the earth’s surface. The advantage is that we can write the thermody-

namic energy equation in terms of only one variable:

d(Ind)

J
== 36
“T@ T T (36)

This relation is simpler than (34) because it doesn't involve the pressure. It
implies that the potential temperature is conserved on an air parcelef ther

Is no heating { = 0), i.e.:
do

— =0 (37)

1.6 The Geostrophic Relations

Not all the terms in the horizontal momentum equations are equally im-
portant. To see which ones dominate, we scale the equations. Take the

x-momentum equation, neglecting the frictional term for the moment:

1
%u + u%u + v(%u + w%u + 2Qw cosf — 20 sinf = —;E%p
U U? U? uw Agp
- = = — 20 2€) —
T L L D W v pL



1 U U w W 1 Apgp

20T  2QL  2QL  2QD U 2QpU L
In the second line we hasealedthe equation by assuming typical values

for the variables. In the third line, we have divided through by the scaling
of the second Coriolis acceleratiaif U (which we have assumed will be
important). The resulting parameters aredithensionlesd.e. they have

no units.

To estimate these parameters, we use values typical of weather systems

47
~ 1 2= — =~ 10" *sec”!
U 0m/sec, 26400 sec 0 *sec

9

L~10%n, D=10*m, T =L/U ~10°sec

ApP/p~10°m?/sec’, W ~1cm/sec, (38)

The horizontal scale, 1000 km, is thgnoptic scaleNotice that we assume
the scale is the same in theandy directions. Similarly we use a single
velocity scale for both, andv; the vertical velocity though has a different
scale, as vertical motion is much weaker at these horizontal scales.

The time scale, proportional to the length scale divided by the velocity

scale, is thedvectivagime scale. With an advective time scale, we have:

1 U
20T  2QL

€

So the first term is the same size as the second and third terms. This pa-
rameter is th&Rossby numbeiAt synoptic scales it is approximately:

U

—— =0.1
2QL 0

So the first three terms are smaller than the second Coriolis term.
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However, the other terms are even smaller:

W W
—— =0.01, — =.001
50D 0.01, i 00
and so can be neglected. Lastly, the pressure gradient term scales as:
Apg _
2QpU L

and thus is comparable in size to the second Coriolis term.

The scalings given above are applicable to the atmosphere, but using
values relevant to the ocean yields similar results (see problem 1.1). Fur-
thermore, the scaling of the momentum equation is identical to that of
thexz-momentum equation. The dominant balances are thus:

pOx
10
fu=——=p (40)
poy
where:
f =2Qsinb

Is the vertical component of the Coriolis parameter. These aigeibstrophic
relations the primary balance in the horizontal direction at synoptic scales.
They imply that if we know the pressure field, we can deduce the veloci-
ties.

Consider the flow in Fig. (5). The pressure is high to the south and
low to the north. In the absence of rotation, this pressure difference would
force the air to move north. But under the geostrophic balance, the air
flows parallel to the pressure contours. Becau%p < 0, we have that
u > 0 (eastward), from (40). The Coriolis force is acting to the right of
the motion, exactly balancing the pressure gradient force. Furthermore,
because the two forces are balanced, the motion is constant in time.
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Figure 5: The geostrophic balance.

Note thatf = 2Q2sinf is negativein the southern hemisphere. So the
flow in Fig. (5) would be westward, with the Coriolis force acting to the
left. In addition, the Coriolis force izero at the equator. In fact, the
geostrophic balance cannot hold there and one must invoke other terms in
the momentum equations.

Exercise 1.6 Scale the x-momentum equation for parameters typical

of the ocean. Assume:

U =10em/sec, W = .0lem/sec, L =100km, D = 5km

Also use the advective time scalB,x L/U and thatsin(6) ~ 1. Show

that the geostrophic balance also applies with these scales. Note that |
haven’t given you the pressure scalep/p. Can you estimate what it is,
given the above scaling? What if it were actually much less than this—
what could you say about the motion?
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Exercise 1.7 Scale the y-momentum equation. Assume:

U=1m/sec, W =1lem/sec, L =100m, D = 0.5km

Also use the advective time scalé,x L/U and thatsin(6) ~ 1.
Which are the dominant terms? How bigAsp/p? Finally, write the
approximate equation.

1.7 The Hydrostatic Balance

Now we scale the vertical momentum equation. For this, we need an es-
timate of the vertical variation in pressure. This is actually difieétdan

the horizontal variation:

Ay P/p ~ 10°m?/sec?

Thus we have:
0 0 0 0 10

Ew + ua—xw + Ua—yw + waw — 2Qucosh = —;ap —g (41)
2
WU ow  UwW w QT Ay P ;
L L L D pD
Uw uow  UW w2  2QU Ay P 1

gL gL gL gD g gpD

107 10 107 107 1074 1 1

Again we have neglected the frictional term, which is small at theslesc
Notice too that we divided through by assuming that gravity will be a
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large term. Indeed this is the case, as the gravity and pressure gradient
terms aremuchlarger than any of the others. So the vertical momentum
equation can be replaced by:

P =—pg (42)

This is thehydrostaticrelation. This is a tremendous simplification over
the full vertical momentum equation.

However, notice that the hydrostatic balance also applies if there is
motion at all If we setu = v = w = 0 in the vertical momentum equation,
we obtain the same balance. In fact, this is where the name comes from—
"hydro” meaning water and “static” meaning not moving. So the balance
may not be that relevant for the dynamic (moving) part of the flow.

Butitis. Let's separate the pressure and density into static and dynamic
components:

p(x7 Y, =z, t) - pO(Z) =+ p/(ZIj', Y, =z, t)
The static components are only functions:@fo that they possess a verti-

cal gradient). The dynamic components are usually much smaller than the
static components, so that:

1P| < Ipol, 1] < |pol, (44)
Thus we can write:
10 1 0 ) 1 o0 ,
— Y pDp—g = — - + —g~ —— (1] — —) — + —
9P Y p0+p,az(po P)—g po( po)az(po p)—g
19, .0 19, 4
~N———=D+(5)gP=——%5DP ——¢ (45)
po 0z (p%)az T o
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Note we neglect terms proportional to the product of the dynamical vari-
ables, likep'p'.
How do we scale these dynamical pressure terms? Measurements sug-
gest the vertical variation gf is comparable to the horizontal variation:
10, AgP
%EP > poD

The perturbation density;, is roughly1/100 as large as the static density,

~ 10" 'm/sec® .

SO.
/

ﬁg ~ 10" 'm/sec* .
0

p
To scale these, we again divide pyso that both terms are of ord&y—2.

Thus while they are smaller than the static terms, they are\wbllorders

of magnitude largethan the next largest term in (41). The approximate
vertical momentum equation is still the hydrostatic balance, except now
with the perturbation pressure and density:

0 /

Z = 4
5.7 0y (46)

The hydrostatic approximation is so good that it is used in most numer-
ical models instead of the full vertical momentum equation. Models which
use the latter are rarer and are called “non-hydrostatic” models.

While the values given above are for the atmosphere, a scaling using
oceanic values produces the same result. The hydrostatic balance is an

excellent approximation, in either system.

Exercise 1.8 The surface pressure in the atmosphere is due to the

weight of all the air in the atmospheric column above the surface. Use the
hydrostatic relation to estimate how large the surface pressure ignss
that the atmospheric density decays exponentially with height:

22



p(z) = pyexp(—=/H)
wherep, = 1.2 kg/m? and the scale heigh] = 8.6 km. Assume too that
the pressure at = oo is zero.

1.8 Approximations

We have greatly simplified the equations of motion. Instead of eight terms,

the approximate-momentum equation has only two terms. But the geostrophic
relations are neverthelessnlinear, because the pressure gradient term in-
volves a product with the density. But we can employ a few more approx-
imations which will allow us to further simplify the equations.

1.8.1 Theg-plane approximation

After scaling, we see that the horizontal component of the Coriolis term,
2Qcosh, vanishes from the momentum equations. The term which remains
Is the vertical componen2{2sind. We will call this f. However, while all
the other terms in the momentum equations are in Cartesian coordifiates,
Is a function of latitude.

To remedy this, we focus on a limited range of latitudes. We can Taylor-

expandf about the central latitudé,:

d d?
f(0) = f(6o) + d—];(Qo) (60 —6o) + % d—QJ;(QO) (0—60)*+...  (47)
We will neglect the higher order terms, so that:
d
& 7(00) + L (60) (6 60) = o + 6y (49)

where:
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and

y=a(f— b))

Herea is the radius of the earth. We call (48) theplane approximatian

Notice f is only a function ofy; it varies only in the North-South direction.
In order for the Taylor expansion to hold, the beta term must be much

smaller thanf,, which implies:

BL
5 <t

This constrains the latitude range, since:
fo  2Qsin(6)
L g

< 3 20cos(0)/a

So L must be smaller than the earth’s radius, which is rought km.

= atan(th) = a (49)

We can take advantage of the smallerm in the geostrophic relations.
Specifically, we replac¢ with f, and write:
1 dp

'Ug = E% (50)
1 Op
u, = ——— o1
" TRy &Y

Despite this simplication though, the geostrophic relations remain non-
linear, because density is a variable. We remedy that in the following two
sections.

1.8.2 The Boussinesq approximation

In the atmosphere, the background dengityvaries significantly with
height. In the ocean however, the density barely changes at all. This allows
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us to make thd&oussines@pproximation. In this, we take the density to
be constant except in the “buoyancy term” on the RHS of the hydrostatic
relation in (46).

Making this approximation, the geostrophic relations become:

1 0
v, = — 52
"7 pefodat 2
1 0
u, = ———— 53
! pcf()ayp ( )

wherep. is the constant density term in (33). Now the terms on the RHS
are linear.
This simplification has an important effect because it makes the geostrophic

velocitieshorizontally non-divergentin particular:
0 0 1 9% 1 9%
Uy t+ Vg = — =
dx Jy pefoOydx — pefo dxdy
We'll exploit this later on. The non-divergence comes about because the

0 (54)

geostrophic velocities, which are horizontal, are much greater than the ver-
tical velocities.

Under the Boussinesq approximation, the continuity equation is also
much simpler. If we set, = p. in (10), we obtain:

V.i=0 (55)

So the total velocities are non-divergent, i.e. the flomnsompressible
This assumption is frequently made in oceanography.

It may seem odd that the geostrophic velocities are horizontally non-
divergent and that at the same time the total velocities are non-divergent.
That would apparently imply that the vertical velocities don't vary with
z(1) But in fact, these two facts can be made consistent with each other,
while still allowing the vertical velocities to vary. We'll sekis later on,
when we consider “ageostrophic” velocities.

25



1.8.3 Pressure coordinates

We cannot responsibly use the Boussinesq approximation with the atmo-
sphere, except possibly in the planetary boundary layer (this is often done,
for example, when considering the surface boundary layers, as in sec.
1.11). But it is possible to achieve the same simplifications if we change
the vertical coordinate to pressure instead of height.

We do this by exploiting the hydrostatic balance. Consider a pressure
surface in two dimension$g, z). Applying the chain rule, we have:

_op P A _
Ap(x,z)—a—xﬁx—l—aﬁz—() (56)
on the surface. Substituting the hydrostatic relation, we get:
@Ax—pgAz:() (57)
ox
so that:
dp Az
%b = pg A_x‘p (58)

The left-hand side is the pressure gradient mong a surface of constant
height (hence the subscript). The right-hand side is proportional to the
height gradientalong a surface of constant pressure—i.e. how much the
pressure surface tilts in. The gradient on the RHS thus hag subscript,
indicating pressure coordinates.

If we furthermore define thgeopotential

b =gz (59)
then we have:
dp 0P
Al = p5ly (60)

This alteration removes the density from momentum equation, because:

1
—;Vp\z — —V(I)‘p
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So the geostrophic balance in pressure coordinates is simply:

1 0
10

As with the Boussinesq approximation, the terms on the RHS are linear.
So in pressure coordinates too, the horizontal velocities are horizontally
non-divergent.

In addition, the change to pressure coordinates simplifies the continu-
ity equation. We could show this by applying a coordinate transformation
directly to (10), but it is even simpler to do it as follows. Consider a La-
grangian box (filled with a fixed number of molecules). The box has a
volume:

0V =dxdydz = —dxdy op (63)
PY

after substituting from the hydrostatic balance. The mass of the box is:
1
OM = pdéV = —=dx dydp
g

Since the number of molecules is fixed, the box’s mass is also fixed. Con-
servation of mass implies:

1 d —g d , oxdyop
oM dt5 dxdydp dt g ) =0 (64)
Rearranging:
1 _dx 1 _dy L dp,
5$5(dt)+5y5(dt>+5p5(dt>_O (65)

If we leto — 0, we get:

ou Ov Ow

T 66
(9x+8y+8p 0 (66)
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wherew (called “omega” in meteorology) is the velocity perpendicular to
the pressure surface (like is perpendicular to a-surface). As with the
Boussinesq approximation, the flow is incompressible in pressure coordi-
nates.

The hydrostatic equation also takes a different form under pressure co-
ordinates. It can be written:

— = (67)

after invoking the Ideal Gas Law.

Pressure coordinates simplifies the equations considerably, but they are
nonetheless awkward to work with in theoretical models. The lower bound-
ary in the atmosphere (the earth’s surface) is most naturally represented
z-coordinates, e.g. as= 0. As the pressure varies at the earth surface,
it is less obvious what boundary value to use for So we will usez-
coodinates primarily hereafter. But the solutiong{ooordinates are often
very similar.

Exercise 1.9 Derive (67), using the Ideal Gas Law.

1.9 Thermal wind

If we combine the geostrophic and hydrostatic relations, we get the thermal
wind relations. These tell us about the velocity shear. Take, for instance,
the p-derivative of the geostrophic balance tor

Oy 100®  ROT (68)
op  foOx Op pfo Ox

after using (67). Note that thepasses through thederivative because it
IS constant on an isobarip)(surface, i.e. they are independent variables.
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Likewise:
du, R IT

dp  pfody
after using the hydrostatic relation (67). Thus the vertical shear is propor-

(69)

tional to the lateral gradients in the temperature.

Cold

Warm

Figure 6: The thermal wind shear associated with a temperajtadient in they-
direction.

The thermal wind is parallel to the temperature contours, with the warm
air/light water on the right. To see this, consider Fig. (6). There is a
temperature gradient in, meaning the thermal wind is oriented in the
x-direction. The temperature is decreasing to the north, so the gradient
is negative. From (69) we have then tliat,/Op is also negative. This
implies thatou, /0% is positive because the pressure decreases going up.
So the zonal velocity is increasing going up, i.e. with the warm air to the
right.

Using thermal wind, we can derive the geostrophic velocities on a nearby
pressure surface, if we know the velocities on an adjacent surface and the
temperature in the layer between the two levels. Consider the case shown
in Fig. (7). The geopotential lines for the lower surface of the layer are
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Warm

Cold

Figure 7: Thermal wind between two layers (1 and 2). The gepi@l height contours
for the lower layer®,, are the dashed lines and the temperature contours arelithe so
lines.

indicated by dashed lines. The wind at this level is parallel to these lines,
with the larger values o, to the right. The temperature contours are
the solid lines, with the temperature increasing to the right. The thermal
wind vector is parallel to these contours, with the larger temperatures on
the right. We add the vectots andv to obtain the vector,, which is the
wind at the upper surface. This is to the northwest, advecting the warm air
towards the cold.

Notice that the wind vector turns clockwise with height. This is called
veeringand is typical of warm advection. Cold advection produces counter-
clockwise turning, callethacking

Thus the geostrophic wind is parallel to the geopotential contours with
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larger values to the right of the wind (in the Northern Hemisphere). The
thermal wind on the other hand is parallel to the mean temperature con-
tours, with larger values to the right. Recall though that the thermal wind
Is not an actual wind, but théifferencebetween the lower and upper level
winds.

The thermal wind relations for the ocean derive from takirdgrivatives
of the Boussinesq geostrophic relations (52-53), and then invoking the hy-

drostatic relation. The result is:

du, g Op

92 pefodn (70)
Ouy g Op

Z9 . J P 71
0z pch 89 ( )

Thus the shear in the ocean depends on lateral gradiedéensity which
can result from changes in either temperature or salinity.

Relations (70) and (71) are routinely used to estimate ocean currents
from density measurement made from ships. Ships cdfigdtographic
measurements of temperature and salinity, and these are then used to de-
termine p(z,y, z,t), from the equation of state (33). Then the thermal
wind relations are integrated upward from chosen level to deterfing
above the level, for example:

© 1 Op(z,y,2)
ug(w,y, 2) — uy(x,y, 29) =
g( Y ) g( Y O) /zo pefo oy

If (u,v,zy) is set to zero at the lower level, it is known as a “level of no

dz (72)

motion”.

Exercise 1.10 Say the temperature at the South Pole is -20C and it’s

40C at the Equator. Assuming the average wind speed is zero at the Earth’s
surface (1000 hPa), what is the mean zonal speed at 250 hPa at 45S?
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Assume the temperature gradient is constant with latitude and pressure.
Use the thermal wind relations in pressure coordinates and integrate them
with respect to pressure to find the velocity difference between thecgurfa
and 250 hPa.

1.10 The vorticity equation

A central quantity in dynamics is the vorticity, which is the curl of the

velocity:

- . ow Ov Oou Ow Ov Ou

The vorticity resembles angular momentum in that it pertains to “spin-
ning” motion. A tornado has significant vorticity, with its strong, counter-
clockwise swirling motion.

The rotation of the earth alters the vorticity because the earth itself is
rotating. As noted in sec. (1.3), the velocity seen by a fixed observer is the
sum of the velocity seen in the rotating frame (earth) and a rotational term

Up =tUp+ QX T (74)
As such, the vorticity is altered by the planet’s rotation as well:
C=Vx(@+Qxi)=C+20 (75)
We call @ the absolute vorticity It is the sum of theelative vorticity,
{ = V x i, and theplanetary vorticity 2¢).

Because synoptic scale motion is dominated by the horizontal veloci-
ties, the most important component of the vorticity is the vertical compo-
nent:

~ 0 0

G, k= (%U — 8_yu> +2Qsin(0) =+ f (76)
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This is the only component we will be considering.

We can derive an equation fodirectly from the horizontal momentum
equations. For this, we use the approximate equations that we obtained af-
ter scaling, retaining the terms to order Rossby number—the geostrophic
terms, plus the time derivative and advective terms. We will use theddous
nesq equations; the same equation obtains if one uses pressure coordinates.

The equations are:

0 0 0 1 0
0 0 3 1 0
pri + Ug + va—yv + fu = _Eﬁ_yp (78)
where
f=fo+ By

To obtain the vorticity equation, weross-differentiatehe equations: we
take ther derivative of the second equation and subtracttloerivative
of the first. The result, after some re-arranging, is:

df ou  Ov

C+u—c+v—c+v— (N5 8y) 0 (79)
or, alternately:
dy ou Ov
7N =—C+NG +5) (80)
where:
dg 0 0 0
E:a—i—u%—l—va—y (81)

Is the Lagrangian derivative based on the horizontal velocities. Note that
we can write the equation this way becayfss only a function ofy.
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A useful feature of the vorticity equation is that the pressure term has
dropped out. This follows from the Boussinesq approximation—if we
hadn’t made that, then there would be terms involving derivatives of the
density. Likewise, the geopotential drops out when using pressure coordi-
nates. This is left for an exercise.

The vorticity equation is related to a result knownkagvin’s theorem
derived in Appendix A. This is of fundamental importance in rotating fluid
dynamics. It concerns how the vorticity and area of a fluid parcel is related

to its latitude.

Exercise 1.11 Derive equation (80). Now derive the equivalent equa-

tion using pressure coordinates instead-gbordinates.

1.11 Boundary layers

The vorticity equation (80 applies in the absence of friction, which we've
seen is weak at synoptic scales. However, without friction there would be
nothing to remove energy supplied by the sun (to the atmosphere) and by
the winds (to the ocean), and the velocities would accelerate to infinity.
Where frictionis important is in boundary layers at the earth’s surface in
the atmosphere, and at the surface and bottom of the ocean. How do these
layers affect the interior motion?

A central feature of the boundary layer is that the geostrophic balance
is broken by friction As noted in sec. (1.3), we represent friction as the
gradient of a tensor;. A general feature of boundary layers is that the ver-
tical extent is much less than their horizontal; so it will suffice to conrside
the vertical derivative of the stress. Thus the geostrophic relations (52) and
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(53) are modified thus:

1 0 0 T,

—fov = _E%p + @E (82)
10 0 7

fou = _Eé)_yp + @E (83)

wherer, andr, are stresses acting in thendy directions. We can rewrite

these relations thus:

—fo(v —vy) = — fov, = %% (84)
folt — 1g) = fotg = =2 (85)
0 g) — JOWag — aZPc

where (., v,) are ageostrophic velocities (the departures from pure geostrophic
flow). The ageostrophic velocities in the boundary layer are proportional to
the stresses; if we know the frictional stresses, we can find thesetiedoc
We are only concerned with how the boundary layer affects the motion
In the interior. To see this, consider the vorticity equation (80). We can

rewrite this as:

ad, 4 e o
(C+ N7 HC+ )=+ f)=—(5—+ 8y) (86)
Using the continuity equation (55), this is:
d ow
El”(f +f)= F (87)

To get an indication about how the interior reponds to the boundary layers,
we can integrate this in the vertical, between the upper and lower layers
(lying atz = a andz = b, for example):

d

/a Zn(C + f) dz = w(b) = wa) (88)
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This implies that therertical velocityfrom the boundary layers act to force
the flow in the interior. If there is flow out of the boundary layer, it will
affect the interior flow by generating vorticity.

Consider the boundary layer at the surface of the ocean first. Let's say
the surface is at = 0 and the layer extends down to= —¢. To obtain
w, we will again use the continuity equation (55):

0 0 0 0 0
a’w = —%U — 8_yU = _%U/a - 6_yva (89)

The horizontal divergence involves only the ageostrophic velocities be-
cause the geostrophic velocities are horizontally non-divergent. Integrat-
ing this over the layer yields:
0
w(0) —w(—0) = — /5(%% + (%Ua) dz (90)
Since there is no flow out of the ocean surface, we can writ§ = 0.
Then we have, at the base of the layer:

0 0
—0) = = s 7 Vs 91
w(—0) 81‘U +8yv (91)
where(Us, V;) are the horizontaransportsin the surface layer:
0 0
U, E/ u, dz, Vi E/ v, dz (92)
-4 -4

We obtain these by integrating (84) and (85) vertically.
The stress at the surface € 0) is due to the wind:
= (7))

The stress at the base of the Ekman layer is zero—because the stress only

acts in the layer itself. So we obtain:

N
s ) s
pefo pefo
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Thus the transport in the layer 8 degrees to the right of the wind
stress If the wind is blowing to the north, the transport is to the east. This
Is Ekman’s (1905) famous result. Nansen had noticed that icebergs don'’t
move downwind, but drift to the right of the wind. This simple model
explains why this happens.

To get the vertical velocity, we take the divergence of these transports:

o 7, 0 T 1 .
w(d) = ——4 + —(——) = k-V x 7% 93
( ) axpcf() ay pch) pch ( )

So the vertical velocity iproportional to the curl of the wind stres#t is

the curl, not the stress itself, which is most important for the interior flow
in the ocean at synoptic scales.

Notice we made no assumptions about the stress in the surface layer
itself to obtain this result. By integrating over the layer, we only need to
know the stress at the surface. So the result (93)dependentf the
stress distributionz (z) /p., in the layer.

Then there is the bottom boundary layer, which exists in both the ocean
and atmosphere. Let's assume the bottom is flat and that the Ekman layer
goes fromz = 0 to z = 4. The integral of the continuity equation is:

w(8) - w(0) = w() = ~(5-Un + 3 Vi) (94

where nowUp, V are the integrated (ageostrophic) transports in the bot-
tom layer. Note that the vertical velocity vanishes attihygof the layer
this time. Again we integrate (84) and (85) to find the transports. How-
ever, we don’'t know the stress at the bottom. All we know is that the
bottom boundary isn’t moving.

The formal way to proceed is to solve for the velocities in the layer.
This is what Ekman (1905) did, assuming a simplified representation of
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the vertical mixing. In fact, you get the same result if you assume that the
bottom stress is simply proportional to the interior flow. So we will present
the simpler solution here and leave the full solution for Appendix B.

The interior flow is nearly geostrophic, so we take that to be:

(u,v) = (ug,vy) (95)

We represent the bottom stress as:

7B = (—Auy, —Av,) (96)
whereA is a constant. The linear (or “Rayleigh”) drag acts to de-accelerate
the velocities. Thus the transports are:

A

-
Up=—L)=——"v (97)
b pch‘O /chO g
and:
Ty ) A

Vp =

AR =)

The stress vanishes at the top of the layer, at the boundary with the interior.
Thus the vertical velocity from the layer is:

B 0 0 B A Ov, Ou B A
w(é)__(%UBJr@_yVB)_pcfo(@x 8y)_pcfogg (99)

In other words, the vertical velocity from the bottom Ekman layers

portional to the relative vorticity in the interior So there will be strong
vertical motion beneath a strong vortex, like a hurricane.

Notice that the termd/(p.fo) has units of length (becaugghas units
of inverse time anav is in m/sec). In the Ekman derivation (Appendix B),
you find that this is proportional to the depth of the boundary layer:
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A
So:
0
w(d) = §Cg (101)

These two results represent a tremendous simplification. We can in-
clude the boundary layers without actually worrying about what is hap-
pening in the layers themselves. We will see that the bottom layers cause
relative vorticity to decay in time (sec. 2.7), and the stress at tkearoc
surface forces the ocean (e.g. sec. 2.9). We can include these two effects
and then neglect explicit friction hereatfter.
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2 Barotropic flows

Now we will examine specific solutions to the vorticity equation. In this
chapter we assume the fluid barotropic  This implies that there is no
vertical shear in the horizontal velocities. While this may seem ligmoas
over-simplification, many of the phenomena seen in the barotropic case

carry over to stratified (baroclinic) flows.

2.1 \ertical shear in a barotropic fluid

The fact that there is no shear follows from the thermal wind relations
(68) and (69). If the temperature is constant on pressure surfaces, so that

T =T(p), then:
Ovg _ Oug _
op  Op
So the geostrophic velocities don’t change with height. The velocities at

(102)

the top of the atmosphere are the same as those at the surface.
The corresponding condition in the ocean, from (70- 71), is that the
density is constant ogrsurfaces. Thus ip = p(z), we have:
Doy _ Oy
0z 0z

Then the currents are the same at the surface and bottom of the ocean.

~0 (103)

The lack of vertical shear implies that fluid movescmlumnsin baro-
tropic flows. Parcels which are vertically aligned stay aligned. Ths si
plification greatly simplifies the solutions, because the motion is reatly tw
dimensional rather than three dimensional.
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2.2 Barotropic PV equation

Now we will derive the equation of motion for barotropic flows. This
comes from the quasi-horizontal vorticity equation given in (80):

dn o 0 )
o SN = QGrut 5o =+ g w (104)

after invoking the incompressibility condition (55) again. Note that this
involves three unknowns,, v andw.

Assume we have a layer of fluid (atmosphere or ocean) which is bounded
by two surfaces, the lower one at and the upper at;. Define the total
depth to beD = z; — 2,. Because the velocities don’t vary with height, it
Is simple to integrate (104) in the vertical direction:

21 dy dy

|G+ p = DGHC+ P =+ Olula) —wla)] - (108
The terms involving, pass through the integrals, since they are indepen-
dent of height.

Three effects can induce vertical motion at the boundaries. If the bound-
ary is irregular (not flat), this will cause fluid parcels to move vaittic For
example, when the wind blows over a mountain range, the parcels must go
up and then come down again. Second, if the boundary moves (like the
ocean surface), this will also yield vertical motion. An friction@lsan
induce vertical motion, as we have seen with Ekman layers if there is con-
vergence or divergence in the layer. We’'ll neglect friction for the moment,
then replace it in section (2.6).

The vertical velocity is actually the Lagrangian derivative of the height:

d

w = —=7

dt
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where hered/dt is the full Lagrangian derivative. If the parcel is confined
to a surface, say at the bottom, then we’d have:
d 0 0

w = —2o(x,y) = u=—20 +v=—=2

dt Ox oy
000

In the absence of friction, we can write:

w(z) —w(zy) = i(zl —29) = d—HD (106)

The last derivative is a horizontal one becadses a function of(z, y, t).
Note that

So the integrated vorticity equation is:

d[-[ dH
DE(C*‘JE) = (f‘i‘C)ED (107)
which implies:
dg ¢+ f,
PR (108)

Equation (108) expresses thenservation of potential vorticitfor a

barotropic fluid. In the absence of friction, we have that:

C+f
D

= const. (209)
on fluid parcels.

Consider the fluid column shown in Fig. (2.2), initially with no vor-
ticity. As it moves to the right, it encounters ridge. Thus the depth,
Is decreasing. In order for the PV to remain constant, the vorticity must
also decrease, becoming negative in this case. So the column acquires a

clockwise spin when surmounting the ridge.
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The conservation of PV is similar to Kelvin’'s theorem (Appendix A).
This is because the volume of the fluid column is conserved, due to incom-
pressibility, which implies the product of the heigi?, and the column
area are conserved. Solif decreases, the column’s area increases, and

Kelvin’s theorem demands that the vorticity decrease to offset that.

Exercise 2.1 Show that (108) follows from (107). Say we have a cy-

clone with¢ = f/2 and 2 km high. What is the cyclone’s vorticity if it is
compressed to 1 km over a mountain range? Assume it stays at the same
latitude.

2.2.1 The quasi-geostrophic vorticity equation

The PV equation (108) can be derived directly from stallow water
equations which are the equations which govern a constant density fluid
with topography. Interestingly, the shallow water equations apply to flows
with a fully varying Coriolis parameter and steep topography. They are the
equations that we solve for predicting the global tides.

But a significant drawback with equation (108) is that it has two un-
knowns,u andv. So we can't solve it by itself. In the shallow water con-

text, we have to supplement the equation with an additional one (derived
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from continuity).

But by making several approximations, valid at synoptic scales, we can
obtain an alternate form of the equation which has only one unknown.
This is quasi-geostrophic vorticity equationThe approximations are as

follows:
e The Rossby number is small
o [Byl < fy
e The bottom topography is weak

Consider the first condition. From sec. (1.6) we know that when the
Rossby numbeg, is small, the horizontal velocities are approximately in

geostrophic balance. So if:
U = Uy + Ug (110)

whereu, is the ageostrophic velocity, then:

Likewise, the vorticity is much less thafy, because:
¢ U

X =€
Jo  JoL
To satisfy the second condition, we assume:
8y
| fol

Of course we could demand that theerm be even smaller, but assuming

X €

a Rossby number scaling will preserve the variatiorf .of
Lastly, there is the condition on the bottom topography. Assume we can
write the depth as:
D = Dy — h(z,y)
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Here D, is a constant reference depth (like 5 km for the interior ocean).
Then, to satisfy the last condition above, we assume:
]

— X €
0

So the bottom variations are small compared to the reference depth. We
don’t allow for mountains which project upward through the entire fluid.
The tallest ones can only extend to say 10 % of the total depth (Fig. 8).

Figure 8: The geometry of our fluid layer. The topographighgir, is much less than
the depth of the layer.

We now use these assumptions to write a simpler version of the vorticity
equation. First, we replace the horizontal velocities with their geostrophic

equivalents in the Lagrangian derivative:
dg d, 0 0 0

— s 2= — — 111
at  di 8t+u9833+vg(9y (111)
Similarly, we replace the vorticity with its geostrophic version:
0 0
(= Gy = %Ug - 3_yug (112)

So the PV equation is:

dHC"‘f dgCg+f0+6y
s )79 — 113
dt D dt Dy—h ¥ (113)
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Using our three assumptions, we can simplify the PV as follows:

Gt+lot+By — Jo L+G/fo+Bylfo
gDo—h B DO< 19— h/Dy ) (114)
- ﬁ Cg By n
~ p, i fo)( + ) (115)
Jo % By Joh (116)

~ Dy "Dy Dy D
Each of the last three terms are of order Rossby number compared to the
first term. Moreover, the terms which we've dropped involve pined-
ucts of the small terms and are hence of order Rossby number squared.
Substituting this into (113) yields:

— (G + By +7-h) = (117)

after multiplying through by the constanm),, and dropping the constant
fo/ Dy (which has zero derivative). This the quasi-geostrophic PV equation
without forcing or friction.

The great advantage of this is that it has only one unknown: the pres-

sure. From the geostrophic relations, we have:

1 0 1 0
pefody” T pefoda”
The relative vorticity can also be expressed solely in terms of theymeass

(118)

UQ:_

V<p (119)

We can simplify this somewhat by defininggaeamfunction

=2 (120)
pch
Then we have:
B 0 B 0 o2
U= _(9_yw’ v = %% Gg =V (121)

Using these, the vorticity equation is:
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0 0 19,
(a — ug% + vga—y)(v2¢ + By + lj;—(;h) = (122)
o oo oo 9 fo -
(E _Fy%Jra_xa_y)(v w+ﬁy+ﬁoh) = 0 (123)

Exercise 2.2 Use scaling to figure out how big the ageostrophic veloc-

ities typically are. Use-coordinates and assume the Boussinesq approxi-
mation. First show the horizontal divergence of the ageostrophic velocities
Is the same size as the vertical derivative of the vertical velocityen
scale the result. Use typical oceanic valuesliioy L and D (see exercise
1.6). Does the result make sense with regards to the Rossby number?

Exercise 2.3 Consider a barotropic layer betweenand z;, wherez,

Is a flat surface. What happens if the upper surfacencane® Assume
thatz; = Dy + n(z,y,t). Let the bottom be at, = 0. Write the quasi-
geostrophic PV equation for this case.

2.3 Geostrophic contours

The PV equation (122) states that the PV is conserved on fluid parcels,
where the PV is:

This is a strong constraint. The PV is comprised of a time-varying por-
tion (the vorticity) and a time-independent part (duestand the bottom
topography). So we can rewrite equation (122) this way:
d
d—iv2w + i, - Vs =0 (124)
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where the function:

gs = Py + l];—oo
defines thegeostrophic contourshe stationary (unchanging) part of the
potential vorticity.

If a parcel crosses the geostrophic contours, its relative vorticity must
change to conserve the total PV. Consider the example in figure (9). Here
there is no topography, so the contours are just latitude lipes-(3y).
Northward motion is accompanied bydacreasen relative vorticity: as
y increases(, must decrease. If the parcel has zero vorticity initially, it
acquires negative vorticity (clockwise circulation) in the northern hemi-
sphere. Southward motion likewise generates positive vorticity. This is

just Kelvin’s theorem again.

Figure 9: The change in relative vorticity due to northwargdauthward motion relative
to SBy.

Topography generally distorts the geostrophic contours. If it is large
enough, it can overwhelm they term locally, even causinglosedcon-
tours (near mountains or basins). But the same principle holds, as shown
in Fig. (10). Motion towards larger values @f generates negative vortic-
ity and motion to lower values af; generates positive vorticity.
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Figure 10: The change in relative vorticity due to motionaasr geostrophic contours
with topography.

If the flow is steady, then (166) is just:
Uy -V(+qs) =0 (125)

Thus for a steady flow the geostrophic flowparallel to the total PV
contours ¢ = (, + ¢,. If the relative vorticity is weak, so tha}, < gs,
then:

Uy - Vgs =0 (126)
So the flow follows the geostrophic contours.

Take the case again of no topography. Then:
iy -V By = Buy =0 (127)

So the steady flow is purelyonal This is because meridional motion
necessarily implies a changing relative vorticity. An example are ¢he J
Streams in the atmosphere. These is approximately zonal flows.

49



Alternately if the region is small enough so that we can ignore changes
in the Coriolis parameter, then:

iy Vh=0 (128)

(after dropping the constarft/ D, factor). Then the flow follows the to-
pographic contours. This is why many major currents in the ocean are
parallel to the isobaths.

Whether such steady flows actually exist depends in addition on the
boundary conditions. The atmosphere iegentrant domainso a zonal
wind can simply wrap around the earth (Fig. 11, left). But most ocean
basins have lateral boundaries (continents), and these block the flow. As
such, steady, along-contour flows in a basin can ooaly where topog-
raphy causes the contours to clod&g. 11, right). This can happen in
basins.

Figure 11: Steady, along-geostrophic contour flow in theoafphere (left) and in the
ocean (right).

Consider Fig. (12). This is a plot of the mean surface velocities, derived
from surface drifters, in and near the Lofoten Basin off the west coast
of Norway. The strong current on the right hand side is the Norwegian
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Atlantic Current, which flows in from the North Atlantic and proceeds
toward Svalbard. Notice how this follows the continental slope (the steep
topography between the continental shelf and deeper ocean). In the basin
itself, the flow is more variable, but there is a strong, clockwise citimria

In the deepest part of the basin, where the topographic contours are closed.
Thus both closed and open geostrophic contour flows are seen here.

Figure 12: Mean velocities estimated from surface drifterthe Lofoten Basin west of
Norway. The color contours indicate the water depth. Noeestiong flow along the
continental margin and the clockwise flow in the center ofthsin, near 2E. From
Koszalka et al. (2010).

If the relative vorticity is not small compared &g, the flow will devi-
ate from the latter contours. This can be seen for example with the Gulf
Stream, which crosses topographic contours as it leaves the east coast of
the U.S. If the relative vorticity is much stronger thanthen we have:

Uy -V~ 0 (129)
as a condition for a steady flow. Then the flow follows contours of con-
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stant vorticity. An example is flow in a vortex. The vorticity contours are
circular or ellipsoidal and the streamlines have the same shape. The vortex
persists for long times precisely because it is near a steady state.

2.4 Barotropic Rossby waves

2.4.1 Linearization

The barotropic PV equation (122) is still a nonlinear equation, so analytical
solutions are difficult to find. But we can make substantial progress by
linearizingthe equation.

Consider the case with no topography. As we found in the previous
section, the only steady flow we could expect is a zonal one. So we could
write:

/ /
u=U+u, v=vw

Here,U is a constant zonal velocity which is assumed to be much greater
than the primed velocities. In the atmosphédrewould represent the Jet
Stream. BecausE is constant, the relative vorticity is just:

We substitute the velocities and vorticity into the PV equation to get:

0 , 0 0

— U+u)=— +v— "=0 130

3¢+ U)o gl + o (130)
Because the primed variables are small, we neglect their products. That

leaves an equation with only linear terms. Written in terms of theastre
function (and dropping the primes), we have:

0 0

0
2 —
(E + U%)V Y+ ﬁ%w =0 (131)
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This is thebarotropic Rossby wave equatiorAgain, this has only one

unknown: the streamfunctiom,

2.4.2 \Wave solutions

Equation (131) is a first ordevave equationThere are standard methods

to solve such equations. One of the most common isoheier transform

in which we write the solution as an infinite series of sinusoidal waves.
Exactly which type of wave one uses depends on the boundary conditions.
To illustrate the method, we assume an infinite plane. Although this is not
very realistic for the atmosphere, the results are very similar teethoa
east-west re-entrant channel.

Thus we will write:
= Re{) > A(k,1)errtiviery (132)
koo
where:
e = cos(9) + isin(0) (133)
is a complex number. The amplitudé, can also be complex, i.e.
A=A, +iA; (134)

However, since the wavefunctio, is real, we need to take the real part
of the product ofd ande?. This is signified by theke{x} operator.

Now because the Rossby wave equation is linear, we can consider the
solution for asinglewave. This is because with a linear equation, we can
add individual wave solutions together to obtain the full solution. So we
consider the following solution:

¢ _ Re{Aeikx—i-ily—iwt} (135)
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Herek andl arewavenumberm thez andy directions, and is the wave
frequency
Consider the simpler case of a one-dimensional wave)(iwith a unit
amplitude:
Y = Re{e™ 1) = cos(kx — wt) (136)

The wave has wavelengttof 27 /k. If w > 0, the wave propagates toward
largerz (Fig. 13). This is because amcreases;-wt decreases, somust
increase to preserve the phase of the wave (the argument of the cosine).

A=21k

cos(kxmt)

t=0 t= /2w

t=T/w
Figure 13: A one-dimensional wave, propagating toward idjfet r

In other words, if we define the phase:

0 = kx — wt

then the position of, say, the wave cresf at 2 is:

2
x(QZQW):%—i—%t

Thus, so long as andk are positive, the crest moves to the right, because

x iIs increasing. The velocity of the crest is just:
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W
== 137
= (137)

This is known as the wavejghase speed\e often incorporate the phase
speed by writing the wave form thus:

Y = cosk(x — ct) (138)

Notice thatc has units of length over time, as expected for a velocity.

If the phase speed depends on the wavelength (wavenumber)¢ize. if
c(k), we say the wave idispersive This is because different size waves
will move at different speeds. Thus a packet of waves, originating from a
localized region, will separate in time. Waves thatraoa-dispersivenove
at the same speed regardless of wavelength. A packet of such waves would
move away from their region of origin together.

2.4.3 Rossby wave phase speed

Now we return to the linearized barotropic PV equation (131) and substi-

tute in our general wave solution in (135). We get:
(—ZCL} + Zk'U)(—]CQ . 12) Aeikl”rilyfiwt + Zﬁk Aeik:ﬂrilyfiwt —0 (139)

(We will drop the Re{x} operator, but remember that in the end, it is the
real part we're interested in). Notice that both the wave amplitude and the
exponential term drop out. This is typical of linear wave problems: we get
no information about the amplitude from the equation itself (that requires
specifying initial conditions). Solving fap, we get:

Bk

=R e

(140)
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This is theRossby wave dispersion relationt relates the frequency of
the wave to its wavenumbers. The corresponding phase speed (in the
direction) is:

B B
_Y_y_ P g P 141
c=p VUV m =l (141)

€

wherex = (k% + 12)'/? is the total wavenumber.

There are a number of interesting features about this. First, the phase
speed depends on the wavenumbers, so the waves are dispersive. The
largest speeds occur whérand! are small, corresponding to long wave-
lengths. Thus large waves move faster than small waves.

Second, all waves propagatestwardelative to the mean velocity].

If U =0,c<0forall (k,). Thisis a distinctive feature of Rossby waves.
Satellite observations of Rossby waves in the Pacific Ocean show that the
waves, originating off of California and Mexico, sweep westward toward
Asia (as seen hereatfter).

The phase speed also has a meridional component, and this can be either

towards the north or south:

w Uk B
w_Ur 142
[ 1 (1B (142)

The sign ofc, thus depends on the signs/ofind!. So Rossby waves can

Cy:

propagate northwest, southwest or west—but not east.

With a mean flow, the waves can be swept eastward, producing the
appearance of eastward propagation. This happens frequently in the atmo-
sphere, where the mean westerlies advect Rossby waves (pressure}yystem
eastward. If

B

_ 1/2
> s — \ 7+
v > r= (D)

56



the wave moves eastward. Longer waves move westward, opposite to the
mean flow, and short waves are advected eastward. =f x,, the wave

Is stationaryand the crests don’'t move at all—the wave is propagating
west at exactly the same speed that the background flow is going east.
Stationary waves can only occur if the mean flow is eastward, because the
waves propagate westward.

Example How big is the stationary wave if the mean flow is 20 m/sec
to the east? Assume we are at 45 degrees N and thalt

At 45N:
1 A7
= 45) = 1.63 x 107" mtsec™?
B = 53105 86400 “>**5) . mosee
SO.
B 1.63 x 1071 m~tsec™! 1/2 R
- —9.03 x 10
U ( 20m/sec ) 8 m

Assuming), = \,, we have that:

B 2\/§7T
=%

Ks

SO.
s = 9.84 x 10%m ~ 9000 km

Remember that this is a wavelength, so it includes positive and negative
pressure anomalies. But it still is larger than our typical storm scale of
1000 km.

Exercise 2.4 Bottom topography, like thes-effect, can support

Rossby-like waves, calletbpographic waves To see this, use the lin-
earized version of the barotropic PV equation (123) wittD (a constant
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Coriolis parameter). Assume the bottom slopes uniformly to the east:
H=H),— ax (143)

Derive the phase speed (in thedirection) for the waves, assuming no
background flow /' = V = 0). Which way do the waves propagate,
relative to the shallower water? Whatif< 0? What about in the southern
hemisphere?

Exercise 2.5 We solved the Rossby wave problem on an infinite plane.

Now consider what happens if there are solid walls. Start with the linear
vorticity equation, with no mean flom{ = 0). Assume the variations
in y are weak, so that you can approximate the vorticitygagy. For the
boundary conditions, lep = 0 atz = 0 andx = L—this ensures that
there is no flow into the walls. What are the solutionsiandk?

Hint 1: Assumey) = A(z)cos(kx — wt)

Hint 2: Impose the boundary conditions dn

Hint 3: The coefficients of the sine and cosine terms should both be
zero.

Hint 4: The solutions arquantized have discrete values).

2.4.4 Westward propagation: mechanism

We have discussed how motion across the mean PV contguisduces
relative vorticity. The same is true with a Rossby wave. Fluid parcels
which are advected north in the wave acquire negative vorticity, while

those advected south acquire positive vorticity (Fig. 14). Thus one can
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y=0

Figure 14: Relative vorticity induced in a Rossby wave. Fluldexted northwards ac-
quires negative vorticity and fluid advected southwardstpesvorticity.

think of a Rossby wave as a string of negative and positive vorticity anoma-
lies (Fig. 15).

Figure 15: The Rossby wave as a string of vorticity anomallég cyclone in the right
hand circle advects the negative anomaly to the southwése the left cyclone advects
it toward the northwest. The net effect is westward motion.

Now the negative anomalies to the north will act on the positive anoma-
lies to the south, and vice versa. Consider the two positive anomalies
shown in Fig. (15). The right one advects the negative anomaly between
them southwest, while the left one advects it northwest. Adding the two
velocities together, the net effect is a westward drift for the anomaty: S
ilar reasoning suggests the positive anomalies are advected westward by
the negative anomalies.

What does a Rossby wave look like? Recall thhas proportional to
the geopotential, or the pressure in the ocean. So a sinusoidal wave is a
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sequence of high and low pressure anomalies. An example is shown in

Fig. (16). This wave has the structure:
Y = cos(x — wt)sin(y) (144)

(which also is a solution to the wave equation, as you can confirm). This

appears to be a grid of high and low pressure regions.

Rossby wave, t= 0

DO O © CF
D) (O © © @F
o o -ocl-
booodF

Hovmuller diagram, y=4.5

Figure 16: A Rossby wave, with = cos(z — wt)sin(y). The red corresponds to high
pressure regions and the blue to low. The lower panel showartiuller” diagram of
the phases at = 4.5 as a function of time.

The whole wave in this case is propagating westward. Thus if we take a
cut at a certain latitude, hege= 4.5, and ploty(x, 4.5, t), we get the plot
in the lower panel. This shows the crests and troughs moving westward
at a constant speed (the phase speed). This is known as a “Hovmuller”
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diagram.
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Figure 17: Three Hovmuller diagrams constructed from sefasel height in the North
Pacific. From Chelton and Schlax (1996).

Three examples from the ocean are shown in Fig. (17). These are Hov-
muller diagrams constructed from sea surface height in the Pacific, at three
different latitudes. We see westward phase propagation in all thres. case
Interestingly, the phase speed (proportional to the tilt of the lines) differs
in the three cases. To explain this, we will need to take stratificatito
account, as discussed later on. In addition, the waves are more pronounced

west of 150-180 W. The reason for this however is still unknown.
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2.4.5 Group Velocity

Thus Rossby waves propagate westward. But this actually poses a prob-
lem. Say we are in an ocean basin, with no mean flow=(0). If there is

a disturbance on the eastern wall, Rossby waves will propagate westward
into the interior. Thus changes on the eastern waltaremunicatetb the

rest of the basin by Rossby waves. Because they propagate westward, the
whole basin will soon know about these changes. But say the disturbance
Is on thewest wall If the waves can go only toward the wall, the energy
would necessarily be trapped there. How do we reconcile this?

The answer is that the phase velocity tells us only about the motion of
the crests and troughs—it does not tell us how the energy is moving. To
see how energy moves, it helps to considpaekeif waves with different
wavelengths. If the Rossby waves were initiated by a localized source, sa
a meteor crashing into the ocean, they would start out as a wave packet.
Wave packets have both a phase velocity and a “group velocity”. The
latter tells us about the movement of packet itself, and this reflectshmw t
energy is moving. It is possible to have a packet of Rossby waves which
are moving eastwards, while the crests of the waves in the packet move
westward.

Consider the simplest example, of two waves with different wavelengths
and frequencies, but the same (unit) amplitude:

Y = cos(krz + Ly — wit) + cos(kox + loy — wot) (145)

Imagine thatk; andk, are almost equal té, one slightly larger and the
other slightly smaller. We'll suppose the same fioandl, andw; andws.
Then we can write:

Y = cos[(k + 6k)x + (I + )y — (w + dw)t]
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+cos|(k — 6k)x + (I — dl)y — (w — dw)t] (146)
From the cosine identity:
cos(a + b) = cos(a)cos(b) F sin(a)sin(b) (147)
So we can rewrite the streamfunction as:
Y = 2cos(0kx + 0ly — dwt) cos(kx + ly — wt) (148)

The combination of waves has two components: a plane wave (like we
considered before) multiplied bycarrier wave which has a longer wave-

length and lower frequency. The carrier wave has a phase speed of:

w  Ow

Cx

and
B dw  Ow

~

Cy = ST Cyy (150)

The phase speed of the carrier wave isghaup velocity because this is

the speed at which the group (in this case two waves) moves. While the
phase velocity of a wave is ratio of the frequency and the wavenumber, the
group velocity is thalerivativeof the frequency by the wavenumber.

This is illustrated in Fig. (18). This shows two wavess(1.05z) and
c0s(0.095z). Their sum yields the wave packet in the lower panel. The
smaller ripples propagate with the phase speed, w/k = w/1, west-
ward. But the larger scale undulations move with the group velocity, and
this can be either westr east.

The group velocity concept applies to any type of wave. For Rosshy
waves, we take derivatives of the Rossby wave dispersion relatian. for
This yields:

Ow k? — [ 0w 2BKI

“or PmErp v T o T Rty

¢ = (151)
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c0s(0.95x) and cos(1.05x)

20 40 60 80 100 120

cos(x)cos(.05x)

20 40 60 80 100 120

Figure 18: A wave packet of two waves with nearly the same Veaggh.

wavenumbers. If

Consider for example the group velocity in the zonal directigp,
The sign of this depends on the relative sizes of the zonal and meridional

k>1

the wave packet has a positive (eastward) zonal velocity. Then the energy
IS moving in theoppositedirection to the phase speed. This answers the
guestion about the disturbance on the west wall. Energy can indeed spread
eastward into the interior, if the zonal wavelength is shorter than thelmeri
lonal one. Note that for such waves, the phase speed is still westward. So
the crests will move toward the west wall while energy is carriestveard!
Another interesting aspect is that the group velocity ingfdirection
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is alwaysin the opposite direction to the phase speed,ibecause:

Coy 212
c, k2412

<0. (152)

So northward propagating waves have southward energy flux!
The group velocity can also be derived by considering the energy equa-
tion for the wave. This is shown in Appendix C.

2.5 Rossby wave reflection

A good illustration of these Rossby wave properties is the case of a wave
reflecting off a solid boundary. Consider what happens to a westward
propagating plane Rossby wave which encounters a straight wall, oriented

alongx = 0. The incident wave can be written:
w, — A eikix—i-iliy—iwit
[ (4

where:
—Pk;
Wi = 75—
k? + 12
The incident wave has a westward group velocity, so that

ki<li

Let’s assume too that the group velocity has a northward component (so
that the wave is generated somewhere to the south). As such, the phase
velocity is oriented toward theouthwest

The wall will produce a reflected wave. If this weren’t the case, all the
energy would have to be absorbed by the wall. We assume instead that all
the energy is reflected. The reflected wave is:

wr — Ar eikraﬁ—z’lry—iwrt
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The total streamfunction is the sum of the incident and reflected waves:

Y=+ (153)

In order for there to be no flow into the wall, we require that the zonal
velocity vanish atr = 0, or:

0
u=——1v=0 at z=0 (154)
dy
This implies:
—il; A; vt gl AL ety Tt — (155)

In order for this condition to hold at all times, the frequencies must be
equal:
W = Wy =W (156)

Likewise, if it holds for all values ofy along the wall, the meridional

wavenumbers must also be equal:
li=1,=1 (157)

Note that because the frequency and meridional wavenumbers are pre-
served on reflection, the meridional phase veloaify,= w/l, remains
unchanged. Thus (155) becomes:

il A; e 4Gl A, et = (158)

which implies:
Ai=—-A.=A (159)

So the amplitude of the wave is preserved, but the phase is changed by
180°.
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Now let's go back to the dispersion relations. Because the frequencies
are equal, we have:

W — _ﬂk7 L _ﬁkr
R+ R+
This is possible because the dispersion relation is quadratiaimd thus

(160)

admits two different values df. Solving the Rossby dispersion relation

po O VA (161)

2w 2w
The incident wave has a smaller valug:dfecause it has a westward group

for k, we get:

velocity; so it is the additive root. The reflected wave thus comes from the
difference of the two terms.

This implies the wavenumbéancreasen reflection, by an amount:

52
ke =k =24/ =5 — 2 (162)

In other words, the incident waves are long but the reflected waves are
short

We can also show that the meridional velocityincreasesipon reflec-
tion and also that the mean energy (Appendix C) increases on reflection.
The reflected wave is more energetic because the energy is squeezed into
a shorter wave. However, tlikix of energy is conserved; the amount of
energy going in equals that going out. So energy does not accumulate at
the wall.

Thus Rossby waves change their character on reflection. Interestingly,
the change depends on thaentationof the boundary. A tilted bound-
ary (e.g. northwest) will produce different results. In fact, the cask wit
a zonally-oriented boundary (lying, say, alopg= 0) is singular, you
must introduce other dynamics, like friction, to solve the problem. Rossby
waves, in many ways, are strange.
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Figure 19: A plane Rossby wave reflecting at a western wall.ifitident wave is shown
by the solid lines and the reflected wave by the dashed linbg. phase velocities are
indicated by the solid arrows and the group velocities bydashed arrows. Note the
wavelength iny doesn’t change, but the reflected wavelength is much shorter. Note
too the reflected wave has a phase speed directed toward thduwtaa group velocity
away from the wall.

Exercise 2.6 Consider Rossby waves incident on a northern wall, i.e.

oriented east-west, locatedat= 0. Proceed as before, with one incident
and one reflected wave. What can you say about the reflected wave?
Hint: there are two possibilities, depending on the sigf).of
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2.6 The PV equation with forcing

Up until now, we have considered solutions of the inviscid PV equation—
that is, without any forcing. Now we will consider what happens with
friction included.

As noted in Chapter 1, friction is unimportant for synoptic scale mo-
tion. Where it is important is in the boundary layers. As we saw in section
(1.11), the ageostrophic flow in these layers can generate vertical veloci-
ties, and these in turn can influence motion in the interior. We cannot sim-
ply include Ekman layers in our barotropic formalism, because the vertical
shear in the layers is not zero. What we can do is to assume that-the
terior of the fluid is barotropic and that that is sandwiched between two
Ekman layers, one on the upper boundary and one on the lower.

We can include these Ekman layer by adding two additional terms on
the RHS of the integrated vorticity equation (117), thus:

Jo Jo

(C + By + —h) ) = [we(21) — we(20)] (163)

The first term on the RHS is the vertical velocity associated with the bound-
ary layer on the upper surface and the second term is that with the layer on
the lower surface.

In the atmosphere, we would set the vertical velocity at the top boundary
to zero (there is no Ekman layer on the tropopause). The ocean is different
though, because the wind is causing divergence at the upper surface. So
we include the wind stress term from (93):

we(z1) = mk VvV xT¥ (164)
The bottom Ekman layer exists in both the atmosphere and ocean. This
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exerts a drag proportional to the relative vorticity. From (101), we have:

o
we(20) = 3G (165)
The Ekman layers thus affect the motion in the interior when there is vor-
ticity.
Combining all the terms, we arrive at the forced barotropic PV equation:

dg 2 Jo L - 2
—= ~—h) = k - " — 166
dt(V¢+5y+Do) oD V X Ty — V21 (166)
The constanty, is called the “Ekman drag coefficient” and is defined:
y— J00
2D

An important point about this is that the forcing terms exert themselves
over the entire depth of the fluid, because there is no vertical shear.

2.7 Spin down

Both the atmosphere and ocean have a bottom boundary layer. Bottom
friction damps the velocities, causing the winds to slow. The simplest
example of this is with no bottom topography and a consfanthen the

barotropic vorticity equation is:

dg .
2= —1¢ (167)

This is a nonlinear equation. However it is easily solved in the Lagrangian
frame. Following a parcel, we have that:

¢(t) = ¢(0)e ™" (168)

So the vorticity decreases exponentially. The e-folding time scale is known
as the Ekmaispin-down time

2
A-fo
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Typical atmospheric values are:

D =10km, f=10"*sec™!, A, =10m?/sec

assuming the layer covers the entire troposphere. Then:

T, ~ 4 days

If all the forcing (including the sun) were suddenly switched off, the winds
would slow down, over this time scale. After about a week or so, the winds
would be weak.

If we assume that the barotropic layer does not extend all the way to
the tropopause but lies nearer the ground, the spin-down time will be even
shorter. This is actually what happens in the stratified atmosphere, with
the winds near the ground spinning down but the winds aloft being less
affected. So bottom friction favors flows intensified further up. The same

IS true in the ocean.

2.8 Mountain waves

Barotropic Rossby waves have been used to study the mean surface pres-
sure distribution in the atmosphere. This is the pressure field you get when
averaging over long periods of time (e.g. years). The central idea is that
the mean wind{/, blowing over topography can excite stationary waves
(c; = 0). As demonstrated by Charney and Eliassen (1949), one can find
a reasonable first estimate of the observed distribution using the linear,
barotropic vorticity equation.

We start with the vorticity equation as applied to the atmosphere. First
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we will neglect any frictional forcing:

foy,

(<+6+ h)=0 (170)

We will linearize about a mean zonal flow:

u=U+vd, v=2v, (=

We will also assume the topography is weak:

h="n

in keeping with QG. Then the Rossby wave equation becomes:
9, d fo

(5; tU )C+6 FU——Sh =0 (171)
Substituting in the streamfunctlon, we have:
0 0 2 0 o fO /
(§+U%)V ¢+5%¢— EUa h (172)

We put the topographic term on the RHS because it does not involve the
streamfunction, and so acts instead like a forcing term. So the winds blow-
ing over the mountains generate the response.

The homogeneous solution to this equation are just the Rossby waves
we discussed earlier. These are called “free Rossby waves”. If wetwe
suddenly “turn on” the wind, we would excite free waves. The particular
solution, or the “forced wave”, is the part generated by the topographic
term on the RHS. This is the portion of the flow that will remain after the
free waves have propagated away.

So the forced wave is the portion that will determine the time mean

flow. To find that, we can ignore the time derivative:

0 2 9, fO /
UsoV20 + Both = — DU8 h (173)
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All the terms involve a derivative im, so we can simply integrate the equa-
tion once inx to get rid of that. We can ignore the constant of integration,
which would amount to adding a constant to the streamfunction. The latter
would have no effect on the velocity field (why?).

In line with our previous derivations, we write the topography as a sum
of Fourier modes:

W(x,y) = Re{) > h(k,1) ™1y (174)

k l
For simplicity, we will focus on the response to a single wave mode:
h' = hgocos(kx)cos(ly) (175)

We can always construct the response to more complicated topography by
adding the solutions for differert;, /), because the Rossby wave equation
Is linear. Substituting this in yields:

UV + B = —%Ucos(k:x)cos(ly) (176)

For the reasons given, we focus on the particular solution. This has the

general form:

W = Acos(kz)cos(ly) (177)
Plugging in:
(U(—k* —1%) + B) Acos(kx)cos(ly) = —%Ucos(kx)cos(ly) (178)
or:
A= 57~ B o)
where:
o= (D2



Is the wavenumber of the stationary Rossby wave with a background ve-
locity, U (sec. 2.4.3). Notice with forcing that we obtain an expression for
the amplitude A—it doesn’t drop out. So the forced solution is:

foho
D(k? — K?)

The pressure field thus resembles the topography. If the wavenumber

P = cos(kx)cos(ly) (180)

of the topographys, is greater than the stationary wavenumber, the am-
plitude is positive. Then the forced waveimsphasewith the topography.
If the topographic wavenumber is smaller, the atmospheric wave i5 180
out of phase with the topography. The latter case applies to large scale
topography, for which the wavenumber is small. So we expect negative
pressures over mountains and positive pressures over valleys. With small
scale topography, the pressure over the mountains will instead be positive.
What happens though when= x¢? Then the streamfunction is infi-
nite! This is a typical situation with forced oscillations. If the forcing is
at the natural frequency of the system, the response is infinite (we say the
response isesonan). Having infinite winds is not realistic, so we must
add additional dynamics. In particular, we can add friction.
We do this as follows. We must go back to the barotropic vorticity

equation, but with a bottom Ekman layer:

B¢t By+ Lo = e (181)
Linearizing as before, we obtain:
0 2 0 fO / 2
Uaxv¢+ﬁax¢— DUah rV= (182)
Using the same topography, we get:
0 5 9 . kfoho, . .
(U% + )V + Bﬁ_xw =—5 Usin(kx)cos(ly) (183)
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The equation is exactly as before, except that we have an additional fac-
tor in front of the relative vorticity. This prevents us from integrating the
equation inz, like we did before. It also means that the cosine/cosine par-
ticular solution will no longer work. Instead, we use the following complex
expression:

Y = Re{Ae™}cos(ly) (184)

Remember that the amplitudd, may also be a complex number. To be
consistent, we write the topography in the same way, i.e.:

h = Re{hoe™}cos(ly) (185)

(even though we know tha, is real). So we have:

ik foho

0 9 g
(U_JFT)VwJFﬁa—x@b— D

ox

Substituting in the wave solution, we get:

Ue'* cos(ly) (186)

1tk foho
D

[(ikU + ) (—k* — I*) +ikB] A = U (187)

after canceling the sinusoidal terms. Solving forwe get:
Joho

A= D(k? — K2 —iR) (188)
where: ,
TR

= 189

R U (189)

As promised, the amplitude is complex.
The amplitude is as before, except for the additional term in the denom-
inator proportional to the Ekman drag, This term does two things. First,
it removes the singularity. At = k4, we have:
DR
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So the response is no longer infinite. However, the response is still greatest
at this wavenumber. Having +# «, produces a weaker amplitude.

Second, friction causes @hase shiftin the pressure field relative to
the topography. Consider the response at «s. Then the amplitude is
purely imaginary, as seen above. Putting this into the full solution, we get:

Y = Re{Ae*}cos(ly) = —];O—f;gsin(kac)cos(ly) (191)

The topography on the other hand is proportionakde(kz). So the
streamfunction is 90out of phase with the mountains. In this case, the
low pressure is downstream of the mountain. The extent of the phase shift
depends on the difference betweeandx,. The larger the difference, the
more aligned the pressure field is with the topography (either in phase, or
180 out of phase).

We summarize the results with sinusoidal topography and Ekman fric-
tion graphically in Fig. (20). When the topographic wavenumber is much
less than the stationary wavenumber for the velo€itythe pressure field
Is aligned but anti-correlated with the topography. When the wavenum-
ber is much greater thar,, the pressure is aligned and correlated. When
Kk = kg, the pressure is 90out of phase with the mountains.

Charney and Eliassen (1949) applied the barotropic equation to the ac-
tual atmosphere. But instead of using a sinusoidal topography, they used
the observed topographic profile at 45 N. The result of their calculation is
shown in Fig. (21). The topography is indicated by the dotted lines. The
two maxima come from the Himalayas and the Rocky Mountains. The
solution, withU=17 m/sec anad=1/6 day!, is indicated by the solid line.

The dashed line shows the observed mean pressure at 500 mb. We see
the model exhibits much of the same structure as the observed pressure
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K>>K g

Figure 20: The mean pressure distribution over a sinusombaintain range. The topo-
graphic wavenumber is less than (upper), greater tharofbdtind equal to (middle) the
stationary wavenumber.

field. Both have low pressure regions down wind from the mountains, and
a marked high pressure upwind of the Rockies.

The agreement between the model and observations is remarkably good,
given the simplicity of the model. In fact, it is probably too good. Charney
and Eliassen used a meridional channel for their calculation (as one would
do with a QGg-plane.), but if one redoes the calculation on a sphere, the
Rossby waves can disperse meridionally and the amplitude is decreased
(Held, 1983). Nevertheless, the relative success of the model demonstrates
the utility of Rossby wave dynamics in understanding the low frequency

atmospheric response.
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Figure 21: Charney and Eliassen’s (1949) solution of thetbgpa@ mountain wave prob-
lem at 45N. The dotted line indicates the topographic prdtile solid line is the model
solution and the dashed line is the observed mean pressa08 atb. From Vallis (2007).

Exercise 2.7 Consider Rossby waves with an isolated mountain range.

A purely sinusoidal mountain range is not very realistic. A more typical
case is one where the mountain is localized. Consider a mountain “range”
centered at: = 0 with:

hz,y) = hoe /% (192)

Because the range doesn’t varyjinwe can writey) = ¢ (x).

Write the wave equation, without friction. Transform the streamfunc-
tion and the mountain using the Fourier cosine transform. Then solve for
the transform ofy, and write the expression faf(x) using the inverse
transform (it's not necessary to evaluate the inverse transform).

Where do you expect the largest contribution to the integral to occur
(which values of)?

78



2.9 The Gulf Stream
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Figure 22: Benjamin Franklin’s map of the Gulf Stream. Fronkip&dia.

The next example is one of the most famous in dynamical oceanogra-
phy. It was known at least since the mid 1700’s, when Benjamin Franklin
mapped the principal currents of the North Atlantic (Fig. 22), that the Gulf
Stream is an intense current which lies on thesternside of the basin,
near North America. The same is true of the Kuroshio Current, on the
western side of the North Pacific, the Agulhas Current on the western side
of the Indian Ocean, and numerous other examples. Why do these currents
lie in the west? A plausible answer came from a work by Stommel (1948),
based on the barotropic vorticity equation. We will consider this problem,
which also illustrates the techniquelmdundary layer analysis

We retain the3-effect and bottom Ekman drag, but neglect topography

(the bottom is flat). We also include the surface Ekman layer, to allow for
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wind forcing. The result is:

%(g—l—ﬁy) =%(+BU:W%V><FW—T§ (193)
We will search for steady solutions, as with the mountain waves. More-
over, we will not linearize about a mean flow—it is the mean flow itself
we're after. So we neglect the first term in the equation entirely. Uiag
streamfunction, we get:
/3 w——VXTw—erp (194)
poD
For our “ocean”, we will assume a square basin. The dimensions of
the basin aren’t important, so we will just use the regior- [0, L] and
y = [0, L] (L might be 5000 km).
It is important to consider the geostrophic contours in this case:

= By (195)

which are just latitude lines. In this case, all the geostrophic contours
intersect the basin walls. From the discussion in sec. (2.3), we know that
there can be no steady flows without forcing, because such a flow would
be purely zonal and would have to continue through the walls. However,
with forcing there can be steady flow; we will see that this ftoasseshe
geostrophic contours.

Solutions to (194) can be obtained in a general form, once the wind
stress is specified. But Stommel used a more elegant method. The main
idea is as follows. Since the vorticity equation is linear, we can expiness

solution as the sum of two components:

Y =Yr+p (196)
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The first party);, is that driven by the wind forcing. We assume that this
part is present in the whole domain. We assume moreover that the friction
Is weak, and does not affect this interior component. Then the interior
component is governed by:

0 1 .
5%% = po—Dv X T (197)

This is theSverdrup relationafter H. U. Sverdrup. It is perhaps the most
iImportant dynamical balance in oceanography. It states that vertical flow
from the base of the surface Ekman layer, due to the wind stress curl, drives
meridional motion. This is the motion across the geostrophic contours,
mentioned above.

We can solve (197) if we know the wind stress and the boundary con-
ditions. For the wind stress, Stommel assumed:
L Y

= cos(f)z

The wind is purely zonal, with a cosine dependence. The winds in the

i

northern half of the domain are eastward, and they are westward in the
southern half. This roughly resembles the situation over the subtropical
North Atlantic. Thus the wind stress curl is:

0 Y

Again, this is the vertical component of the curl. From the Sverdrup rela-
tion, this produces southward flow over the whole basin, with the largest
velocities occurring at the mid-basip & L/2). We then integrate the
Sverdrup relation (197) to obtain the streamfunction in the interior.
However, we can do this in two ways, either by integrating from the
western wall otto the eastern wall (the reason why these produce different
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results will become clear). Let’s do the latter case first. Then:

/Lﬁw de = v1(L,y) — i, y) = ——— sin("2)(L — 2) (198)
maxl—lyy Iay_ﬁpOD I

To evaluate this, we need to know the value of the streamfunction on the
eastern wally; (L, y).
Now ¢y must be a constant. If it weren't, there would be flow into the

wall, because:
0
L.y) = ——(L 199
If psiy were constant, there would be flow into the wall. But what is the

constant? We can simply take this to be zero, because using any other

constant would not change the velocity field. So we have:

1 . Ty
= —)(L — 2
Notice though that this solution has flomto the western wall, because:
0 70 Y
0,y) = ——v71(0,y) = — —)=#£0 201
UI( 7y) 8y¢l( 7y) BpODCOS(L)# ( )

This can’t occur.

To fix the flow at the western wall, we use the second component of
the flow,vy 5. Let’s go back to the vorticity equation, with the interior and
boundary streamfunctions substituted in:

0 | . )
Ba—xzbz + ﬁa—ow = pO—Dv X Ty — rV2p (202)

We have ignored the ternV%¢;; specifically, we assume this term is much
smaller thanr V21 5. The reason is thatz has rapid variations near the
wall, so the second derivative will be much larger than thap gfwhich

has a large scale structure. Using (197), the vorticity equation reduces to:

89y = —r (203
X
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Yp 1s assumed to be vanishingly small in the interior. But it will not be
small in a boundary layer. We expect that boundary layer to occur in a
narrow region near the western wall, becaugsemust cancel the zonal
interior flow at the wall.

This boundary layer will be narrow in thedirection. The changes in
y on the other hand should be more gradual, as we expect the boundary
layer to cover the entire west wall. Thus the derivatives will be much
greater than iy. So we have:

5Ly = e =y (204)

This has a general solution:

VYp = Ae:z:p(—%) +B

In order for the boundary correction to vanish in the interior, the con-
stant B must be zero. We then determineby making the zonal flow
vanish at the west wall (at = 0). This again implies that the stream-
function is constant. That constant must be zero, because we took it to be
zero on the east wall. If it were a different constant, tiiemould have to
change along the northern and southern walls, meaniﬂ%;b would be

non-zero. Thus we demand:

Thus:
B L . TY
A “ oD sm(f) (206)
So the total solution is:
1 . Ty @
Y = 5D sm(f) [L —x — Lexp(— . )] (207)
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We examine the character of this solution below. But first let’'s see what
would have happened if we integrated the Sverdrup relation (197) from the
westernwall instead of to the eastern. Then we would get:

0 T
8| 5o dn = pite.y) = B0) = —zsin() (208
Settingy (0, y) = 0, we get:
T ™

This solution has flow into the eastern wall, implying we must have a
boundary layer there. Again the boundary layer should have more rapid
variation inx than iny, so the appropriate boundary layer equation is (204),
with a solution:

fz

Y = Aexp( . )+ B

We takeB to be zero again, so the solution vanishes in the interior.
But does it? To satisfy the zero flow conditiorat L, we have:

U1(L,y) +¢p(L,y) =0 (210)
or:
L L
50D sm(%) + Aexp(—BT) =0 (211)
Solving for A, we get:
L L
A= GouD e:cp(ﬁT) sin(%y) (212)

So the total solution in this case is:

LTy
w—ﬁpODsm(L)[ x + Lexp(

Now there is a problem. The exponential term in this case does not de-

AT (a

crease moving away from the eastern wall. Rather, it grows exponentially
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So the boundary layer solutiaan’t confinedto the eastern wall! Thus

we reject the possibility of an eastern boundary layer. The boundary layer
must lie on the western wall. This is why, Stommel concluded, the Gulf
Stream lies on the western boundary of the North Atlantic.

Another explanation for the western intensification was proposed by
Pedlosky (1965). Recall that Rossby waves propagate to the west as long
waves, and reflect off the western wall as short waves. The short waves
move more slowly, with the result that the energy is intensified in theregi
near the west wall (sec. 2.5). Pedlosky showed that in the limit of low
frequencies (long period waves), the Rossby wave solution converges to
the Stommel solution. So western intensification occurs because Rossby
waves propagate to the west.

Let’s look at the (correct) Stommel solution. Shown in figure (23) is
the Sverdrup solution (upper panel) and two full solutions with different
(lower panels). The Sverdrup solution has southward flow over the whole
basin. So the mean flow crosses the geostrophic contours, as suggested
earlier. There is, in addition, an eastward drift in the north and a wedtwa
drift in the south.

With the larger friction coefficient, the Stommel solution has a broad,
northward-flowing western boundary current. With the friction coefficient
10 times smaller, the boundary current is ten times narrower and the north-
ward flow is roughly ten times stronger. This is the Stommel analogue of
the Gulf Stream.

Consider what is happening to a fluid parcel in this solution. The par-
cel’'s potential vorticity decreases in the interior, due to the negatind w
stress curl, which causes the parcel to drift southward. We know the parcel
needs to return to the north to complete its circuit, but to do that it must
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Sverdrup solution with curl(t) = —sin(Tty)
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Figure 23: Solutions of Stommel’s model for two differentues of the friction coeffi-
cient,r.
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somehow acquire vorticity. Bottom friction permits the parcel to acquire
vorticity in the western layer. You can show that if the parcel werenin a
eastern boundary layer, it's vorticity wouttecreasayoing northward. So
the parcel would not be able to re-enter the northern interior.

The Stommel boundary layer is like the bottom Ekman layer (sec. 1.11),
in several ways. In the Ekman layer, friction, which acts only in a bound-
ary layer, brings the velocity to zero to satisfy the no-slip condition. This
yields a strong vertical shear in the velocities. In the Stommel lagier, f
tion acts to satisfy the no-normal flow condition and causes stiairl
shear. Both types of boundary layer also are passive, in that they do not
force the interior motion; they simply modify the behavior near the bound-
aries.

Shortly after Stommel’s (1948) paper came another (Munk, 1950) ap-
peared which also modelled the barotropic North Atlantic. The model is
similar, except that Munk used lateral friction rather than bottom &ncti
The lateral friction was meant to represent horizontal stirring by oceanic

eddies. The details of Munk’s model are given in Appendix D.

Exercise 2.8 Is there really western intensification? To convince our-

selves of this, we can solve the Stommel problem in 1-D, as follows. Let
the wind stress be given by:
7=y (214)

Write the vorticity equation following Stommel (linear, U=V=0, steady).
Ignore variations iny, leaving a 1-D equation. Assume the domain goes
fromz = 0tox = L, as before. Solve it.

Note that you should have two constants of integration. This will allow
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you to satisfy the boundary conditiofis= 0 atz = 0 andx = L. Plot the
meridional velocityv(x). Assume thafSpoD)™! = 1 andL(rpyD)™! =
10. Where is the jet?

2.10 Closed ocean basins
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Figure 24: Geostrophic contours (solid lines) in the Nos#ias. Superimposed are con-
tours showing the first EOF of sea surface height derived fsatellite measurements.
The latter shows strong variability localized in regionglaisedg, contours. From Isach-
sen et al. (2003).

Next we consider an example with bottom topography. As discussed
in sec. (2.3), topography can cause the geostrophic contours to close on
themselves. This is an entirely different situation because mean fevs c
exist on the closed contours (they do not encounter boundaries; Fig. 11).
Such mean flows can be excited by wind-forcing and can be very strong.
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There are several regions with closed geostrophic contours in the Nordic
Seas (Fig. 24), specifically in three basins: the Norwegian, Lofoten and
Greenland gyres. The topography is thus steep enough here as to over-
whelm theg-effect. Isachsen et al. (2003) examined how wind-forcing
could excite flow in these gyres.

This time we take equation (166) with wind forcing and bottom topog-
raphy:

%(C + 0y + %

We will linearize the equation, without a mean flow. We can write the

1
h)=—7V XxXT—r 215
)=-5 ¢ (215)

result this way:

0 1
el = - = 21
8t§+u Vs pODVXT r (216)
where
Jo
s = —h
qs = Py + D

defines the geostrophic contours (sec.2.3). Recall that these are the so-
called “f/H” contours in the shallow water system. As noted, ¢heon-

tours can close on themselves if the topography is strong enough to over-
whelm theSy contribution tog, (Fig. 11). This is the case in the Nordic
Seas (Fig. 24).

As in the Gulf Stream model, we will assume the bottom friction coeffi-
cient,r, is small. In addition, we will assume that the wind forcing and the
time derivative terms are as small as the bottom friction term (of arder
Thus the first, third and fourth terms in equation (216) are of comparable
size. We can indicate this by writing the equation this way:

0 . 1 »
T%C—FU-VQSZTPO—DVXT —r (217)
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wheret’ = rt and7’ = 7/r are the small variables normalized byso
that they are order one.

Now we use gerturbation expansiomand expand the variables in
For example, the vorticity is:

C:Co—i-r(l—l-?“?@—l—...

Likewise, the velocity is:

— — — 2—»
U= Uy +ruy +r-u+...

We plug this into the vorticity equation and then collect terms which are
multiplied by the same factor of The largest terms are those multiplied
by one. These are just:

iy - Vgs =0 (218)

So the first order componefdllows theg, contours In other words, the
first order streamfunction is everywhere parallel to gheontours. Once
we plot theg, contours, we know what the flow looks like.

But this only tells us thalirection of ,, not its strength or structure
(how it varies from contour to contour). To find that out, we go to the next
order inr:

0 . 1 —

%Co + iy - Vs = pO—DV X 7 —( (219)
This equation tells us how the zeroth order field changes in time. However,
there is a problem. In order to solve for the zeroth order field, we need to
know the first order field because of the term with But it is possible to

eliminate this, as follows. First, we can rewrite the advectiventéhus:

El : VQS =V- (ﬁlqs) - QS(V ) Ul) (220)
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The second term on the RHS vanishes by incompressibility. In particular:
V-u=0 (221)

This implies that the velocity is incompressible at each order. So the vor-
ticity equation becomes:
0

~ 1 y
8t’<0 + V- (thgs) = —=V X T =1 (222)

poD

Now, we can eliminate the second term if we integrate the equation over
an area bounded by a closedcontour. This follows from Gauss’s Law,
which states:

/ V-dedy:fﬁ-ﬁdz (223)

//v-(ﬁqs)dA:j{qsﬁ-ﬁdz:qsfﬁ-mu:o (224)

We can take the, outside the line integral becausggis constant on the

Thus:

bounding contour. The closed integralidfn vanishes because of incom-

j{ﬁ-ﬁdl:/ V- -udA=0

Thus the integral of (225) in a region bounded hy, @ontour is:

0 1 L,
%/ Cod:cdy—po—D//VXTd:cdy—/ Codrdy — (225)

Notice this contains only zeroth order terms. We can rewrite (225) by

pressibility:

exploiting Stoke’s Law, which states:

/ VXdedy:%fT-cfz (226)
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So (225) can be rewritten:

- 1 . -
%%ﬁ-dl:—Dj{?’-dl—%ﬁ-dl (227)
Po

We have dropped the zero subscripts, since this is the only component we

will consider. In terms of the real time and wind stress, this is:

a - ]_ — —
—_— _’. - — _)- —_— —)' 22
atf{ di ol di r%u di (228)

Isachsen et al. (2003) solved (228) by decomposing the velocity into

Fourier components in time:

i(w,y,t) =Yz, y,w) e’

Thenitis easy to solve (228) for the velocity integrated around the contour:

- 1 1 -
- dl = — @ T-dl 229
%u r+iwp0D]{T (229)

Note the solution is actually for the integral of the velocity around the

contour (rather than the velocity at every point). We can divide by the

length of the contour to get the average velocity on the contour:

>_fﬁ-d7_ 1 1 §7-d
T $dl r+iwpeD dl

Isachsen et al. (2003) derived a similar relation using the shallow water

(230)

<u

equations. Their expression is somewhat more complicated but has the
same meaning. They tested this prediction using various types of data
from the Nordic Seas. One example is shown in figure (24). This shows the
principal Empirical Orthogonal Function (EOF) of the sea surface height

variability measured from satellite. The EOF shows that there are regions

with spatially coherent upward and downward sea surface motion. These
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Figure 25: Time series of observed (thin line) and preditiedk line) sea surface height
displacements between the outer rim and the center of edtle @irincipal gyres in the
Nordic seas. The linear bottom drag coefficient itkas- 5 x 10~% m/sec. From Isachsen
et al. (2003).

regions are exactly where thecontours are closed. This height variability
reflects strong gyres which are aligned with theontours.

Isachsen et al. took wind data, the actual bottom topography and an
approximate value of the bottom drag to predict the transport in the three
gyres (corresponding to the Norwegian, Lofoten and Greenland basins).
The results are shown in figure (25). The simple model does astonishingly
well, predicting the intensification and weakening of the gyres in all three

basins.

2.11 Barotropic instability

Many of the “mean” flows in the atmosphere and ocean, like the Jet and

Gulf Streams, are not steady at all. Instead, they meander and generate
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eddies (storms). The reason is that these flowsuastable If the flow

Is perturbed slightly, for instance by a slight change in heating or wind
forcing, the perturbation will grow, extracting energy from the mean flow.
These perturbations then develop into mature storms, both in the atmo-
sphere and ocean.

We'll first study instability in the barotropic context. In this we ignore
forcing and dissipation, and focus exclusively on the interaction between
the mean flow and the perturbations. A constant mean flow, like we used
when deriving the dispersion relation for free Rossby waves, is stable. But
a mean flow which isheareccan be unstable. To illustrate this, we exam-
ine a mean flow which varies in We will see that wave solutions exist in
this case too, but that they can grow in time.

The barotropic vorticity equation with a flat bottom and no forcing or

bottom drag is:

d
2(¢+8y) =0 (231)

We again linearize the equation assuming a zonal flow, but now this can
vary iny, i.e. U = U(y). Significantly, the mean flow now has an associ-

ated vorticity:
(=—=U (232)

So the PV equation is now:

¢ 5 U+ 6) =0 (239
The mean flow again is time independent, so its vorticity doesn’t change
in time either. As such, the mean vortictiters the geostrophic contours
In particular, we have: 5

qs = By — a—U (234)
Y
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This implies the mean flow will affect the way Rossby waves propagate in
the system.
The linearized version of the vorticity equation is:

0 0 0
—+ U= )C+U

Written in terms of the streamfunction, this is:
0 0 .o o oY
(8t+Ua )Vszr(8 )% 0 (236)

Now because the mean flow variesiginwe have to be careful about
our choice of wave solutions. We can in any case assume a sinusoidal

dependence im andt. The form we will use is:

¥ = Re{i(y) ey (237)

As we know, the amplitude can be complex, i.e.:

b=y ity
But now the phase speed,alsocan be complex. If you assume the phase
speed is purely real, the problem turns out to be inconsisten. So we can

write:
c=c +ic (238)

This is an important change. With a complexve have:

ik(x—ct) tk(x—(cr+ic;) t)

e —e _ 6ik(x—crt)+kcit (239)

The argument of the exponential has both real and imaginary parts. The
real part determines how the phases change, as before. But the imaginary
part can change the amplitude of the wave. In particulas; it 0, the

wave amplitude willgrow exponentially in timelf this happens, we say
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the flow isbarotropically unstableThen the wave solution grows in time,
eventually becoming as strong as the background flow itself.
If we substitute the wave solution into (236), we get:

9?2 <0
o . 1.2 s . Y _
(—ikc + ikU)(—k"y + ay21/)) + 2k¢ayqs 0 (240)
Canceling thek yields:
U = 0) (i — 1) + b, = 0 (241)
c ayQ ayQS -

This is known as the “Rayleigh equation”. The solution of this determines
which waves are unstable. However, becalisendg, are functions ofy,
this is generally not easy to solve.

One alternative is to solve (241) numerically. If you knéWy), you
could put that into the equation and crank out a solution. If the solution
has growing waves, you know the mean flow is unstable. But then say
you wish to examine a slightly different flow. Then you would have to
start again, and solve the equation all over. What would be nice is if we
could figure out a way to determine if the flow is unstable without actually
solving (241). It turns out this is possible.

2.11.1 Rayleigh-Kuo criterion

We do this as follows. First we divide (241) by — c:

07 . - 0
(50— F0) + e =0 (242)

This assumes thadf £ ¢ anywhere in the flof. Then we multiply by the
complex conjugate of the streamfunction:
9t =y — i

*“WhenU = c at some point, the flow is said to haverdical layer. Then the analysis is more involved
than that here.
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This yields:

!¢P B
—c (9y =0
(243)

The denominator in the last term is complex. We write it in a more conve-

R 82 . R 62 R . 82 R R ) )
(¢ra—gﬂ¢r+¢ia—y2¢i)+’é(¢ra—y2¢i—%’a ) k W’

nient form this way:
1 1 U - cr + iCi

U—-c U-—c —ic;  |U~—c]?
Now the denominator is purely real. So we have:

AaZA A82A AaQA AaZA 51 719
ra o ¥r 1 a o V1 'r_i_i_r_k

CAW
U —cl?oy™
This equation has both real and imaginary parts, and each must separately

—|‘(U — Cr + iCi)

=0 (244)

equal zero.

Consider the imaginary part of (244):

0 .
U —cl?ay™
Let’s integrate this iry, over a region frony = [0, L]:

TR WP o
/0 (wié—ﬁwr—wra—lﬁwi)dy—q/o ]U—C|28 qs dy (246)

. 82 R N 82 R
(¢T8_y2wi - %a—ygl/}r) + ¢ =0 (245)

We can rewrite the first terms by noting:
~ 0 . 07
%a—ywr - wr 8_3/2% - (¢z ¢7~ wr wz) wz wr "' @br %

(wz wr wr wz) (247)
Substituting this into the LHS of (246), we get.

-9
/ a ¢7’ ¢Z> (¢z wr wra_y¢z) |() (248)
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Now, to evaluate this, we need the boundary conditiong @ty = 0
andy = L. Let’s imagine the flow is confined to a channel. Then the
normal flow vanishes at the northern and southern walls. This implies that
the streamfunction is constant on those walls, and we can take the constant
to be zero. Thus:

Then (248) vanishes.
In fact, we obtain the same result if we simply pigk= 0 andy = L to
be latitudes where the perturbation vanishes (i.e. far away from the mean

flow). Either way, the equation for the imaginary part reduces to:

L 712 )
0 _

In order for this to be true, either or the integral must be zero. df =
0, the wave amplitude is not growing and the wave is stable. For unstable
waves,c; > 0. Then the integral must vanish to satisfy the equation. The
squared terms in the integrand are always greater than zero, so a ngcessar
condition for instability is that:

0
g, = 250
ayq 0 (250)

Thus the meridional gradient of the background PV must change sign
somewhere in the domaifhis is theRayleigh-Kuo criterion Under the

[B-plane approximation, we have:

0 0?

a—yqs = - 8_y2U (251)

Thus instability requireg = 59—;U somewhere in the domain.

Think about what this means. If = 0, theng, = Sy. Then we have
Rossby waves, all of which propagate westward. With a background flow,
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the waves need not propagate westward H aa—;gU = 0 somewhere, the
mean PV gradient vanishes and the Rossby wavestatenary So the
wave holds its position in the mean flow, extracting energy from it. In this
way, the wave grows in time.

The Rayleigh-Kuo criterion is aecessary conditiofor instability. So
instability requires that this condition be met. But it is nosufficient
condition—it doesn’t guarantee that a jet will be unstable. However, the
opposite case is a sufficient condition; if the gradient de@shange sign,
the jet must be stable.

As noted, the Rayleigh-Kuo condition is useful because we don't actu-
ally need to solve for the unstable waves to see if the jet is unstable. Such
a solution is often very involved.

We can derive another stability criterion, following Fjgrtoft (1950), by
taking the real part of (244). The result is similar to the Rayleigh-Kuo
criterion, but a little more specific. Some flows which are unstable by the
Rayleigh criterion may be stable by Fjgrtoft’s. However this is faidse.
Details are given in Appendix E.

2.11.2 Examples

Let’s consider some examples of barotropically unstable flows. Consider
a westerly jet with a Gaussian profile (Kuo, 1949):

U = U expl—(*—2)" (252)

Shown in the two right panels of Fig. (26) is— (%;U for two jet ampli-
tudes,U,. We takeg = L = 1, for simplicity. With U, = 0.04, the PV
gradient is positive everywhere, so the jet is stable. Wjtk= 0.1, the PV
gradient changes sign both to the north and south of the jet maximum. So
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Figure 26: A westerly Gaussian jet (left panel). The middid aght panels show —
68—;u for the jet with amplitudes of 0.04 and 0.1, respectively.lyCthe latter satisfies
Rayleigh’s criterion for instability.

this jetmaybe unstable.

Now consider areasterlyjet (Fig. 27), withU, < 0. With both ampli-
tudes,g — aa—;U IS negative at the centers of the jets. So the jet is unstable
with both amplitudes. This is a general result: easterly jets are more un-
stable than westerly jets.

An example of an evolving barotropic instability is shown in Fig. (28).
This derives from a numerical simulation of a jet with a Gaussian profile
of relative vorticity. So:

( = _%U — A VI (253)
In this simulation,5 = 0, so the PV gradient is:
6 62 2y _2/12

This is zero aty = 0 and so satisfies Rayleigh’s criterion. We see in the
simulation that the jet is unstable, wrapping up into vortices. These have
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Figure 27: An easterly Gaussian jet (left panel). The midalte right panels show
b — 5"—;u for the jet, with amplitudes of 0.04 and 0.1. Note that bottisaRayleigh’s
criterion for instability.

positive vorticity, like the jet itself.

An example of barotropic instability in the atmosphere is seen in Fig.
(29). This shows three infrared satellite images of water vapor above the
US. Note in particular the dark band which stretches over the westemm US i
into Canada. This is a filament of air, near the tropopause. We see that the
filament is rolling up into vortices, much like in the numerical simulation
in (28).

Barotropic instability also occurs in the ocean. Consider the follow-
ing example, from the southern Indian and Atlantic Oceans (Figs. 30-32).
Shown in (30) is a Stommel-like solution for the region. Africa is rep-
resented by a barrier attached to the northern wall, and the island to its
east represents Madagascar. The wind stress curl is indicated in the right
panel; this is negative in the north, positive in the middle and negative in
the south.
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Figure 28: Barotropic instability of a jet with a Gaussian fijeoin relative vorticity.
Courtesy of G. Hakim, Univ. of Washington.

In the southern part of the domain, the flow is eastward. This repre-
sents the Antarctic Circumpolar Current (the largest ocean current in the
world). In the “Indian ocean”, the flow is to the west, towards Madagas-
car. This corresponds to the South Equatorial Current, which impinges on
Madagascar. There are western boundary currents to the east of Africa and
Madagascar. The boundary currents east of Madagascar flow westward
toward Africa in two jets, to the north and south of the Island. Simijarly
the western boundary current leaves South Africa to flow west and join the
flow in the South Atlantic.

Shown in Fig. (31) is the PV gradient for this solution, in the region
near South Africa and Madagascar. Clearly the gradient is dominated by
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Figure 29: Barotropic instability of filaments on the tropape, observed from water va-
por infrared satellite imagery. The images were taken oriLftie of October, 2005, at
22:45 pm, 3:15 am and 9:45 am, respectively. Courtesy of Girtjdlniv. of Washing-
ton.

the separated jets. Moreover, the gradient changes sign several times in
each of the jets. So we would expect the jets might be unstable, by the
Rayleigh-Kuo criterion.

A snapshot from a numerical solution of the barotropic flow is shown in
Fig. (32). In this simulation, the mean observed winds were used to drive
the ocean, which was allowed to spin-up to a statistically steady. Stae
figure shows a snapshot of the sea surface height, after the model has spun
up. We see that all three of the eastward jets have become unstable and are
generating eddies (of both signs). The eddies drift westward, linking up
with the boundary currents to their west.

Barotropic instability occurs when the lateral shear in a current is too
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Figure 30: A Stommel-like solution for the Indian Ocean. Thel of the wind stress is
indicated in the right panel. From LaCasce and Isachsen §2007

large. The unstable waves extract energy from the mean flow, reducing the
shear by mixing momentum laterally. However, in the atmospbare-

clinic instability is more important, in terms of storm formation. Under
baroclinic instability, the waves act to reduce Hegtical sheaiof the mean

flow. In order to study that, we have to take account of density changes.

Exercise 2.9 Barotropic instability. We have a region with< z < 1

and—1 < y < 1. Consider the following velocity profiles:

a)U =1—1y?

b) U = exp(—y?)

c) U = sin(my)

d)U =gy’ + gy

Which profiles are unstable by the Rayleigh-Kuo criteriom it= 0?
How large mus{s be to stabilizeall the profiles? Note that the terms here
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Figure 31: The PV gradient for the solution in Fig. (30). Thadient changes sign
rapidly in the three jet regions. From LaCasce and Isach<z0v{2

have been non-dimensionalized, so thatan be any number (e.g. an
integer).
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Figure 32: The sea surface height from a barotropic numesicwlation of the southern
Indian and Atlantic Oceans. From LaCasce and Isachsen (2007)

106



3 Baroclinic flows

We will now examine what happens with vertical shear. In this case the
winds at higher levels need not be parallel to or of equal strength with those
at lower levels. Baroclinic flows are inherently more three dimensional
than barotropic ones. Nevertheless, we will see that we get the same type of
solutions with baroclinic flows as with barotropic ones. We have baroclinic
Rossby waves and baroclinic instability. These phenomena involve some
modifications though, as seen hereafter.

Consider the vorticity equation (123):

5 - Ggt g (Put ) =fslw (259

When we derived this, we made no demands about the vertical structure of
the flows. Thus this equation works equally well with baroclinic flows as
barotropic ones. The equation has two unknownandw. For barotropic
flows, we eliminatav by integrating over the depth of the fluid. Then the
vertical velocity only enters at the upper and lower boundaries.

With baroclinic flows however it is not so simple to disposawfWe

require a second equation which also feandw in it.

3.1 Density Equation

For this, we use the equation for the fluid density (temperature). In the
atmosphere, we have the thermodynamic equation (36):

d(lng) J
G =% (256)
With zero heating,/ = 0, this implies:
do
i 257
- =0 (257)
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l.e. that the potential temperature is conserved. This equation can be
rewritten in terms of) andw and then combined with the pressure co-
ordinate version of the vorticity equation (Appendix F).

To illustrate this, we’ll do the derivation in-coordinates. The corre-
sponding thermodynamic equation for the ocean is:

dp 0 B

Here the velocity here is the full velocity, not just the geostrophic one.

Now, we have seen that the hydrostatic approximation is an excellent
approximation for synoptic scale flows. This implies that we can decom-
pose the pressure into static and moving parts:

p=po(z) +p'(z,y,2,t) = —pogz + p'(z,y, z,t)

Now p, is allowed to vary with height, but only height. So we can write:

p=po(z) +p(2,y,2,1) (259)

Only the perturbation fields are important for horizontal motion. We as-
sume too, as always, that the dynamic parts are much smaller:

1] < po, [P < po (260)

Moreover, the perturbation terms are also linked by the hydrostatic rela-
tion, as shown in sec. (1.7). So:

agp’ =—p'g (261)
y4

Using the static and dynamic densities, along with the geostrophic hor-
izontal velocities, in the simplied density equation yields:

o o o., 0
(E + Uy + Uga—y) p +w 5.7 = 0 (262)
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Note we neglect the term involving the vertical advection of the perturba-
tion density, as this is smaller than the advection of background density.
Using the hydrostatic balance, we have:

0 0 0. op 0
— — ) = — —py = 2
(3¢ T gz Y 0g,) 5, ~ 90 g0 =0 (263)
after multiplying through by-g¢. Lastly, we can substitute in the geostrophic
streamfunction defined in (120). Then we obtain:

0 o W w N

(5 8y8x+ 8x5’_y) 0z o fow

~0 (264)

This is the quasi-geostrophic density equation. H&reis the Brunt-
Vaisala frequency

N? = —pi% (265)

The Brunt-Vaisala frequency is a measure of the stratificatiercoordinates.
It reflect the frequency of oscillation of parcels in a stably stratifiadifl
which are displaced up or down (see problem 3.1).

Consider what the density equation means. If there is vertical motion
in the presence of background stratification, the perturbation density will
change. For example, if the background density decreases going up (as it
must for a stably stratified fluid), a rising parcel has:

0
—po <0
’wazﬂo

This implies that the pertubation density must increase in time. So as the
parcel rises, it becomes heavier relative to the background density.
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There is an interesting parallel here. The vorticity equation implies that
meridionalmotion changes the parcalsrticity. Here we see thatertical
motion affects itdensity The two effects are intimately linked when you
have baroclinic instability (sec. 3.7).

Equation (264) gives us a second equation involwingndw. Com-

bined with the vorticity equation (123), we now have a complete system.

Problem 3.1 The Brunt-Vaisala Frequency.
Consider a fluid parcel which is displaced from its initial vertical posi-
tion, 2y, a distance)z. Assume we have a mean background stratification

for which:
a —_—
Substitute this into the vertical momentum equation to find:
dv  pg—p
— =4( )
dt p

Estimatep, at zy + dz by Taylor-expanding about). Assume the parcel
conserves its density from. Then use the vertical momentum equation

to show that:
d*(62)

dt?
and defineV2. This is known as the Brunt-Vaisala frequency. What hap-

= —N%5z

pens ifN? > 0? What if it is negative?

3.2 QG Potential vorticity

We now have two equations with two unknowns. It is straightforward to
combine them to produce a single equation with only one unknown. We
eliminatew from (123) and (264). First we multiply (264) b /N? and
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take the derivative with respect to

0000 0 o o
0z N20t 0z 0z N2 9z

Now the second term can be expanded thus:

0 fRo, 0, fi o

The first term vanishes. You can see this by writing the velocity in terms

i, VAT = S w (26)

of the streamfunction:
2.0 O 0,00 0,0, 0 0y
JO g T TN (I
| 82(8y)8x<8z)+8z(8:1:)8y(8z

The physical reason for this is that the the geostrophic velocity is parallel

)| =0 (267)

to the pressure; thus the dot product betwegzmg) and the gradient of
%w must be zero. So (266) reduces to:

o . 0 frov, .0
(a + iy - V) [&(Fogg)] = —fogw

If we combine (266) with (123), we get:

0

(_ a fO 7»0
ot

5,) Byl = (268)

This is thequasi-geostrophic potential vorticiffQGPV) equation. It has
only one unknowny. The equation implies that the potential vorticity:

9 2 o
4=V + (g,

is conserved following a parcel moving with the geostrophic flavis

)+ By (269)

is a powerful constraint. The flow evolves in such a way th& only
redistributed, not changed.
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The first term in the QGPV is the QG relative vorticity and the third
term is the planetary vorticity, as noted before. The second term is new;
this is thestretching vorticity This is related to vertical gradients in the
density.

The QGPV equation can be used to model synoptic scale flows. If one
were to codes this up, you would solve for the flow in several steps. First,
the QGPV equation is advanced in time, to obtain the PV at the next time
step. Then the PV imvertedto obtain the streamfunction. From this, we
can obtain the velocities and then advance the QGPV equation again. How-
ever, the inversion step is often non-trivial. Doing this requbesndary
conditions We consider these next.

3.3 Boundary conditions

Notice the QGPV equation (268) doesn’t contain any Ekman or topo-
graphic terms. This is because the PV equation pertains to the interior.
In the barotropic case, we introduced those terms by integrating between
the lower and upper boundaries. But here, we must treat the boundary
conditions separately.

We obtain these by evaluating the density equation (264) at the bound-
aries. We can rewrite the relation slightly this way:

d, 0
%d—ia—f = —w (270)

As discussed in section (2.2), the vertical velocity at the boundary can

come from either pumping from an Ekman layer or flow over topography.
Thus for the lower boundary, we have:

d, 0 )
DO =y Vh— V% @7)

112



where the velocities and streamfunction are evaluated at the bottom bound-
ary, which we take to be at= z,.
The upper boundary condition is similar. For the ocean, with the ocean

surface at = z,, we have:

Jo dg O 1 .
NZdt Ds | = —pchV X Ty (272)

The upper boundary condition for the atmosphere depends on the applica-
tion. If we are considering the entire atmosphere, we could demand that
the amplitude of the motion decay as— oo, or that the energy flux is
directed upwards. However, we will primarily be interested in motion i

the troposphere. Then we can treat the tropopause as a surface, either rigid
or freely moving. If it is a rigid surface, we would have simply:

atz = z,. A free surface is only slightly more complicated, but the rigid

upper surface will surfice for what follows.

3.4 Baroclinic Rossby waves

We now look at some specific solutions. We will begin with seeing how
stratification alters the Rossby wave solutions.
First we linearize the PV equation (268) assuming a constant back-

ground flow:

) ) o f2 9

Gt Vg VYt 5. (Gaa;

We assume moreover that the domain lies between two rigid, flat surfaces.

)]+5 —p =0 (274)

With the ocean in mind, we’ll take the boundariessat 0 andz = —D
(the result would be the same with positie We will also neglect Ekman
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layers on those surfaces. So the linearized boundary condition on each

surface is:
0 AN
o Ve e
This implies that the density (or temperature) doesn’t change on parcels

=0 (275)

advected by the mean flow along the boundary. Thus the density is constant
on the boundaries, and we take the constant to be zero, so that:
dyP
0z

The coefficients in the PV equation do not vary with time ofiny).

—0 (276)

But the Brunt-Vaisala frequencyy, can vary inz. S0 an appropriate

choice of wave solution would be:

W = Re{i(z)e! ke (277)

Substituting this into the PV equation, we get:

(—iw + ikU)[—(k* + 12)) + 5 —( ]{;’2 8¢)] +ifki =0 (278)
or: 5 5
az( ]@2 af) + A% =0 (279)
where:
N= 224 bk (280)

Uk —w
Equation (279) determines the vertical structuﬁ(az), of the Rossby
waves. With the boundary conditions (276), this constitutesiganvalue
or “Sturm-Liouville” problem. Only specific values ofwill be permitted.
In order to find the dispersion relation for the waves, we must first solve

for the vertical structure.
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3.4.1 Baroclinic modes with constant stratification

To illustrate, consider the simplest case, With = const. Then we have:

92 . N2)\2 .
P+ Y =0 (281)
022 fé
This has a general solution:
- N N
1 = Acos( Z) + Bsin( Z) (282)
Jo Jo

In order to satisfy%zﬂ = 0 on the upper boundary (at = 0), we
require thatB = 0. But in addition, it must work on the lower boundary,
atz = —D. So eitherA = 0 (so that we have no wave at all) or:

NAD
sin( )=0 (283)
Jfo
For this to be true:
NAD =nm (284)
Jo

wheren = 0, 1, 2... is an integer. In other words, only specific combina-
tions of of the parameters will work. Solving far we get:

n2772fg B n2

2
N =N T (265)
Here,
ND
Ln=—"—"
b 7 fo

Is the baroclinideformation radiusCombining this with the definition of

A2, we get:
n? Bk
=k P 286
L% + Uk —w (286)
Solving forw, we obtain:
k
w=w, =Uk— g (287)

R+ +n?/l3
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This is thedispersion relation for baroclinic Rossby wavés fact, we
have an infinite number of relations, one for each value.dnd for each
n, we have a different vertical struture. The wave structure corresponding
to each is given by:
nmrwz

Y = Acos(kx + ly — wyt) cos(?) (288)

These are the baroclinic Rossby waves

Consider first the case with = 0. Then the dispersion relation is:

Bk
k2 412
This is just the dispersion relation for the barotropic Rossby wave obtained

wO:Uk‘—

(289)

earlier (sec. 2.4). The wave solution with= 0 is

oy = Acos(kx + ly — wpt) (290)
This doesn’t vary in the vertical, exactly like the barotropic case we con-
sidered before. So thearotropic modeexists, even though there is strat-
ification. All the properties that we derived before apply to this wave as
well.
With n = 1, the streamfunction is:

Tz

U = Acos(kx + ly — wnt)cos(ﬁ) (291)

This is thefirst baroclinic mode The streamfunction (and thus the veloc-
ities) change sign in the vertical. Thus if the velocity is eastward rresar t
upper boundary, it is westward near the bottom. There is also a “zero-
crossing” atz = —D/2, where the velocities vanish. The waves have an
associated density perturbation as well:
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0 nm . T2
p1 X @wl = —fAcos(kx + ly — wnt)sm(ﬁ) (292)

So the density perturbation is largest at the mid-depth, where the horizontal
velocities vanish. In the ocean, first mode baroclinic Rossby waves cause
large deviations in théhermocline which is the subsurface maximum in
the density gradient.

We have assumed the surface and bottom are flat, and our solution has
no density perturbations on those surfaces. However, if we had allowed
the upper surface to move, we would have found that the first baroclinic
mode has an associated surface deflection. Moreover, this deflection is of
the opposite in sign to the density perturbation at mid-depth. If the density
contours are pressed down at mid-depth, the surface rises. This means one
can observe baroclinic Rossby waves by satellite.

The dispersion relation for the first mode is:

Bk
K2+ 12+ 1/L%
The corresponding zonal phase speed is:
Wi B
k k2+12+1/L%

So the first mode wave also propagates westward relative to the mean flo

wlek—

(293)

(294)

C1 =

But the phase speed sdowerthan that of the barotropic Rossby wave.
However, if the wavelength is much smaller than the deformation radius
(so thatk? + I? > 1/L2), then:

B
k2 + 12

So small scale baroclinic waves have a phase speed like that of a barotropic

(295)

Cle—

wave of the same size.
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If on the other hand the wave is much larger than the deformation radius,

then:
BN?D?
w2 f3

This means the large waves aren-dispersivebecause the phase speed

o~ U—pBLL=U (296)

is independent of the wavenumber. This phase speed, known as the “long
wave speed”, is a strong function of latitude, varying inversely with the
square of the Coriolis parameter. Whegas small—at low latitudes—the

long baroclinic waves move faster.

Baroclinic Rossby phase speeds
2 T T T
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Figure 33: Rossby phase speeds as a function of wavenumbieefbirst four modes.

The phase speeds from the first four modes are plotted as a function of
wavenumber in Fig. (33). Here we plot the function:

1

= (297)

Cn
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(note that the actualis the negative of this). We have set= L, = 1 and

k = 1 and assumed the mean flow is zero. The barotropic mede ()

has a phase speed which increases without bound as the wavenumber goes
to zero. This is actually a consequence of having a rigid lid at the surface;

if we had a free (moving) surface, the wave would have a finite phase speed
atk = 0. The first baroclinic moden( = 1) has a constant phase speed

at low k, equal toc = 1. This is the long wave speed wiihy, = 1. The
second and third baroclinic modes £ 2, 3) also have long wave speeds,

but these are four and nine times smaller than the first baroclinic long wave

speed.

Problem 3.2 Normal modes

We solved for the baroclinic modes assuming the the upper and lower
boundaries were flat surfaces, with= 0. As a result, the waves have
non-zero flow at the bottom. But if the lower boundaryosigh a better
condition is to assume that the horizontal velocity vanishesyi-e.v = 0.

Find the modes with this boundary condition. Compare the solutions
to those with a flat bottom. What happens to the barotropic mode? The
derivation is slightly simpler if you have the bottom at= 0 and the
surface at = D.

Problem 3.3 Baroclinic Rossby waves

a) What is the phase velocity for a long first baroclinic Rossby wave in
the ocean at 10N? Assume thdt= 0.01 sec™! and that the ocean depth
Is 5 km.

b) What about at 30N?
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c) What is the group velocity for long first baroclinic Rossby waves?
d) What do you think would happen to a long wave if it encountered a

western wall?

3.4.2 Baroclinic modes with exponential stratification

In the preceding section, we assumed a constant Brunt-Vaisala frequency,
N. This implies the density has linear profile in the vertical. In reality,
the oceanic density varies strongly with In many locations, the Brunt-
Vaisala frequency exhibits a nearly exponential dependence on depth, with
larger values near the surface and smaller ones at depth.

An exponential profile can also be solved analytically. Assume:
N? = Nie™ (298)

Substituting (298) into (279) yields:
P dp NI
(&

2 = 2
i + 7 Y =0 (299)
Making the substitutioq = ¢**/2, we obtain:
o d? d 4NZN?
S - = (300)

dc? dg
This is a Bessel-type equation. The solution which satisfies the upper
boundary condition (at = 0) is:

= A P[Y(29)J1(27€°7/%) = Jo(27) V2 (29e"?)] (301)

wherey = NoA/(afp). If we then impose the bottom boundary condition,
we get:
Jo(27)Yo(2ye %) — Yy (2y) Jo(27e /%) = 0 (302)
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Figure 34: The baroclinic modes witli=const. (upper left panel) and with exponential
N. In the upper right panety~! = H/2, and in the lower lefto~! = H/10. In all cases,
H = 1. From LaCasce (2012).

Equation (302), aranscendental equatigmdmits only certain discrete
values,v,. In other words;y, is quantized, just as it was with constant
stratification. Oncey, is found, the wave frequencies can be determined
from the dispersion relation as before. Equation (302) is more difficult to
solve than with constant stratification, but it's possible to do this numeri-
cally. Notice though that = 0 is also a solution of (302)—so there is also
a barotropic mode in this case as well.

Some examples of the wave vertical structuré;), are shown in Fig.
(34). In the upper left panel are the cosine modes, with congténtin
the upper right panel are the modes with exponential stratification, for the
case where: !, the e-folding depth of the stratification, is equal to half the
total depth. In the lower right panel are the modes with the e-folding depth
equal to 1/10th the water depth. In all cases, there is a depth-independent
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barotropic mode plus an infinite set of baroclinic modes. And in all cases,
the first baroclinic mode has one zero crossing, the second mode has two,
and so forth. But unlike the cosine modes, the exponential modes have
their largest amplitudes near the surface. So the Rossby wave velocities
and density perturbations are likewise surface-intensified.

Cycle 21 (April 13, 1993)
(! i \ ]

BOE 120 180 120 BO"W 0

Sea level (em)

Figure 35: Sea surface height anomalies at two successies t\Westward phase propa-
gation is clear at low latitudes, with the largest speedsiooty near the equator. From
Chelton and Schlax (1996).

3.4.3 Observations of Baroclinic Rossby waves

As noted, baroclinic Rossby waves can be seen by satellite. Sasdllite
timetersmeasure the sea surface height elevation, and because Rossby
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waves also have a surface signature, then can be observed. Shown in Fig.
(35) are two sea surface height fields from 1993. There are large scale
anomalies in the surface elevation, and these migrate westward in time

The speed of propagation moreover increases towards the equator, which

Is evident from a bending of the leading wave front (indicated by the white
contours).

Westward phase speed (cm/s)
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Figure 36: Westward phase speeds deduced from the motiea sisface height anoma-
lies, compared with the value predicted by the long wave @Bpsed given in (296). The
lower panel shows the ratio of observed to predicted phasedspNote the observed
speeds are roughly twice as fast at high latitudes. From @nahd Schlax (1996).

One can use satellite date like this to deduce the phase speed. Sections
of sea surface height at fixed latitudes are used to construct Hovmuller
diagrams (sec. 2.4.4), and then the phase speed is determined from the tilt
of the phase lines. This was done by Chelton and Schlax (1996), from the
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Hovmuller diagrams shown in Fig. (17); the resulting phase speeds are
plotted against latitude in Fig. (36). The observations are plotted over a
curve showing the long wave speed for the first baroclinic mode.

There is reasonable agreement at most latitudes. The agreement is very
good below about 20 degrees of latitude; at higher latitudes there is a sys-
tematic discrepancy, with the observed waves moving perhaps twicd as fas
as predicted. There are a number of theories which have tried to explain
this> For our purposes though, we see that the simple theory does surpris-
ingly well at predicting the observed sea surface height propagation.

There are, in addition, the higher baroclinic modes (witk 1). These
waves are even slower than the first baroclinic mode and have more struc-
ture in the vertical. The second baroclinic mode thus has two zero-crossings
and the third baroclinic mode has three.

Note that the eigenfunctions obtained from the Sturm-Liouville prob-
lem form acomplete basisThat means that we can express an arbitrary
function in terms of them, if that function is continuous. So oceanic cur-
rents can be decomposed into vertical modes. An early attempt to do this
was made by Kundu et al. (1974) using observations off the Oregon coast.
Wunsch (1997) studied currents using a large collection of current meters.
He found that the variability projects largely onto the barotropic and first
baroclinic modes. So these two modes are probably the most important for
time-varying motion.

3.5 Mountain waves

In sec. (2.8), we saw how a mean wind blowing over mountains could

excite standing Rossby waves. Now we will consider what happens in the

5See for example LaCasce and Pedlosky (2004) and Isachskrf20Gv).
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baroclinic case.

We consider the potential vorticity equation (268), without forcing:

g, , O f5 OV
dt[vw (N28

As before, we consider the flow driven by a mean zonal wind:

)+ Byl = (303)

O i L0050 (304)
The mean flow is constant, i.e. there is no vertical or lateral shear (we
take up a vertically sheared flow later on). As before, we ignore the time
dependence; we are looking for stationary, wave-like solutions. Again we
will assume that the stratification paramef§?, is constant, for simplicity.
With a constantV2, all the coefficients in the vorticity equation are
constant. That means we can use a solution which is wave-like in all di-

rections:

w _ qﬁeikx+i1y+imz (305)
Substituting this into (304) yields:

ikU[—(k* +1?) — 2f0]+zkﬁ¢_0 (306)
Rearranging, we get:
m = i?(ﬂ i e (307)
0

The character of the solution depends on the term in the square root in
(307). If this ispositive thenm is real and we have wave-like solutions.
But if the argument isiegative thenm will be imaginary and the vertical
dependence will bexponential If we rule out those solutions which grow
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with height—recall that the source for the waves is the mountains, at the
ground—then the exponential solutions are decaying upward.

But if the argument is positive, then is real and the solution is wave-
like in z. This means the waves can effectively propagate upward to in-
finity, leaving the troposphere and entering the stratosphere and beyond.
Then the waves generated at the surface can alter the circulation higher up
in the atmosphere.

In order for the argument to be positive, we require:

5

i k* 4 12 (308)

This implies that the mean flow], must bepositive or eastward. Rewrit-
ing the relation, we have:
s

—— =", 309
0<U<k2+l2 U (309)

So while U must be positive, neither can it be too strong. It must, in
particular, be less thatli,, the speed at which the barotropic Rossby wave
IS stationary (sec. 2.4.3).

Why is the mean flow limited by speed of the barotropic wave? As we
saw in the previous section, the barotropic mode isféstestof all the
Rossby modes. So upward propagating waves are possible only when the
mean speed is slow enough so that one of the baroclinic Rossby modes is
stationary

Notice that we have not said anything about the lower boundary, where
the waves are forced. In fact, the form of the mountains determines the
structure of the stationary waves. But the general condition above applies
to all types of mountain. If the mean flow is westerly and not too strong,

126



Analysis 12UTC 11 February 1678

Fig. 12.10 {continued)

Figure 37: The geopotential height at 10 hPa on February @#1116n1979. The polar
vortex is being perturbed by a disturbance over the PacifmmMHolton,An Introduction
to Dynamic Meteorology
the waves generated over the mountains can extend upward indefinitely.
Upward propagating Rossby waves are important in the stratosphere,
and can greatly disturb the flow there. They can even change the usual
equator-to-pole temperature differenceti@tospheric warmingvent.
Consider Figs. (37) and (38). In the first panel of Fig. (37), we see
the polar vortexover the Arctic. This is a region of persistent low pres-
sure (with a correspondingly low tropopause height). In the second panel,
a high pressure is developing over the North Pacific. This high intensi-
fies, eventually causing the polar vortex has split in two, making a mode
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Analysis 12UTC 21 February 1979

Fig. 12.10 10 hPa geopotential height analyses for February 11, 16, and 21, 1979 at 12UTC showing
breakdown of the polar vortex associated with a wave number 2 sudden stratospheric
warming. Contour interval: 16 dam. Analysis from ERA-40 reanalysis courtesy of the
European Centre for Medium-Range Weather Forecasts (ECMWEF).

Figure 38: The geopotential height at 10 hPa on February 249 ffollowing Fig. 37).

The polar vortex has split in two, appearing now as a mode 2yasave. From Holton,

An Introduction to Dynamic Meteorology

2 planetary wave (Fig. 38). The wave has a corresponding temperature
perturbation, and in regions the air actually warms moving from south to
north.

Stratospheric warming events occur only in the wintertime. Charney
and Drazin (1961) used the above theory to explain which this happens. In
the wintertime, the winds are westerly ¢~ 0), so that upward propagation
Is possible. But in the summertime, the stratospheric windsasterly
(U < 0), preventing upward propagation. So Rossby waves only alter the
stratospheric circulation in the wintertime.
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Problem 3.4 Mountain waves

Suppose that a stationary linear Rossby wave is forced by flow over
sinusoidal topography with heightx) = hy cos(kx). Show that the lower
boundary condition on the streamfunction can be expressed as:

0 hN?
5 R o1

Using this, and an appropriate upper boundary condition, solve(farz).
What is the position of the crests relative to the mountain tops?

3.6 Topographic waves

In an earlier problem, we found that a sloping bottom can support Rossby
waves, just like thei-effect. The waves propagate with shallow water to
their right (or “west”, when facing “north” up the slope). Topographic
waves exist with stratification too, and it is useful to examine theircstr
ture.

We'll use the potential vorticity equation, linearized with zero mean
flow (U = 0) and on thef-plane 3 = 0). We’'ll also assume that the
Brunt-Vaisala frequencyy, is constant. Then we have:

O 2 82
57+ N
Thus the potential vorticity in the interior of the fluabes not change in

) =0 (311)

time it is simply constant. We can take this constant to be zero.

For the bottom boundary condition, we will assume a linear topographic
slope. This can be in any direction, but we will say the depth is decreasing
toward the north:
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D =Dy — ay (312)

so thath = ay. In fact, this is a general choice because wfititonst., the
system is rotationally invariant (why?). With this topography, the bottom
boundary condition (271) becomes:

fo dgy OY dy O N?

9 =—u, - Vh — 2 —av =0 313
NTdt oz = ozt T (313)

Let's assume further that the bottom issat 0. We won't worry about the

upper boundary, as the waves will be trapped near the lower one.

To see that, assume a solution which is wave-like andy:

w _ Re{qﬁ(z)eikx—l-ily—iwt} (314)

Under the condition that the PV is zero, we have:

2 2\ 7 fO2 82 7
or
02 -~ N2k? .
0

wherex = (k% + 1?)!/? is again the total wavenumber. This equation only
has exponential solutions. The one that decays going up from the bottom
boundary has:

U(z) = AeNr#/ol (317)

This is the vertical structure of the topographic waves. It implies the waves
have a vertical e-folding scale of:
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Aol Ll
Nr  2nN

if \ is the wavelength of the wave. Thus the vertical scale of the wave

H

pends on its horizontal scalearger waves extend further into the interior.
Note too that we have eontinuumof waves, not a discrete set like we did
with the baroclinic modes (sec. 3.4).
Notice that we would have obtained the same result with the mountain
waves in the previous section. If we take (307) andiset0, we get:
N

- 12 g2 — oo
m—ifo( B2 = 4 - (318)

So with g = 0, we obtainonly exponential solutions in the vertical. The
wave-like solutions require an interior PV gradient.
Now we can apply the bottom boundary condition. We linearize (313)
with zero mean flow and write in terms of the streamfunction:
0 0 N?ady

I S

Substituting in the wave expression foywe get:

0 (319)

_(,UNKJA B N2ak
| fol fo

A=0 (320)

so that:

Nak

sgn(fo) (321)

wheresgn(fy) is+1if f > 0and-1iff < 0.
This is the dispersion relation for stratified topographic waves. The

W= —

phase speed in the-direction (along the isobaths, the lines of constant
depth) is:
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e = % sqn(fo) (322)

This then is “westward” in the Northern Hemisphere, i.e. with the shal-
low water on the right. As with planetary waves, the fastest waves are
the largest ones (with smadl). These are also the waves the penetrate
the highest into the water column. Thus the waves which are closest to
barotropic are the fastest.

Topographic waves are often observed in the ocean, particularly over
the continental slope. Observations suggest that disturbances originating
at the equator propagate north (with shallow water on the right) past Cal-
ifornia towards Canada. At the same time, waves also propagate south
(with the shallow water on the left) past Peru.

Problem 3.5 Topographic waves

Say we are in a region where there is a steep topographic slope rising to
the east, as off the west coast of Norway. The bottom decreases by 1 km
over a distance of about 20 km. Say there is a southward flow of 10 cm/sec
over the slope (which is constant with depth). Several fishermen have seen
topographic waves which span the entire slope. But they disagree about
which way they are propagating—north or south. Solve the problem for
them, given thatV =~ 10 f, and that we are at 60N.

3.7 Baroclinic instability

Now we return to instability. As discussed before, solar heating of the
earth’s surface causes a temperature gradient, with a warmer equator and

colder poles. This north-south temperature gradient is accompanied by a
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vertically sheared flow in the east-west direction. The flow is weak nea
the surface and increases moving upward in the troposphere.

warm

=0 .

cold

Figure 39: Slantwise convection. The slanted isothermsecempanied by a thermal
wind shear. The parcel A is colder, and thus heavier, tharep&, implying static stabil-
ity. But A is lighter than B. So A and B can be interchanged, Elggpotential energy.

3.7.1 Basic mechanism

The isotherms look (crudely) as sketched in Fig. (39). The temperature
decreases to the north, and also increases going up. Thus the parcel A is
colder (and heavier) than parcel C, which is directly above it. The air is
stably stratified, because exchanging A and C wauldeasethe potential
energy.

However, because the isotherms tilt, there is a parcel B which is above
A and heavier. So A and B can be exchangedeasingpotential en-
ergy. This is often referred to as “slantwise” convection, and it is tisgsba
for baroclinic instability. Baroclinic instability simultaneousiyduces the
vertical shearwhile decreasing the north-south temperature gradidnt
effect, it causes the temperature contours to slump back to a more horizon-
tal configuration, which reduces the thermal wind shear while decreasing
the meridional temperature difference.
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Baroclinic instability is extremely important. For one, it allows us to
live at high latitudes—without it, the poles would be much colder than the

equator.
3.7.2 Charney-Stern criterion

We can derive conditions for baroclinic instability, just as we did to obtain
the Rayleigh-Kuo criterion for barotropic instability. We begin, as always,
with the PV equation (268):

2

= = 323
We linearize this about a mean floWw, which varies inboththe y andz-
directions. Doing this is the same thing if we had writen the streamfunction
as:

where the primed streamfunction is much smaller than the mean stream-
function. The mean streamfunction has an associated zonal flow:
0

Uy, z) = —a—y\lf (325)

Note it has no meridional floni{) becauseVl is independent of. Using

this, we see the mean PV is:

0? o, f¢ov
a2t a: v
So the full linearized PV equation is:

+ By (326)

0 0
(E + U%)[V% +

o f2 o o .0

@(ﬁg)] + (a—yqs)a—xl/} =0 (327)
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where:

0 0? o fEoU
8_yq8 =0 - a—yQU - &(m%)
We saw the first two terms before, in the barotropic case. The third term

(328)

however is new. It comes about because the mean velocity (and hence the
mean streamfunction) varies in

In addition, we need the boundary conditions. We will assume flat
boundaries and no Ekman layers, to make this simple. Thus we use (273),
linearized about the mean flow:

dy 0 0 o oY 9oV

wo: ~w Vade T e e
) o oy  oU
—(aJr %)5_1}%_0 (329)

We’'ll assume that we have boundaries at the ground, at 0, and an
upper levelz = D. The latter could be the tropopause. Alternatively, we
could have no upper boundary at all, as with the mountain waves. But we
will use an upper boundary in the Eady model in the next section, so it’s
useful to include that now.

Becausd/ is potentially a function of botl andz, we can only assume
a wave structure iz, t). So we use a Fourier solution with the following
form:

b = P(y, z)ee=e (330)

Substituting into the PV equation (327), we get:

2 . 9 fRoy )

U —c)[-K¢ + a—yw + (g (a—yqs)w =0 (331)
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after canceling the factor @f. Similarly, the boundary conditions are:

d -~ 0 .~
€)= (5-U)p =0 (332)
We now do as we did in sec. (2.11.1): we divide (331)lby- ¢ and

then multiply by the complex conjugate of

U -

w0 o0 0y 2,712 10 712

v [8_y2¢+ 5. (v, ) R+ m(a—yqs)w =0 (333
We then separate real and imaginary parts. The imaginary part of the equa-
tion is:

N S0 fRod. 5 0 2o,
wra_wai_wi wr+wr (N2 Oz ) @DzaZ(NQ az)

—q, =0 334
We have again used:
1 - 1 - U—Cr+iCi
U—-c U-—c —ic;  |U~—c]?

As we did previously, we use a channel domain and demanditkat
at the north and south walls, at= 0 andy = L. We integrate the PV
equation iny and then invoke integration by parts. Doing this yields, for
the first two terms on the LHS:

Eoogr o 9 -9, [fo .o
/0(¢i8—y2¢r—¢ra—y2¢i)dy—¢ia—y¢r|o _/0 8—y¢z’a—y¢rdy
ey /L 9.0 -
—,—Y;|7 + — U, —;dy =0 335
drg Uili 4 | gt iy (335)
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We can similarly integrate the PV equation in the vertical, from 0 to
z = D, and again integrate by parts. This leaves:

2 0 2 0r
wr N2 8 | wz N2 8
(because the leftover integrals are the same and cancel each other). We

orp (336)

then evaluate these two terms using the boundary condition. We rewrite

that as:
o~ 0 U
—p) = (=— 7
0z (GzU)U— c (337)
The real part of this is:
0 ( - CT>¢7 Cz‘?ﬁi
.= — 338
w ( )[ |U_C|2 |U—C|2] ( )
and the imaglnary part is:
a ( Cr)lﬁz Cizﬁr
w7—( )[ |U—C‘2 + |U—C|2] (339)
If we substitute these into (336), we get:
B Dy oth  p SOy avi
N2 0z (U — )2+ 2" MR U—=c¢)+c? o=
fO CZTMQ

So the doubly-integrated (336) reduces to.

e 0 S R T
Al [ oot [ g o) B =o
(341)
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This is theCharney-Stern criterioffior instability. In order to have insta-
bility, ¢; > 0 and that requires that the term in brackets vanish.
Note that the first term is identical to the one we got for the Rayleigh-
Kuo criterion (249). In that case we had:
0 0?

8_qu =0- a—yQU (342)

For instability, we required tha%qs had to be zero somewhere in the do-
main.

The baroclinic condition is similar, except that now the background PV
Is given by (328), so:

2 2
st =B 53U~ (R =

So now the vertical shear can also cause the PV gradient to vanish.

In addition, the boundary contributions also come into play. In fact we

havefour possibilities:

° a%qs vanishes in the interior, Witﬁ;U = (0 on the boundaries
o %U at the upper boundary has the opposite sig%qss
e 2U atthe lower boundary has the same siglfya;@

e ;-U has the same sign on the boundaries, With = 0 in the interior

The first condition is the Rayleigh-Kuo criterion. This is the only condition
in the baroclinic case too if the vertical shear vanishes at the boundaries.
Note that from the thermal wind balance:
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0 0

&U X (9_yT
So having zero vertical shear at the boundaries implies the temperature is
constanibn them. So the boundaries are important if there is a temperature
gradient on them.

The fourth condition applies when the PV (and hence the gradient) is
zero in the interior. Then the two boundaries can interact to produce in-
stability. This is Eady'§1949) model of baroclinic instability, which we
consider in the next section.

In the atmosphere, the mean relative vorticity is generally smddéar t
the g-effect. So the interior gradient is positive (and approximately equal
to 5). Then the main effect is for the lower boundary to cancel the inte-
rior term. This is what happens in Charne{1947) model of baroclinic
instability.

It is also possible to construct a model with zero shear at the boundaries
and where the gradient of the interior PV vanishes because of the vertical
gradient. This is what happens in Phillig954) model of instability. His
model has two fluid layers, with the flow in each layer being barotropic.
Thus the shear at the upper and lower boundaries is zero. But because
there are two layers, the PV in each layer can be different. If the PV in
the layers is of opposite sign, then they can potentially sum to zero. Then
Philip’'s model is unstable.

As with the Rayleigh-Kuo criterion, the Charney-Stern criteria repre-
sent a necessary condition for instability but not a sufficient one. So satis-
fying one of the conditions above indicates instabititgyoccur. Note that
only one needs to be satisfied. But if none of the conditions are satisfied,

the flow is stable.
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Problem 3.6 Instability and the Charney-Stern relation

Consider a region with-1 < y < 1 and0 < z < D. We have the
following velocity profiles:

a)U = Acos(%)
b)U =Az+ B
c)U = 2(1 —¢?)

Which profiles are stable or unstablesif= 0 and N? = const.? What
if 5 #£07?

(Note the terms have been non-dimensionalized; san be any num-
ber, e.g. 1, 3.423, .5, etc.).

3.8 The Eady model

The simplest model of baroclinic instability with continuous stratifica-
tion is that of Eady (1949). This came out two years after Charney’s
(1947) model, which also has continuous stratificadod the 5-effect—
something not included in the Eady model. But the Eady model is com-
paratively simple, and illustrates the major aspects.

The configuration for the Eady model is shown in Fig. (40). We will

make the following assumptions:

e A constant Coriolis parametef (= 0)
e Uniform stratification (V2 = const.)

e The mean velocity has a constant sheai/se Az
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The Eady Model

y=L

y=0

Figure 40: The configuration for the Eady model.
e The motion occurs between two rigid plateszat 0 andz = D

e The motion occurs in a channel, with= 0 on the walls ayy = 0, L

The uniform stratification assumption is reasonable for the troposphere
but less so for the ocean (where the stratification is greater near the sur-
face, as we have seen). The rigid plate assumption is also unrealistic, but
simplifies the boundary conditions.

From the Charney-Stern criteria, we see that the model can be unstable
because the vertical shear is the same on the two boundaries. The interior
PV on the other hand is zero, so this cannot contribute to the instability.
We will see that the interior in the Eady model is basically passive. Itis
the interaction between temperature anomalies on the boundaries which
are important.

We will use a wave solution with the following form:

nwy

7 )eik(xfct)

b = (2)sin(
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The sin term satisfies the boundary conditions on the channel walls be-
cause:

U:3¢:o — ik =0 (343)
ox

which implies that) = 0. Thesin term vanishes af = 0 andy = L

The linearized PV equation for the Eady model is:

0 0.\ oo, Jo &
(5 TV V¥ Naga¥) =

Because there is no term, the PV is constant on air parcels advected by

(344)

the mean flow. Inserting the wave solution in yields:

2 82
"L2 ) + %W | =0 (345)

So either the phase speed equals the mean velocity or the PV itself is zero.

(U = o)l(— (k" +

The former case defines what is known asriéical layer; we won't be
concerned with that at the moment. So we assume instead the PV is zero.

This implies:
0 . A
@ = 042 (346)
where
Nk
O{ S
fo

and where; = (k*+ (n/L)?)"/? is the total horizontal wavenumber. This
Is exactly the same as in the topographic wave problem in (3.6). Equation
(346) determines the vertical structure of the waves.

First, let's consider what happens when the vertical scale factas
large. This is the case when the waves are short, becaissthen large.
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In this case the solutions to (346) are exponentials which decay away from
the boundaries:

)= Ae ™, o) = Be= D) (347)

Y

nearz = 0 andz = D, respectively. The waves are thus trapped on each
boundary and have a vertical structure like topographic waves.
To see how the waves behave, we use the boundary condition. This is:

0 0.0y odU
(a—i_U%)@z C Ox dz
(see eq. (329)). Inserting the wave solution and the mean shear, this is

0 (348)

simply:

(Az — c)g—f — A =0 (349)

after cancelling the factor ak. At z = 0, this is:

(ac —AN)A =0 (350)

after inserting the vertical dependence at the lower boundary. -AtD,

we have:

[(AD —¢)— A]B =0 (351)

To have non-trivial solutions4d and B are non-zero. So we require:

Ce—Ap-A (352)

(07

CcC =

e|l=

atz = 0, D respectively.
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Figure 41: The Eady streamfunction in the limit of lakge

First we notice that the phase speedsraa¢—so there is no instability.
The waves are simply propagating on each boundary. In the limittisat
large (the decay from the boundaries is rapid), these are:

c~0, c~AD (353)

So the phase speeds are equal to the mean velocities on the boundaries.
Thus the waves are just swept along by the background flow.

If « is not so large, the boundary waves propagate at speeds different
than the mean flow.

The solution is shown in Fig. (41). We have two waves, each advected
by the mean flow at its respective boundary and each decaying exponen-
tially away from the boundary. These waves mdependenbecause they
decay so rapidly with height; they do not interact with each other.

Now let’s look at the case wheke is not so large, so that the waves

extend further into the interior. Then we would write for the wave solution:
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) = Ae™ + Be (354)

This applies over the whole interior, including both boundaries. Plugging
into the boundary equation (349) we get;at 0:

(—ca — AN)A+ (ac—A)B=0 (355)

while at the upper boundary, at= D, we get:

((AD —¢) = N)e*PA+ (—a(AD —¢) = N)e™*PB =0  (356)

We can rewrite these equations in matrix form as follows:

( (—oc + X@)A— 1)e*? (ac— A_(;OZ)++A1))e—aD ) < é ) - ( 8 )

(357)
Note we multiplied the first equation through byl. Because this system
Is homogeneous, solutions exastly if the determinant of the coefficients
vanishes. Multiplying this out, we get:

ot (=™ +e )+ ca(A = AaD — N)e P + ca(AaD — A+ A)e*” -

A*(aD +1)e P — A*(aD — 1)e*P? =0 (358)

or.
—2c2a’sinh(aD) + 2ca’ ADsinh(aD) — 2A*aDcosh(aD)
+2A%sinh(aD) = 0 (359)
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Dividing through by—2a?sinh(aD):

A%2D A?
coth(aD) — — =0 (360)
o o

This quadratic equation has the solutions:

2 — ADc +

AD AD. 4 4,
C = 7 + 7[1 — ECOth(OKD) + QQDQ] /

We can rewrite the part in the square root using the identity:

(361)

1
cothx = §[tcmhg + cothg]

Then, pulling in a factor ofvD /2, the solution is:

AD A o?D? oD aD aD aD
248 _ th(22) — S panh (S 4 11172
c=— 1 5 coth(—-) = —tanh(—-) + 1]

AD A _aD aD_ aD aD. i/
=5 + E[(T - COth[T])(7 - t@nh[T])] /

Now for all z, z > tanh(z); so the second factor in the root is always

(362)

positive. Thus if:

D D
0‘7 > coth[a?] (363)

the term inside the root is positive. Then we have two phase speeds, both
of which are real. This occurs whenis large. In particular, il >
(2/D)coth(aD/2), these phase speeds are:

c=0, AD (364)

So we recover the trapped-wave solutions that we derived first.
If, on the other hand:
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aD aD

the term inside the root of (362) is negative. In Fig. (42), we plaind
coth(x). You can see thatis less for small values af. Thus the condition
for instability is met when is small. Since we have:

«

N n’r?

_ (2 D2
fo( v )

this occurs when the wavenumbeksandn, are small. Thus large waves

are more unstable.

When this condition is met, we can write the phase speed as:

AD
where
B A aD aD aD aD 1/2
i = =[(coth[ 7] = S5)(55- — tanh[ 7))



Putting this into the wave expression, we have that:

w x eik(:z:fct) _ eik(foDt/Q):chq;t (367)

Thus at each wavenumber there is a growing wave and a decaying wave.
The growth rate is equal th;.
The real part of the phase speed is:

_AD
2
This is how fast the wave is propagating. We see that the speed is equal

(368)

CT

to the mean flow speed at the midpoint in the vertical. So it is moving
slower than the mean flow speed at the upper boundary and faster than that
at the lower boundary. We call the midpoint, where the speeds are equal,
thesteering level

The growth rate is justc;. This is plotted in Fig. (43) for the = 1
mode in they-direction. We use the following parameters:

N =0.01sec!, fo=10""*sec™’, A =0.005sec !,
D=10*m, L=2x10m

This shear parameter yields a velocity of 50 m/sec at the tropopause height
(10 km), similar to the peak velocity in the Jet Stream. For these values
the Eady model yields complex phase speeds, indicating the troposphere
Is baroclinically unstable.

The growth rate increases from zerdkaacreases, reaches a maximum
value and then goes to zero. Hotarger than a critical value, the waves

are stable. Thus there isshort wave cut-offor the instability. The shorter
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Figure 43: The Eady growth rate as a function of the wavenumbe

the waves are, the more trapped they are at the boundaries and thus less
able to interact with each other.

The growth rate is a maximum at= 1.25 x 10~°m, corresponding
to a wavelength ofr/k = 5027 km. The wave with this size will grow
faster than any other. If we begin with a random collection of waves, this
one will dominate the field after a period of time.

The distance from a trough to a crest is one-fourth of a wavelength,
or roughly 1250 km for this wave. So this is the scale we'd expect for
storms. The maximum value éf:; is 8.46x107° sec’!, or equivalently
1/1.4 day~'. Thus the growth time for the instability is on the order of a
day. So both the length and time scales in the Eady model are consistent
with observations of storm development in the troposphere.

Using values typical of oceanic conditions:

N =0.0005sec™t, fo=10"1sec™!, A =0.0001sec?,
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Figure 44: The amplitude (left) and phase (right) of the Estdgamfunction vs. height.

D=5x10>m, L=2x10m

we get a maximum wavelength of about 100 km, or a quarter wavelength
of 25 km. Because the deformation radius is so much less in the ocean, the
“storms” are correspondingly smaller. The growth times are also roughly
ten times longer than in the troposphere. But these values should be taken
as very approximate, becauséin the ocean varies greatly between the
surface and bottom.

Let’s see what the unstable waves look like. To plot them, we rewrite
the solution slightly. From the condition at the lower boundary, we have:

(ca + M)A+ (—ca+A)B=0

So the wave solution can be written:

0w ca+AN - nmy
= Ale +m——Ae ]sm(T

Rearranging slightly, we get:

)eik(x—ct)
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Y = Alcosh(az) — AQS’z'nh(ozz)]sin(%)eik(%_d) (369)

Cx
We have absorbed the: into the unknownA. Because: is complex, the

second term in the brackets will affect the phase of the wave. To take this

into account, we rewrite the streamfunction thus:

Y = A@(z)sin(%)cas[k(w — ¢,t) + y(2)]eM! (370)
where
. CTA 9 CZ'A 211/2
®(2) = [(cosh(az) ‘C’2asmh(az)) + (|C‘2a3mh(az)) ]
Is the magnitude of the amplitude and
ci\sinh(az)

— tan !
T [\c\Qozcosh(ozz) — ¢, Asinh(az)

Is its phase. These are plotted in Fig. (44). The amplitude is greatest near
the boundaries. But it is not negligible in the interior, falling to only about
0.5 at the mid-level. Rather than two separate waves, we have one which
spans the depth of the fluid. Also, the phase changes with height. So the
streamlinedilt in the vertical.

We see this in Fig. (45), which shows the streamfunction, temperature,
meridional and vertical velocity for the most unstable wave. The stream-
function extends between the upper and lower boundaries, and the stream-
lines tilt to the west going upward. This means the wave is titgainst
the mean shear. You get the impression the wave is working against the
mean flow, trying to reduce its shear (which it is). The meridional velocity
(third panel) is similar, albeit shifted by 90 degrees. The temperature on
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the other hand tilts toward the east with height, and so is offset from the
meridional velocity.
We can also derive the vertical velocity for the Eady wave. Inverting

the linearized temperature equation, we have:

~ fo, 0 9.0y  fo, 00
= TV T e
This is shown in the bottom panel for the most unstable wave. There is

(371)

generally downward motion when the flow is toward the south and upward
motion when toward the north. This fits exactly with our expectations
for slantwise convection, illustrated in Fig. (39). Fluid parcels whiah a
higher up and to the north are being exchanged with parcels lower down to
the south. So the Eady model captures most of the important elements of
baroclinic instability.

However, the Eady model lacks an interior PV gradient (it hagifo
effect). Though this greatly simplifies the derivation, the atmosphere pos-
sesses such gradients, and it is reasonable to ask how they alter the insta-
bility. Interior gradients are considered in both the the Charney (1947) and
Phillips (1954) models. Details are given by Pedlosky (1987) and by Vallis
(2006).

Problem 3.7 Eady waves

a) Consider a mean flo/ = — Bz over a flat surface at = 0 with
no Ekman layer and no upper surface. Assume fthat 0 and thatN =
const.. Find the phase speed of a perturbation wave on the lower surface.

b) Consider a mean flow with = Bz2. What is the phase speed of the
wave atz = 0 now? Assume that = BfZ/N?, so that there still is no
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Figure 45: The streamfunction (upper), temperature (s¢oneridional velocity (third)
and vertical velocity for the most unstable wave in the Eaapfem.
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PV gradient in the interior. What is the mean temperature gradient on the
surface?

c) Now imagine a sloping bottom with zero mean flow. How is the slope
oriented and how steep is it so that the topographic waves are propagating
at the same speed as the waves in (a) and (b)?

Problem 3.8 Eady heat fluxes
Eady waves can flux heat. To see this, we calculate the correlation
between the northward velocity and the temperature:

.. 9./ vb;
o P00p _ 1 [P oyay

X P50z L), 9r9:%"

where L is the wavelength of the wave. Calculate this for the Eady wave
and show that it is positive; this implies that the Eady waves transport
warm air northward. You will also find that the heat fluxnslependent of
height

e Hint: use the form of the streamfunction given in (370).

e Hint:

/0 sin(k(x — ct)) cos(k(x — ct)) de =0
e Hint:

itcm_ly 2t (xdy/dz —ydz/dz,  xdy/dz — ydx/dz

dz T x2+y2 ) 72 + 2
e Hint: The final result will be proportional tg. Note that; is positive

x2

for a growing wave.
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4 Appendices
4.1 Appendix A: Kelvin's theorem

The vorticity equation can be derived in an elegant way. This is based on
thecirculation, which is the integral of the vorticity over a closed area:

FE/ C-ndA (372)
wheren is the normal vector to the area. From Stoke’s theorem, the circu-
lation is equivalent to the integral of the velocity around the circumference:

r://(vXﬁ)-ﬁdA:j{ﬁ.Jz (373)

Thus we can derive an equation for the circulation if we integrate the mo-
mentum equations around a closed circuit. For this, we will use the mo-
mentum equations in vector form. The derivation is somewhat easier if we
work with the fixed frame velocity:

d

1 ,
qr= Vg E (374)

If we integrate around a closed area, we get:

d — — — —
Ay, @.duj[g-dufpdz (375)
dt p
The gravity term vanishes because it can be written in terms of a potential
(the geopotential):
j=— z%—g(— 2) =V (376)
9= —gk = 92 9gz) =

and because the closed integral of a potential vanishes:
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%V@-cﬁz%d@zo (377)
—FF— 7{—+j4F dl (378)

Now the circulation] », has two components:

So:

FF:jéaF-d?:/ VxﬁF-ﬁdA://(5+2ﬁ)-ﬁdA (379)

As noted above, the most important components of the vorticity are in the
vertical. So a natural choice is to take an area which is in the horizontal

with 7 = k. Then:
re= [[ (¢ paa (380)

Putting this back in the circulation equation, we get:

%//(C-l-f)dz‘l:—%%-i-j{ﬁ'éﬁ (381)

Now, the first term on the RHS of (381) is zero under the Boussinesq
approximation because:

d 1
L= dp =10
P Pe

It is also zero if we use pressure coordinates because:
d
f—pb%]{d@p:o
p
Thus, in both cases, we have:
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d — —
—I', = F-dl 382
- 74 (382)

So the absolute circulation can only change under the action of friction. If
F =0, the absolute circulation is conserved on the parcel. This is Kelvin’s

theorem.

4.2 Appendix B: Solution in the Ekman layer

Ekman’s solution requires that we ywarametrizehe stress in the bound-
ary layer. To do this, we make a typical assumption that the stress is pro-
portional to the velocity shear:

pjc = AZ%U (383)
whereA_, is amixing coefficientThus the stress acts down the gradient of
the velocity. If the vertical shear is large, the stress is large ardvwacsa.
Generally,A, varies with height, and often in a non-trivial way, but in such
cases it can be difficult to find analytical solutions.

So we assume that, is constant. This follows Ekman’s (1905) original
formulation, and the solutions is now referred to asEkmanboundary
layer. We assume the flow is purely geostrophic in the fluid interior, above
the boundary layer, with velociti€s,,, v,). The boundary layer’s role then
IS to bring the velocities to rest at the lower boundary. With these sisess
we can solve for the ageostrophic velocities in the layer (the details are
given in Appendix B). Integrating the velocities with height, one finds:

de
U= _E(Ug +vg), V=—(uy—vy)

where(u,, v,) are the velocities in the interior. In the solutions, the depth
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of the Ekman layenr, is determined by the mixing coefficient,. This is:

2A
o = : 384
% (384)
So we have:
_ 0Oy | Ovgy 0 Oy | Oy
w<6)_2<8:€+8x>+2( 8y+8y>

0, Ovy v, 0, Ouy Ovy, 0 ,0v, Oduyg
_2( 8y+8x)+2( 8y+8y)_2(8a: @y)
The solution for velocities in the Ekman layer is as follows. Substituting

the parametrized stresses (383) into the boundary layer equations (84-85)

yields:
82
—fova = — A, 922 Uq (385)
82
f()ua = —AZ@UG (386)

Note that the geostrophic velocity was assumed to be independent of height,
so it doesn’t contribute to the RHS. If we define a variabkaus:

X = Ug + 10, (387)

we can combine the two equations into one:

0 fo
@X = ZA—ZX (388)
The general solution to this is:
x=A4A emp(i) exp(ii) + B emp(—i) e:vp(—ii) (389)
O O OF O
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where:

2A,
Jo
This is the Ekman depth. So the depth of the Ekman layer is determined

Op = (390)

by the mixing coefficient and by the Coriolis parameter.

To proceed, we need boundary conditions. The solutions should de-
cay moving upward, into the interior of the fluid, as the boundary layer
solutions should be confined to the boundary layer. Thus we can set:

A=0

From the definition ofy, we have:

z

= Re{x} = Re{B} exp(—5-) cos(5-)

op

z

+Im{B} exp(— ; )sm(éE) (391)
and
vy = Im{x} = —Re{B} exp(— ; )Sm(;E)
+Im{B} exp(—di) cos(;:E) (392)

Thus there are two unknowns. To determine these, we evaluate the veloci-
ties atz = 0. To satisfy the no-slip condition, we require:

Ug = —Ug, Vg =—0; at z=0

Then the total velocity will vanish. So we must have:

Re{B} = —
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and

Im{B} = —v,

Now we must integrate the velocities to obtain the transports. Strictly
speaking, the integrals are over the depth of the layer. But as the ageostrophic
velocities decay with height, we can just as well integrate them to infinit
So, we have:

z Z z

o0 ~ oo
L= — —Z ) cos(=) dz — — 2y sin(—) d
U, ug/o exp( 5E)cos(5E) z vg/o exp( 5E)sm(5E) z

= 2y +vy) (393)

(using a standard table of integrals). Likewise:

Vo = ug/ exp(—i) sm(i) dz — vg/ exp(—i) cos(i) dz
0 O O 0 O Op
J
= 5(“9 — V) (394)
Integrating the velocities with height, we obtain:
e e
U= _E(ug +ug), V= E(ug — V)

where(u,, v,) are the velocities in the interior. In the solutions, the depth
of the Ekman layen), is determined by the mixing coefficie,. This is:

2A,

5=
fo

(395)

So we have:
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_ 0 Ouy  Ovgy 0 Ouy Oy

w(9) = 2( oxr O )+ 5( Ay 8y)
0, Ovy  Ouy, 0, Ouy  Ovy, 0 ,0v,  Oduyg
=35, e T2, T T2 Ty
J )
=§qug:§§q (396)

4.3 Appendix C: Rossby wave energetics

Another way to derive the group velocity is via the energy equation for the
waves. For this, we first need the energy equation for the wave. As the
wave is barotropic, it has only kinetic energy. This is:

_1 2 2 _1 _6_¢ 2 8_¢ 2 _1 2
B =5t +0%) = Sl(=5 7 + (5] = 51V
To derive an energy equation, we multiply the wave equation (131).by

The result, after some rearranging, is:

01 2 9, s 1 21 _
5 GIVEP) + V- [muV o —ifou’] = 0 (397)

We can also write this as:

0 o
_E . pr—
S E+V-5=0 (398)

So the kinetic energy changes in response to the divergence of an energy
flux, given by:

5= v D i

The energy equation is thus like the continuity equation, as the density also
changes in response to a divergence in the velocity. Here the kinetic energy
changes if there is a divergencedn
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Let’'s apply this to the wave. We have

K2+ 12
gk~

A?sin®(kx + ly — wt) (399)

So the energy varies sinusoidally in time. Let’s average this over one wave
period:
27w 1
<E>E/ Edt:Z(szrF)AQ (400)
0

The flux, S, on the other hand is:

- N . A2
S = —(ki+1j)w A%cos*(kx+ly —wt) —i3 70032(kx+ly—wt) (401)

which has a time average:

A? B A2 K212, 28kl .

_ 2 2 s MPe _ . 402
<S> 2[ w(ki+1j) 22] 4[5k2+l22+k2+l2]] (402)
Rewriting this slightly:
K2 —1? . 20kl -
= ) |E=c¢, < E 403
<S> [6(k2+l2)21+(k2+l2)23] Gy < E> (403)

So the mean flux is the product of the mean energy and the group velocity,
¢,. Itis straightforward to show that the latter is the same as:

Cg= =i+ — ] (404)

Sincec, only depends on the wavenumbers, we can write:

%<E>+89-V<E>:O (405)
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We could write this in Lagrangian form then:

d
S < E>= 406
o <E>=0 (406)
where:
dc o a J
a—a—l—CQ'v (407)

In words, this means that the energy is conserved when moving at the
group velocity. The group velocity then is the relevant velocity to consider

when talking about the energy of the wave.

4.4  Appendix D: Munk’s model of the Gulf Stream

(Coming soon).

4.5 Appendix E: Fjgrtoft’s criterion

This is an alternate condition for barotropic instability, derived by Fjgrtoft
(1950). This follows from taking the real part of (244):

T
%a—y% =0 (408)

If we again integrate iy and rearrange, we get:

L P
B Y= 9
/0 (U CT) ‘U o 6’2 ayQS -

L9 92 . Lo
_/0 (wra—w¢r+¢ia—y2¢i)dfy+/o k=[] dy (409)

We can use integration by parts again, on the first term on the RHS. For

- 07 - 07 20712
(@Dra—yﬂbr + %‘8—y2¢1) — k)" + (U - ¢)

instance,
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/L¢6—2¢d—¢3¢|L—/L(3¢>2d (410)

. rayQT Y = ray r10 . ayr )

The first term on the RHS vanishes because of the boundary condition. So
(408) can be written:

L 12 L
‘ZM d / J - 2 d 2 21,712
U—c)mm—madsdy= [ (50" + (500 + K2 d
| =Gy = [ G0+ G+ R dy
(411)
The RHS is alwaypositive Now from Rayleigh'’s criterion, we know that:

L 712 )
|} = @12
AT

So we conclude that:

; .
/o (U — cﬁ%%qs >0 (413)
We don’t know whatc, is, but the condition states essentially that this
integral must be positive fanyreal constant,..
To test this, we can just pick a value fgr. The usual procedure is to
pick some value of the velocity]; call thatU,. A frequent choice is to use

the value ofU at the point Wherg%qs vanishes; Then we must have that:

0
(U - Us)a_yQS

somewhere in the domain. If this fails, the flow is stable.

>0 (414)

Fjartoft’s criterion is also a necessary condition for instability. elp+
resents an additional constraint to Rayleigh’s criterion. Sometimes a flow
will satisfy the Rayleigh criterion but not Fjgrtoft's—then the flow is-sta
ble. Interestingly, it's possible to show that Fjgrtoft’s criterion regsithe
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flow have a relative vorticity maximum somewhere in the domain interior,

not just on the boundaries.

4.6 Appendix F: QGPV in pressure coordinates

The PV equation in pressure coordinates is very similar to thatimordinates.
First off, the vorticity equation is given by:

dH . ou ov
E(CJrf)——(CﬂLf)(%Jra—y) (415)

Using the incompressibility condition (66), we rewrite this as:

dH 8(4)
GCHN =Ny (416)

The quasi-geostrophic version of this is:

UG+ D) = g (417)
where¢ = V2®/ f;.
To eliminatew, we use the potential temperature equation (36). For
simplicity we assume no heating, so the equation is simply:

o

— = 418
- =0 (418)

We assume:

etot(xayapu t) = QO(p) + 0($7y7p7 t) ) ‘6| < ‘60‘

whereb,, is the full temperature), is the “static” temperature artts the
“dynamic” temperature. Substituting these in, we get:
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00 06 06 0

— tu— Fv— —0) = 41

8t+uax+vay+w6pﬁo 0 (419)
We neglect the ternvdf/0p because it is much less than the term with

The geopotential is also dominated by a static component:

(I)tot - (I)O(p) + (I)(gj7y7p, t) ) ‘CI)’ < |(I)0‘ (420)

Then the hydrostatic relation (67) yields:

d®d,,, dd ) T, T
o _ 0% % Rl X (421)
dp dp — dp p p

and where:

T%mf = TO(p) + T(x7 Y, P, t) ) ‘T‘ < |T0| (422)

Equating the static and dynamic parts, we find:
dd  RT"

dp p

Now we need to rewrite the hydrostatic relation in terms of the potential

(423)

temperature. From the definition of potential temperature, we have:

- Ps R/C - Ps R/C
o =1 (ERe gy =1, (2RI
(p) 0 o(p)

where again we have equated the dynamic and static parts. Thus:

~ = (424)

So:

= (425)




So, dividing equation (419) b, we get:

o 0 9.0 0
(G + i3s3y 70+ gpinbo = 0 (426)

Finally, using (425) and approximating the horizontal velocities by their
geostrophic values, we obtain the QG temperature equation:

0 0 0, 0P

— — —) = = 427
(8t+ugﬁx+vgay)8p+gw 0 (427)
The parameter:
_ RIy 0
o(p) = 78_pln(00)

reflects the static stratification and is proportional to the Brunt-\aisat
guency (sec. 3.1). We can write this entirely in term9andw:
o 10 _0 10 _0, 00

As in sec. (3.2), we can combine the vorticity equation (417) and the
temperature equation (428) to yield a PV equation. In pressure coordinates,

this is:

2
(g _ iﬁ@g 4+ igq)g) [iv%p 4+ g(f_06_¢
o Op

ot fody Ox  fodx Ay’ 'fo o ) + Byl =0 (429)
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