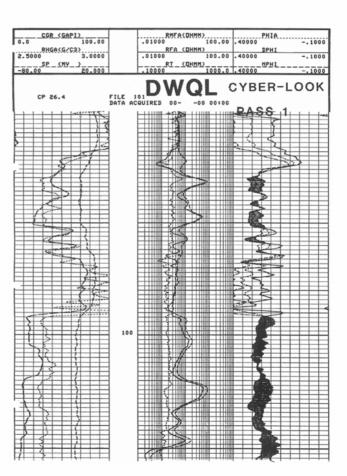


Spontaneous Potential

- Spontaneous Potential is one of the earliest logs used and still in use
- Primarily used for determining gross lithology, i.e reservoir vs non-reservoir (permeable vs non-permeable)
- Correlation
- Several other equally important use


The SP Log

- A record of *Direct Current (DC) voltage* (or *Potential*) that develops naturally (*spontaneous*) between a moveable electrode in the well and a fixed electrode located at the surface
- Measured in *millivolts (mV)*
- Mnemonics: SP
- SP response created by electric voltages arising from elctrochemical factors in the borehole and adjacent rocks
- SP Readings are caused by differences in salinities between mud filtrate and formation waters in permeable beds
- Salinity of a fluid is inversely proportional to its resistivity, so in practice mud filtrate salinity is indicated by mud filtrate resistivity (R_{mf}) and formation water salinity by formation water resisitivity (R_w)
- Conductive fluid necessary in borehole to create SP response, so SP cannot be used in nonconductive (e.g. oil based) drilling muds or in air-filled holes

The SP Log

- Usually displayed in the left track (correlation)
- Used to
 - Detect permeable beds
 - Detect boundaries of permeable beds
 - Determine formation-water resistivity (R_w)
 - Determine the volume of shale in permeable beds
 - Detection of hydrocarbons by the suppression of the SP curve

Introduction to the term SSP

• SSP:

- Static Spontaneous Potential
- Maximum SP that a thick, shale free, porous and permeable formation can have for a given ratio between R_{mf} and R_{w}
- Determined by formula or by chart
- Necessary for determining accurate values of ${\rm R}_{\rm w}$ and volume of shale

What influences SP measurement

for all sands SP influenced by: Shale Shale Baseline Raseline Bed thickness SSP $R_{mf} = R_{w}$ - Bed resistivity Borehole diameter SP Invasion $R_{mf} > R_v$ Shale content PSP $R_{mf} = fresh$ - Hydrocarbon content $R_w = salt$ and, most important Normal SP $R_{mf} >> R_w$ SP - Ratio of R_{mf} and R_{w} Reversed SP PSP R_{mf} < R... Fresh water $R_{mf} = salt$ $R_w = fresh$

SSP: Max deflection possible for given Rmf/Rw **SP**: SP response due to presence of thins beds and/or gas presence **PSP**: Pseudostatic SP; SP when shale is present

ullet

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

R_{mf} >> R_w

Thick clean

wet sand

Thin sand

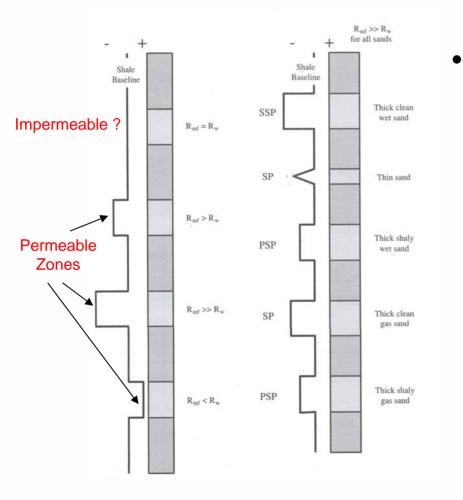
Thick shaly

wet sand

Thick clean

gas sand

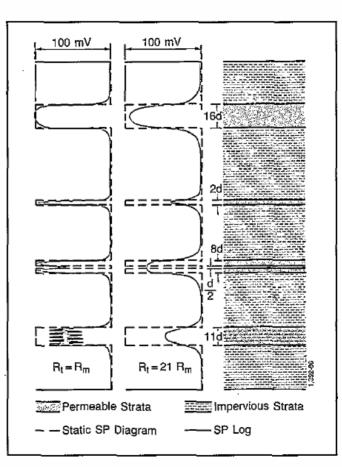
Thick shalv


gas sand

What influences SP measurement

- Bed Thickness
 - Thin formations (<3m) the measured SP is less than the SSP.
 - Narrow, pointed SP curve; correction for bed thickness required
- Bed Resistivity
 - Higher resistivities reduce the reflection of the SP curve
- Borehole and Invasion
 - Usually very small and can, in general, be ignored
- Shale Content
 - Presence of shale in a permeable formation, reduces the SP deflection
- Hydrocarbon Content
 - In hydrocarbon-bearing zones, the SP curves deflection is reduced:
 Hydrocarbon suppression. Only qualitative, not possible to determine S_{hc}

Shale Baseline


Shale Baseline:

- The relatively constant SP response of shales
- Assumed to be zero
- Permeable zones indicated where there is a deflection from the shale baseline
 - SP readings are measured relative to the shale baseline
- Can drift over long distances.
 Of little consequence for single formations

Shape of the SP curve

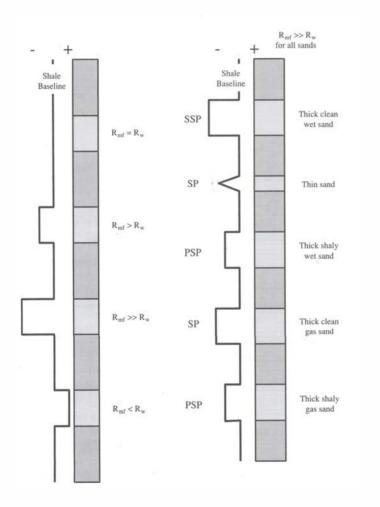
- Shape and Amplitude of the SP deflection opposite a permeable bed depends on:
 - Thickness, h, and true resistivity, R_t , of the permeable bed
 - Resistivity, R_{xo} , and diameter, d_i , of the zone contaminated by mud filtrate invasion
 - Resistivity, R_s , of the adjacent shale formation
 - Resistivity of the mud, R_m , and the diameter, d_h , of the borehole

Formation Water Resistivity (R_w) from SP

Remember:

$$S_{w} = \left(\frac{R_{0}}{R_{t}}\right)^{\frac{1}{n}} = \left(\frac{F \times R_{w}}{R_{t}}\right)^{\frac{1}{n}} = \left(\frac{a \times R_{w}}{R_{t} \times \phi^{m}}\right)^{\frac{1}{n}}$$

- Procedure:
 - Necessary info: R_{mf} and R_m (at a given T), T_{surf} , TD, BHT
 - Determine Formation Temperature, T_f (calculate or chart Gen-6)
 - Correct R_m and R_{mf} for T_f (chart Gen-9)
 - Determine SP from log: Max SP Shale Baseline SP
 - Correct SP to SSP for thin beds (chart SP4-6)
 - Determine R_{mf}/R_{we} ratio and from that R_{we} (*chart SP1*)
 - Correct R_{we} to R_w (*chart SP2-3*)



Formation Water Resistivity (R_w) from SP

Identify a zone on the log that is clean, wet and permeable. Pick the max. value of SP in that zone						
Calculate formation T at the depth of SP BHT – Bottom Hole Temperature AMST – Annual Mean Surface Temperature FD – Formation Depth TD – Total Depth T _f – Formation Temperature	$\mathbf{T}_{\mathrm{f}} = \left(\frac{\mathbf{BHT} - \mathbf{AMST}}{\mathbf{TD}} \times \mathbf{FD}\right) + \mathbf{AMST}$					
Convert R_{mf} from surface T to formation temperature $R_{mf} - R_{mf}$ at formation temperature $R_{mfsurf} - R_{mf}$ at measured temperature T_{surf} - Measured temperature of R_{mf}	$\mathbf{R}_{mt} = \frac{\mathbf{R}_{mtrack}(\mathbf{T}_{suct} + 6.77)}{\mathbf{T}_{t} + 6.77}$					
Find the equivalent formation water resistivity, R_{we} , from the SP and R_{mf} R_{we} – equivalent R_{w}	$\mathbf{R}_{we} = \mathbf{R}_{mf} \times 10^{SP/(61+0.133 \cdot BHT)}$					
Convert R_{we} to R_w (at formation T)	$\mathbf{R}_{w} = \frac{\mathbf{R}_{we} + 0.131 \times 10^{\left[\frac{1}{\log(BHT/19.9)}\right]^{-2}}}{-0.5 \times \mathbf{R}_{we} + 10^{\left[\frac{0.0426}{\log(BHT/50.8)}\right]}}$					

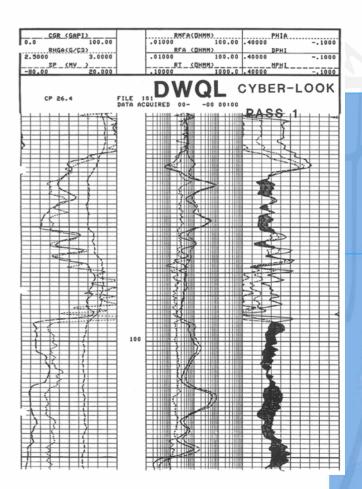
Calculation of Shale Volume with SP

 $\frac{PSP}{SSP}$ $V_{shale} = 1.0$ Or PSP - SSP $V_{\it shale}$ $=\frac{1}{SP_{shale}}-SSP$

Volume of shale is used in the evaluation of shaly sand reservoirs and as mapping parameter for both sandstone and carbonate facies analysis

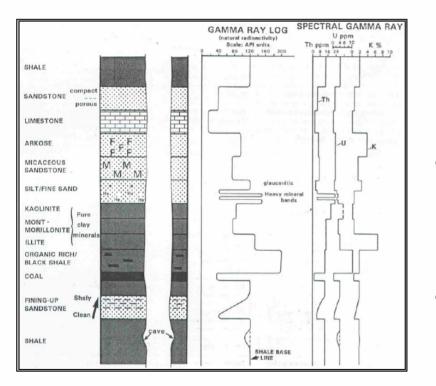
Principal uses of the SP log

	Used for	Knowing	
Quantitative	R_w	R _{mf} and T	
	V _{sh}	SSP and Shale Baseline	
Qualitative	Permeability indicator	Shale Baseline	
	Facies (shaliness)	Clay/Grain size relationships	
	Correlation		



Gamma Ray

General


- Gamma Ray (GR) tool measures the *natural radioactivity* in formations
- Used to identify lithologies, correlation and $\rm V_{sh}$ calculation
- Shale-free sandstones and carbonates have low concentrations of radioactive material and give low GR readings
- Increasing shale content (= increasing content of radioactive material) cause increasing GR readings
- Be aware, clean sst with K-feldspar, mica, glauconite, or U-rich waters may also produces high GR readings
- Usually displayed in the left track (Correlation track)

Curve Name	Mnemonics	Units	
(Total) Gamma Ray	GR	API	
U-free GR	GRS, SGR, KTH	API	
Potassium	POTA, K	Percent	
Uranium	URAN, U	Ррт	
Thorium	THOR, TH	ррт	

Spectral GR

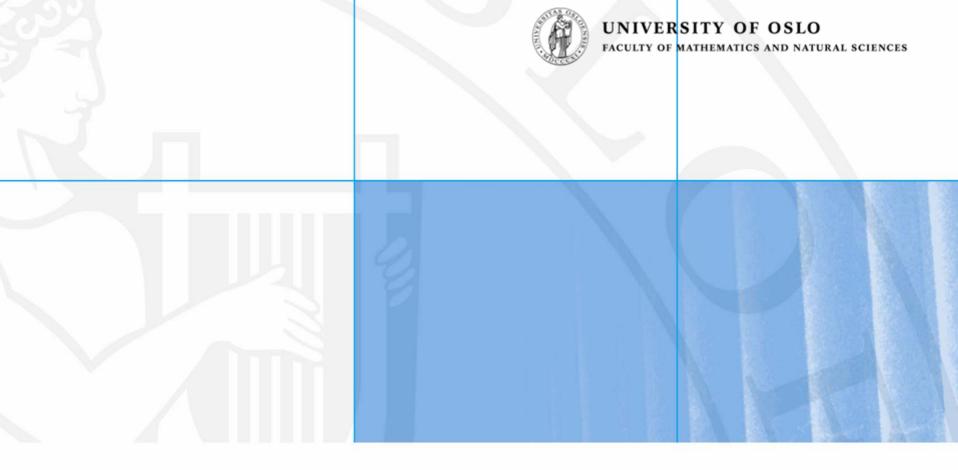
- The spectral Gamma Ray (SGR) log records not only the number of gamma rays emitted, but also the energy of each
- Processing that information gives curves for the presence of Th, K and U in the formation
- High K, High GR response may indicate a feldspathic, glauconitic or micaceous sst

Calculation of Shale Volume with GR

$$I_{GR} = \frac{GR_{\log} - GR_{\min}}{GR_{\max} - GR_{\min}}$$

$$V_{sh} = 0.083 \left(2^{3.7 \cdot I_{GR}} - 1 \right)$$

Lariono (1963) Tertiary Rocks


$$V_{sh} = \frac{I_{GR}}{3 - 2 \times I_{GR}}$$

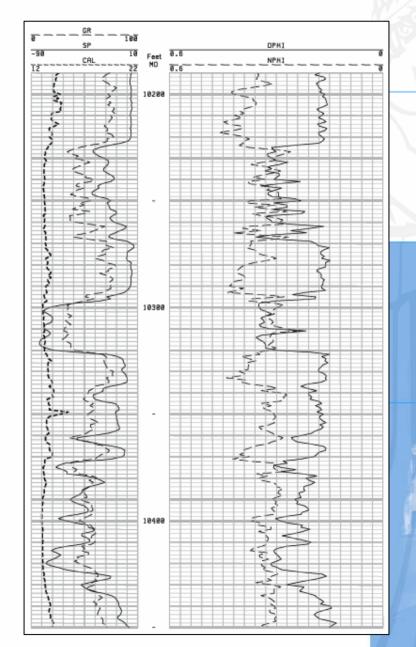
Steiber (1970)

$$V_{sh} = 1.7 - \left[3.38 - (I_{GR} - 0.7)^2\right]^{\frac{1}{2}}$$

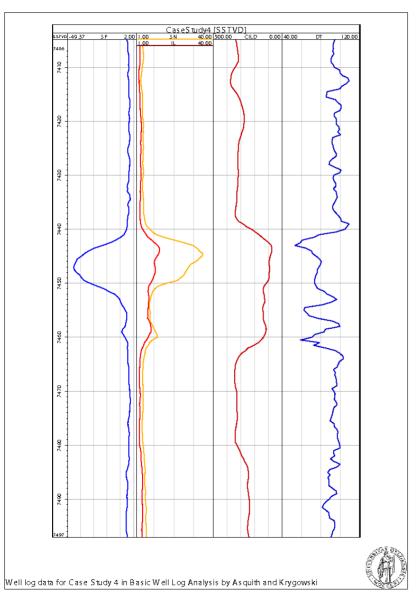
Clavier (1971)
$$V_{sh} = 0.33 \left(2^{2 \cdot I_{GR}} - 1\right)$$

Larionov (1969) Older rocks

- First step is to calculate the GR Index (I_{GR})
- Successively, several nonlinear relationships may be applied depending on fomation age or other local information

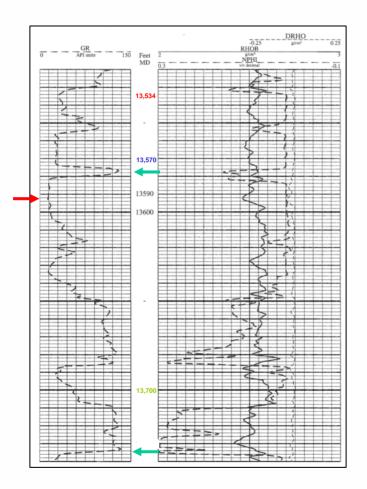


Caliper


Caliper log

- Interpretation goals:
 - Indication of hole diameter and volume
 - Qualitatice indication of permeability
 - Correlation
 - Log quality control
- Units: inches, cm
- Mnemonics: CAL, CALI

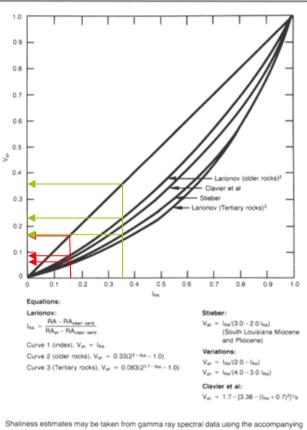
Examples



- Detemine the R_w from the SP log
- Given:
 - $R_{mf} = 0.51$ ohmm at 135°F (BHT)
 - $R_m = 0.91$ ohmm at 135°F (BHT)
 - Surface Temperature = 60°F
 - Total Depth (TD) = 8007 ft
 - Bottom Hole Temperature (BHT) = 135°F
- From the log:
 - Formation Depth at SP_{max} = 7446 ft
 - Bed Thickness = 7450 7442
 = 8 ft
 - Short normal resistivity (Ri = Resistivity of the invaded zone) = 33 ohmm

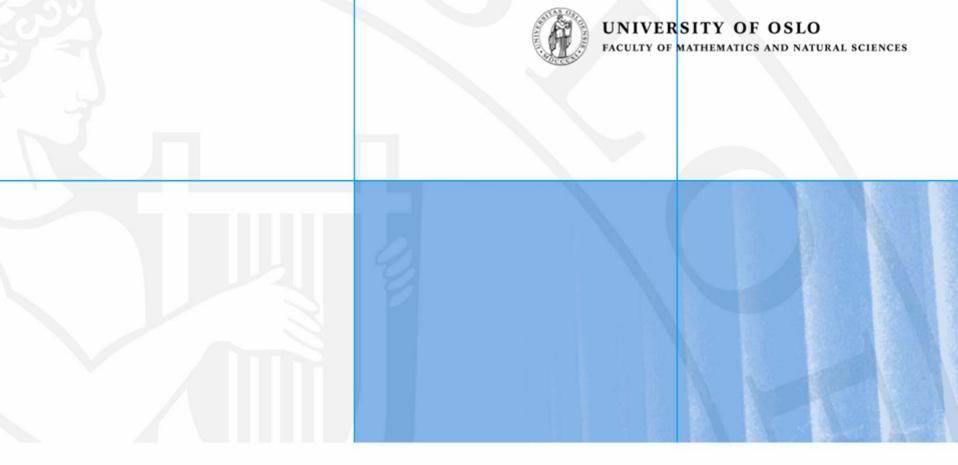
UNIVERSITY OF OSLO

Examples



- Determine V_{sh} from GR
- From the log:
 - GR_{min} = 14 API at 13593 ft
 - GR_{max} = 130 API at 13577 ft and 13733 ft

Depth (ft)	GR _{log}	I _{GR}	
13,534	32	0.16	
13,570	28	0.12	
13,700	55	0.35	



equations (radioactivity index = I_{PA}).

Determine Vsh from GR

Depth GR _{log}		Shale Volume			
	GR _{log}	GR _{log} I _{GR}	Linear	Larionov (older rocks)	Steiber
13,534	32	0.16	0.16	0.08	0.06
13,570	28	0.12	0.12	0.06	0.04
13,700	55	0.35	0.35	0.23	0.16

Exercise